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1 Introduction
Data assimilation is a method for estimating the state of a system by com-
bining observational data with a prior estimate of the state, usually obtained
from a numerical model. This is an important technique in the prediction
of meteorological and oceanographic variables because we need to know how
to combine output from models with observations in order to give the most
accurate prediction of the state of the system. This is not a trivial task as the
model often contains many inaccuracies, as do the observations, and these
errors are not always known. Also, the number of variables is as large as the
current computer can handle, currently of order 107 in the meteorological
and oceanographic problems, so there are limitations due to the amount of
computing power available for the data assimilation.

There are two main types of data assimilation. Sequential or 3D methods
combine a model output and observational data at one time to produce an
analysis. The model is then used to forecast forward in time until another
group of observations is reached when another analysis is performed and so
on. Examples of this type of method are the Successive Corrections Method
[1], [7], the Analysis Correction scheme [2], [24], Optimal Interpolation [27],
3D-VAR, the Kalman filter [21] and the ensemble Kalman filter [12]. The
second type of method is the 40 approach. Here a model forecast is compared
with observations over a long period of time so that some kind of best fit
can be obtained over the entire time period to produce an analysis. These
methods include 4D-VAR [28], [31], the PSAS method [6] and the Kalman
smoother [5]. It can be shown that the Kalman filter and 40- VAR produce
the same solution at the end of a time period for linear unbiased problems.

All of the methods mentioned above make assumptions about the statis-
tics of the observational error and apart from the Kalman filter assume there
exists a perfect model of the system. These assumptions include random
observational error with zero mean and the Kalman filter assumes the model
error is of a random nature. In reality there are often systematic errors in
the observations and in the model. These biases might be constant in time
but could also change according to seasonal variations for example. If ob-
servational biases are known, then there is no problem as they can easily be
subtracted out. The model biases are not usually known, however, so they
need to be treated in a different way.

In 1969, Friedland [13] described a method for treating a constant bias
in the Kalman filter. The method he proposed has since been extended by



many authors to include a time-varying bias ,[30], which contains random
errors, [20], and also to nonlinear systems, [32]. Dee et al. [10] also describes
ways of treating bias in the forecast using the Kalman filter. Derber, [ll] and
Griffith et al., [18], [19], give methods for accounting for bias in the 4D-VAR
data assimilation method. This report shows that the type of method given
in [13] and [10] can be used in all the sequential data assimilation methods
whilst demonstrating how different types of systematic errors can be treated.
The problem of noise in the observations leading to a noisy estimate of the
bias is noted and a possible remedy put forward.

In this report, four of the sequential methods will be examined, namely
the Successive Corrections method, Optimal Interpolation, the Analysis Cor-
rection scheme and the Kalman filter. Section 2 reviews the theory behind
the methods considered. In Section 3, the models which have been used to
test the methods are described and the results shown. Section 4 describes the
theory and gives some examples of accounting for bias in data assimilation.
Section 5 contains the conclusions reached.

2 Data Assimilation Methods
The sequential data assimilation problem can be described as:

At each time step i, minimise the cost functional

.7 = (If_(i) - H(12(i))T R-l(lf_(i) - H(12(i)))
+ (12(i) - h,(i)f B-1(12(i) - h,(i))

(1)

with respect to the 12( i).
Here l2b(i) is a background state with error covariance matrix B, If_(i) is a
vector of observations containing random white noise with covariance matrix
Rand H is the observation operator which interpolates from model fields to
observation values. The l2a (i) is the analysis produced from the solution to
this problem and has error covariance matrix A. The analysis produced from
the direct minimisation of this cost function is called the 3D-VAR solution
and has analysis error covariance matrix A = (1/2).7" [6], [22J. This method
will not be discussed further but is included for completeness.
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2.1 Opt imal Interpolation

The solution to the minimisation problem in the previous section can be
expressed in the linear case as

~a(i) = ;r;,(i) + f([IL(i) - H(;r;,(i))]'

f{ = BHT(H BHT +Rt1,
(2)

(3)

where K is called the gain matrix, [22]. If H is a nonlinear operator, it
should be linearised around a background state. This matrix is then used
in equation (3). The solution ~(i) is called the Optimal Interpolation (01)
solution and has analysis error covariance A = (I - K H)B [27],[22]. This
method is not strictly optimal over a period of time, however, because the
covariance matrices Band R are not evolved with time and are not usually
well known. It is therefore sometimes known as Statistical Interpolation.

2.2 The Successive Corrections Method

The Successive Corrections method (SCM) was one of the first data assimila-
tion techniques to be implemented in practical problems. Bergthorsson and
Doos [1] were the first to introduce the method in 1955, followed shortly after
by Cressman [7]. Corrections are made to a first guess or background state by
adding a weighted difference between the observations and the background.
This background state can be an output from a model or the climatology of
the system. The SCM algorithm can be written as

~+l(i) = ~(i) + W[IL(i) - H(~(i))], (4)

where ~(i) = ±h(i) is the background state, ~(i) is the analysis after k
corrections and W is a weighting matrix.

The main point of the method is how we choose the weighting matrix.
At first, this matrix was chosen empirically. However, over the years since
the method was introduced there have been many suggestions as to the best
and most efficient choices. In [7] the weights are chosen to smooth the ob-
servations into the analysis so that there are no sharp jumps in the solution.

In [8] Daley shows that if the weighting matrix is chosen so that the SCM
converges, then it will always converge to the observations as the number
of corrections increases. For this reason, the corrections are usually stopped
after only a few iterations to prevent noisy analyses.
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2.3 The Analysis Correction Scheme

The Analysis Correction (AC) scheme is a modified SCM. Here, corrections
are made to the observations as well as the background state to take into
account the error in the observations. In [2] a particular weighting matrix is
derived using the method of 01 as a reference to obtain the optimal weight-
ings. Lorenc, Bell and MacPherson [24] also give a derivation of the method
and show that it converges to the 01 solution as the number of iterations
increases. The AC algorithm can be written in the linear case as

±i +1
( i) = ±i (i) + W Q [u.i(i) - H ki (i) )],

u.i+1(i) = u.i(i) - Q[u.i(i) - H(±i(i))],

(5)

(6)
where u.°(i) is the vector of observations, W = BHT R+, Q = (HW + I)-I
and ±k(iLu.k(i) -t b,(i) as k -t 00. If H is a nonlinear operator then it
should be linearised about a background state. This matrix is then used in
the formulation of Wand Q.

Versions of this scheme are currently in operation at the UKMO in the
ocean FOAM model. In the operational scheme, equation (6) is ignored and
the observations are used without any correction. Also, an approximation to
Q is made to avoid inverting the matrix HW + I.

2.4 The Kalman Filter

The Kalman filter is the optimal method over a period of time for linear
problems satisfying its assumptions, [16], [17], [21]. The main distinctions
between this and the other methods is that the error covariance matrices are
evolved with the analysis and random model error is taken into account. In
other words, we are solving a minimisation similar to equation (1) but with
time as an additional dimension. The solution to this minimisation problem
is known as the 4D-VAR analysis. This gives the same solution at the end
of a time period as the Kalman Filter for linear problems.

In the Kalman filter, it is assumed that the model error is unbiased,
the model error covariance Q( i) is known and the analysis and model er-
rors are mutually uncorrelated. We !lOW change the notation by denoting
the background and analysis error covariance matrices B and A by Pj and
Pa respectively. With these notations and assumptions, the Kalman filter
algorithm can be written as

/{(i) = Pj(i) ({T(i)[H(i)Pj(i)HT(i) + R(i)r1, (7)
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~a(i) = ~j(i) + J((i)[;lL(i) - H(ihj(i)],

Pa(i) = [1- J((i)H(i)]Pj(i),

(8)

(9)

(10)

(11)

~j(i + 1) = Mi-+i+d~(i)],

Pj(i + 1) = Mi-+i+lPa(i)MLi+l + Q(i),

where Mi-+i+l is the model operating between time i and i+ 1 and the analyses
are given by the sequence of ~(i).

For a nonlinear problem, the Kalman filter can be extended to give the
extended Kalman filter (EKF). Here, the nonlinear model is linearised around
a background state so that

Mi-+i+d~(i)]- Mi-+i+db(i)] = Mi-+i+d~(i) - .b(i)] + O(6.x2), (12)

where M is called the tangent linear model. We also have to linearise the
observation operator H(i). The only changes that are made to the algorithm
(7)-(11) are that the tangent linear model is now used to evolve the error
covariance matrices rather than the full model as before and the linearised
observation operator must be used. These approximations have the effect of
destroying the optimality of the EKF [3].

3 The Models
Two models have been used to investigate the similarities and differences
between the four data assimilation techniques described in Section 2. The
first is a simple linear system for which we expect all of the assimilation
methods to do well. The second is the chaotic nonlinear Lorenz equations,
which, it is hoped, will provide an insight into how well these methods are
likely to perform when applied to more complicated problems.

3.1 Damped Oscillating System

The damped oscillating system is given by the ordinary differential equation

jj = -ky - Tlt] (13)
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where the damping k and the square of the frequency n are given values of
0.1 and 1 respectively. The differential equation (13) can be expressed as the
first order system

( t~) (~n ~k) ( ~~) . (14)

This system has been discretised using a second order Runge-Kutta method
with a time step of 0.1. The 'true' solution is given by the discretised equa-
tions with initial conditions of Yl(O) = 1 and Y2(0) = O. The background or
initial guess has initial conditions of Yl (0) = 1.5 and Y2(0) = 0.5. These two
solutions are shown in Figure 1.

Figure 1: The damped oscillating system

true solution
background solution

0.5

-0.5

-1

_15,L_ __ _L L_ __ ~ __ ~ L_ __ _L L_ __ _L __ ~ ___

o 5 10 15 20 25 30 35 40 45 50
line (sees)

Observations of Yl and Y2 are taken from the true solution at every other
time step from t=O to t=25, with and without random noise added. The
random noise is Gaussian with a mean of zero and a variance of 0.01.

Experiment 1 The analysis is performed on the damped oscillating system
using all [our assimilation methods from time 0 to 25 ioh.ere there are obser-
vations eveTY other time step. The analysis at the end of this in.riod is then
[orecasi to time 50.
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3.2 Lorenz Equations

The Lorenz equations are a nonlinear system of three ordinary differential
equations. They were originally obtained from the first terms in a Fourier
truncation of the flow equations governing thermal convection [26], and are
given by

x = -O"(X - y)
y - px - y - xz

z xy - f3z.

(15)
(16)
(17)

The parameters 0", p and f3 are chosen to have values of 10, 28 and 8/3,
respectively, which gives the system chaotic solutions [29J. At these values
the system has three equilibrium points, an unstable saddle point at the
origin and two unstable spiral points at the coordinates

(-! Jf3(p -1), ~ Jf3(p - l),p - 1).

The system has been discretised using a second order Runge-Kutta method
with time steps of 0.01. The 'true' solution is given by the discrete system
with initial conditions Xo = Yo = Zo = 2. The background has initial condi-
tions Xo = Yo = Zo = 1. Both solutions are shown in Figure 2.

Observations of x, y and z are obtained from the true solution with and
without noise added. This noise has a Gaussian distribution with zero mean
and a variance of 0.01.

Experiment 2 The analysis is performed on the Lorenz equations using all
four assimilation methods from time 0 to 7.5 where there are observations
every three time steps which are (a) perfect (b) noisy. A forecast is then
made to time 15.

Experiment 3 The analysis is performed on the Lorenz equations using all
four assimilation methods from time 0 to time 20 with 6 evenly spaced obser-
vations which are (a) perfect (b) noisy.

7



Figure 2: The Lorenz equations
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3.3 Results

Figures corresponding to the experiments not shown in this section can be
seen in the Appendix.

3.3.1 The Oscillating System

Experiment 1
In the SCM, the weighting matrix W was chosen to be 0.5 x I and 2

corrections were performed at each observation time. As has been said, the
SCM converges to the observations as the number of corrections increases,
which is good if the observations are perfect, but not good if the observations
contain noise. This is shown in Figure 3.

In the AC and 01 schemes, the background and observation error co-
variance matrices were chosen to be I and 0.1 x I respectively when the
observations were perfect. When noise was present, the background error
covariance matrix was equal to I and the observation error covariance ma-
trix was equal to I multiplied by the variance of the noise, 0.01. The AC
scheme was iterated twice at each observation time. As can be seen from
Figures 4 and 5, the two schemes have produced an idenLical analysis when
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there is noise present in the observations. Both methods produce a fairly
noisy analysis, but they are an improvement on the SCM which produced
sharper jumps. The SCM can be made to perform more smoothly when
noise is present by choosing the weighting function in a different way and by
performing fewer iterations.

When implementing the Kalman filter, the forecast error covariance ma-
trix at t = 0 was chosen to be I, the observation error covariance matrix was
chosen to be 0.1 x I when the observations were perfect and I multiplied by
the variance of the noise when noise was added. The model error covariance,
Q(i) was always set to be I. The Kalman filter produces the most accurate
results when noise is present in the observations as shown in Figure 6. The
analysis follows the true solution very closely and seems to ignore the obser-
vational noise which is what was expected in this simple linear case, given
the correct statistical information.
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Figure 3: Experiment l. Successive Corrections assimilation on the damped
oscillating system: (i) with perfect observations (ii) with noise on the obser-
vations
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Figure 4: Experiment l. Analysis Correction assimilation on the damped
oscillating system: (i) with perfect observations (ii) with noise on the obser-
vations
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Figure 5: Experiment 1. Optimal Interpolation assimilation on the damped
oscillating system: (i) with perfect observations (ii) with noise on the obser-
vations
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Figure 6: Experiment 1. Kalman filter assimilation on the damped oscillating
system: (i) with perfect observations (ii) with noise on the observations
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3.3.2 The Lorenz equations

Experiment 2
When the assimilation methods were performed on the Lorenz equations

with perfect observations, all of the schemes did very well and managed to
follow the true solution exactly. This is shown by the fact that the forecast
still agrees with the true solution even at the end of the time period in Figure
7.

Due to the chaotic nature of the Lorenz equations, none of the methods
produce a good forecast for very long after the analysis has finished if there
is any noise on the observations as shown in Figure 8. This is because a small
perturbation in the initial conditions produces a very different solution. Fig-
ure 9 shows that the EKF appears to have produced the worst analysis as
the forecast seems to move around the wrong attractor after 12 seconds. Al-
though it is understood that the EKF is not optimal for nonlinear systems,
this is still surprising.

Experiment 3
With perfect observations, the SCM did not follow the true solution after

about 11 seconds of assimilation, as shown in Figure 10. This is probably
because at this point the true solution begins to alternate between the two
attractors more frequently. Sharp jumps in the analysis can be seen when a
new observation is reached. In practice this would be avoided by smoothing in
the observation over a time window. The AC scheme also did fairly badly at
about the same point in the experiment. If these two methods are iterated
more times at each observation point, they produce better solutions. The
analysis using the AC scheme after 2 and 5 iterations is shown in Figures 11
and 12. After 5 iterations the AC analysis appears to have converged and
is now similar to the 01 solution. 01 and the Kalman filter produced very
good analyses which follow the true solution throughout the time interval.

When the experiments were run with noisy observations, Figure 13 shows
that the 01 analysis followed the true solution for about 10 seconds but failed
to go with the true solution around the correct attractor after that. The EKF
produced the best analysis, as shown in Figure 14. This is a surprisingly
good analysis given the number of observations. This is probably because
the observation at 12 seconds IS close to the true solution and brings the
analysis back on track after deviating slightly in the preceding second. The
other three methods did not follow the true solution after it had started to

12



switch between the two attractors, which is not surprising given the number
of observations.

Figure 7: Experiment 2a. Assimilation on the Lorenz equations with perfect
observations using the SCM
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Figure 9: Experiment 2b. Assimilation on the Lorenz equations with noise
on the observations using the EKF

vue solu11oo

back.ground

coserveuoee

analysis

60

-\0 -5 \0 \5

\0 \5
time (sees)

20 \5
time (sees)

Figure 10: Experiment 3a. Assimilation on the Lorenz equations with perfect
observations using the SCMWr.=========~~--~~r--.--~--~
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Pigure 11: Experiment 3a. Assimilation on the Lorenz equations with perfect
observations using the AC scheme after 2 iterations
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Figure 12: Experiment 3a. Assimilation on the Lorenz equations with perfect
observations using the AC scheme after 5 iterations
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Figure 13: Experiment 3b. Assimilation on the Lorenz equations with noise
on the observations using or
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Figure 14: Experiment 3b. Assimilation on the Lorenz equations with noise
on the observations using the EKF
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4 Accounting for Bias
In reality there are often processes which affect the model and observations
in systematic ways. For instance observing instruments may have a bias error
which is unknown. Also there are many ways in which the model of a system
will be different from the true system. Errors may occur due to the finite
approximation of an infinite system, use of the wrong coefficients or incorrect
boundary conditions to name a few. These types of errors are not accounted
for in the traditional data assimilation methods and therefore need special
treatment.

4.1 General Theory

4.1.1 Convergence of the analysed state

Using the notation of previous sections the system of the model and obser-
vations is written as

;r_(i+ 1) = M;__'i+d;r_(i)]'

!1(i + 1) = Hi+d;r_(i + 1)],

(18)

(19)

where .;£(0)is unknown. The data assimilation problem for this system has so
far been solved by the usual sequential methods. It has been shown that with
a perfect model this process works well. However, if we have some unknown
bias in the model, the methods described so far do not take this into account
(see Section 4.2).

If we assume that the model is biased then we can write the system as

;r_(i+ 1) = M;__';+l[;r_(i)] + _Q(i),

!1(i + 1) = H;+d;r_(i + 1)],

(20)

(21 )

where _Q(i) is the bias in the model at time i and ;r_(0)and _Q(O)are unknown.
There is now the problem of solving for the state and the bias at some later
time. If we implement the sequential data assimilation process for this system
then the equations become

;r_b(i + 1) = Mi__'i+d~(i)l + Q_(i), (22)
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L:,(i + 1) = ;0,(i + 1) + Wi(JL(i + 1) - Hi+d;0,(i + 1)]). (23)

We now assume that the model for the state and the model for the bias
can be linearised to produce the tangent linear models as in Section 2.3 and
that the observation operator can also be linearised. We also assume that
the matrices M, Hand Ware constant matrices. Combining equations (22)
and (23) under these assumptions gives the evolution of the analysed state
as

L:,(i+l) = (M-WHM)L:,(i)+(I-WH)Q(i)
+ WJL(i + 1).

(24)

If we now take the difference between this analysed state and the true
state ~t( i) obtained from equation (18), assuming that the observations come
from the true state, we get the error equation

f_(i + 1) = (M - W H M)f_(i) - (I- WH)Q(i), (25)

where f_( i) = ~t ( i) - L:,(i). This shows that if our model has a bias then
the error between the true and model state will be forced by that bias. One
possible way of overcoming this problem is to assume that the bias follows
some model, N, which is known [18]. The system now becomes

~(i + 1) = Mi--+i+d~(i)] + Q(i),

Q(i + 1) = Ni--+i+dQ(i)],

y(i + 1) = Hi+d~(i + 1)].

(26)

(27)

(28)

We can then augment the state vector to include the vector of biases so
that the system can be written in the same form as in previous sections. We
write

~(i+l) (
h,(z + 1) ) = ( M,--+i+l I ) ( L:,(Z)) (29)
Q;,(z + 1) 0 Ni--+iH b.a(z)

Fi--+i+l~ (i),

( ) ( )(~t(i+l)) -G (. )
!j_ i + 1 = H 0 Qt (i + 1) =?_t i + 1 , (30)

18



br(i + 1) = ~(i + 1) + ( :: ) [U(i + 1) - G~(i + 1)], (31)

where f{ is the augmented state vector.
When performing the sequential data assimilation methods on this aug-

mented state, assuming M, Nand H to be linear and time invariant, the
evolution of the analysed state now becomes

( .) ( M - WIH M I - WIH) ( .)
br Z + 1 = _ W

2
HM N _ W

2
H br Z

+ (:~) U(i + 1).

(32)

The true state is now given by

f{t (i+ 1) = (~ ~) f{t ( i) . (33)

The difference between the true and analysed states, assuming that the ob-
servations come from the true state, is now given by

( . 1) = ( M - WIHM I - WIH ) ( .)
~ Z + _W

2
H M N _ W

2
H ~ Z , (34)

where ~(i) = f{t(i) - br(i). We now see that as long as the spectral radius of
the matrix in equation (34) is less than 1, the analysed state will converge
to the true state as i -----t 00.

It is also possible to treat observational bias in a similar way, that is,
to augment the state vector to include a vector of biases. The observation
operator is now changed so that if the bias is assumed to be constant then

(. 1)= (Mi--+i+I 0) (.)f{z+ 0 I f{Z, (35)

U(i+ 1) = (H I )_,o_(i+ 1). (36)
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4.1.2 Applying the Kalman filter to the augmented state

In the previous section, the models for the state and bias evolution were
assumed to be perfect, as were the observations. If we now generalise and
add random errors to these components, the system becomes

di+1)
Q( i+ 1)

y_(i)

Mi--+i+d.:f(i)] + Q(i) + {,,(i),
Ni--+i+dQ(i)] + ~(i),
H;[.:f(i)] + r_]_(i),

(37)
(38)
(39)

where the Greek letters denote random vectors, ~ (i) has covariance matrix
-s-a:

Qx(i), ~(i) has covariance matrix Qb(i) and r_]_(i) has covariance matrix R;

Now assume that Mi--+i+1' Ni-+i+1' and Hi are linear and let s. = ( ~ ).

Then rewriting the above equations gives

y_( i)

(Mi--+i+l I )Z;_(i)+({,,(~))
o Ni-+i+1 ~(l)

Fi-+i+1z;_( i) +~
(Hi, 0) z;_(i) + r_]_i = Giz;_(i) + r_]_i'

(40)

(41)

z;_(i + 1)

We can now apply the Kalman filter algorithm to this augmented system.
This formulation is the same as that in Friedland's paper [13] except for the
addition of model error to the model of the bias, [20], and inclusion of a
general model for the evolution of the bias, [30]. A form of the extended
Kalman filter has also been derived for the case of a time-varying bias with
random error for nonlinear systems, [32], but is not described here.

4.1.3 Choice of bias evolution model

There are many possible choices for the model N of the bias, and it is useful
if something is known about the nature of the bias a priori. For instance,
if the bias is constant in time it would be sensible to specify N = I. If
the bias is due to errors in the system parameters then the tangent linear
model for the state of the system might be used to represent the bias, i.e.
Ni--+i+l = Mi-+i+1. If a constant bias is assumed, the state equations for the
augmented state are given by

z;_(i + 1) = Fi--+i+1z;_(i), (42)

20



lL(i + 1) = G~(i + 1), (43)

where Fi-+i+1 = (Mioi+l ~) and G = (H 0) .

It is now possible to use the same methods for the assimilation as before,
applied to the augmented system. The analysis equations for the four types
of assimilation take the same form as in Section 2 but with ;I replaced by ~,
Mi-+i+1 replaced by Fi-+i+1 and H replaced by G.

4.2 Results

Experiments with bias using the damped oscillating system and the Lorenz
equations have been carried out and are presented in this section. The nu-
merical methods used for discretising the oscillating system and the Lorenz
equations as well as the step sizes used are the same as those in Section 3. In
the oscillating system, the observations are taken every other time step and
in the Lorenz equations there is an observation every three time steps. When
the observations contain noise, the noise has a mean of zero and a variance of
0.01. The error covariance matrices for the SCM and the Kalman filter have
the same values as in Section 3 but are extended to be of the correct dimen-
sions for the augmented state. This means that WI = 0.5 and W2 = 0.5 in
the SCM and in the Kalman filter, the full forecast error covariance matrix
at t = 0 was chosen to be I and the model error covariance was still set to
be I. These covariance matrices do not contain the correct error statistics of
the problem, which would be difficult to obtain in practice, but should give
an idea of how the method will work when applied to a realistic problem.

4.2.1 Oscillating System

Bias was added to the model by including a constant forcing term in the YI
and Y2 equations of 0.1 and -0.1 respectively giving

( t: ) ( 0 1) ( Yl) (0.1)
-n -k Y2 + -0.1 . (44)

The effect this change has on the SCM when there is no special treatment
of the bias is shown in Figure 15. This does a bad job of estimating the
true state and as soon as the forecast is begun the error escalates as there
is nothing to constrain the solution to the unbiased true solution. Figure Hi
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shows the analysis when the bias correction term was added. The bias has
been accounted for and we even have an estimate of the bias with which to
produce a more accurate forecast. When noise is added to the observations
the results of the bias correction are not so promising. This is due to the
fact that the analysed bias fluctuates about the actual bias and the point
where the forecast is started is in error. This means that the bias in the rest
of the forecast is also in error. This is shown in Figure 17. This problem
could be overcome by simply averaging the bias over a period of time before
the forecast is started. This has been done in Figure 18 which shows an
improvement in the analysis although the error is still large. The bias that
has been estimated at the end of the assimilation period is, however, very
accurate. An alternative is to average the bias over a time window as the
assimilation is running and to move the window along with the assimilation.
This has been done using a time window of 5 seconds and the results are
shown in Figure 19. This averaging seems to produce a very good estimate
of the bias and extends the time over which the forecast is accurate.

The same experiments have also been performed using the Kalman filter
to see whether this method will produce better results when noise is present
in the observations. Figure 20 shows that the Kalman filter will not produce
a good analysis when the oscillating system contains a bias. When this bias
is accounted for in the same way as before, the Kalman filter does follow
the true solution as shown in Figure 21. Noise is still a problem when using
the Kalman filter although we do get a less noisy analysis in Figure 22 than
in Figure 17. Averaging at the end of the assimilation has similar effects
on the forecast as it had when using the SCM which is shown in Figure 23.
Averaging over a window produces a similar forecast to the one produced
using the SCM as shown in Figure 24.

To see how well this model for the bias would work when a different
type of bias was introduced, the coefficients in the oscillating system were
altered. Now k is 0.3 and n is 1.2. The results of using the SCM on this
system are shown in Figure 25. It is clear that the bias is not constant
as assumed, resulting in an estimated bias that is not accurate, even with
perfect observations. The same experiment was performed but using the
model of the system for the model of the bias i.e. Ni~i+l = Mi~i+l. The
results are shown in Figure 26 which shows a forecast which agrees with the
true solution for longer than with a constant bias. The results are still not
perfect however.

22



Figure 15: Successive Corrections assimilation on the damped oscillating
system with a constant forcing added to the model without bias correction
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Figure 16: Successive Corrections assimilation on the damped oscillating
system with a constant forcing added to the model with bias correction: (i)
the state (ii) the analysed bias
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Figure 17: SCM assimilation on the damped oscillating system with bias
correction and noise on the observations: (i) the state (ii) the analysed bias
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Figure 18: SCM assimilation on the damped oscillating system with bias
correction and noise on the observations with averaging of the bias at the
end of the assimilation period: (i) the state (ii) the analysed bias
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Figure 19: SCM assimilation on the damped oscillating system with bias
correction and noise on the observations with averaging of the bias over a
moving window of observations: (i) the state (ii) the analysed bias
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Figure 20: KF assimilation on the damped oscillating system with a constant
forcing added to the model without bias correction
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Figure 21: KF assimilation on the damped oscillating system with a constant
forcing added to the model with bias correction: (i) the state (ii) the analysed
bias
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Figure 22: KF assimilation on the damped oscillating system with bias cor-
rection and noise on the observations: (i) the state (ii) the analysed bias
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Figure 23: KF assimilation on the damped oscillating system with bias cor-
rection and noise on the observations with averaging at the end of the time
period: (i) the state (ii) the analysed bias
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Figure 24: KF assimilation on the damped oscillating system with bias cor-
rection and noise on the observations with averaging over a moving window
of observations: (i) the state (ii) the analysed bias
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Figure 25: SCM assimilation on the damped oscillating system with incorrect
coefficients with constant bias correction: (i) the state (ii) the analysed bias
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Figure 26: SCM assimilation on the damped oscillating system with incorrect
coefficients with oscillating bias correction: (i) the state (ii) the analysed bias
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4.2.2 The Lorenz equations

The method of bias correction has also been applied to the Lorenz system.
Here a constant bias has been added to each equation, giving

Zi+l

f(xi, Yi, Zi) + 0.05
g(Xi, Yi, Zi) + 0.1
h(Xi' Yi, zi) + 0.15

(45)
(46)
(47)

Xi+l

Yi+l

The results of the normal SCM when applied to this biased model are
shown in Figure 27. Here, as in the oscillating system, the forecast deviates
from the true solution after only a short time after the assimilation is stopped.
The results of performing the bias correction using the SCM are shown in
Figure 28. This shows a very good agreement between the analysis and the
true solution with a good representation of the biases. Figure 29 shows the
same experiment but with noise added to the observations. Here, as in the
previous section, the bias estimate is greatly affected by the noise and so the
forecast is not very good. Using the average of the estimated bias for the
forecast produces slightly more accurate results as shown in Figure 30 where
the forecast agrees with the true solution for about two seconds longer than
without the averaging. When averaging the bias over a moving time window
of 50 time steps, the analysed bias is very accurate after initial oscillations
as shown on Figure 31. The forecast is also good and agrees with the true
solution until about 11 seconds.

The EKF analysis produced similar results to the SCM when there was a
bias present in the Lorenz equations as shown in Figure 32. Figure 33 shows
that the bias correction term works well with perfect observations in the EKF.
When there was noise on the observations, the EKF produced a reasonable
analysis but the forecast deviated from the true solution after only a short
period of time. This result is shown in Figure 34 where the analysed bias can
be seen to be nearer the true bias than when using the SCM. Averaging at
the end of the time period produced an accurate analysed bias although the
analysed solution only agreed with the true solution up to about 11 seconds
as shown in Figure 35. When the bias was averaged over a moving window
during the assimilation, the analysed bias was very accurate as shown in
Figure 36. The forecast was also slightly improved as it agreed with the true
solution for over 11 seconds.
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Figure 27: SCM assimilation on the Lorenz equations with a constant forcing
added to the model without bias correction

55

w~
- -- true solution

backgrO'.Jnd

observations.,
40

35

30

25

20

'5

'0

5

0
-'5 -'0 -5-20 '0 '5

\/'"\/\/\/\
I \ J ...

-200~----------------~----------------~----------------_J ,0 '5
Hme(s,ocs)

~~------------'--------------.-------------.

20

'0

°o~--------~--------~~------~
,0 '5

time (sacs)

Figure 28: SCM assimilation on the Lorenz equations with a constant forcing
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Figure 29: SCM assimilation on the Lorenz equations with noise on the
observations using bias correction: (i) the state (ii) x-component (iii) the
analysed bias
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Figure 30: SCM assimilation on the Lorenz equations with noise on the ob-
servations using bias correction with averaging at the end of the assimilation
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Figure 31: SCM assimilation on the Lorenz equations with noise on the
observations using bias correction with averaging over a moving window of
observations: (i) the state (ii) x-component (iii) the analysed bias
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Figure 32: EKF assimilation on the Lorenz equations with a constant forcing
added to the model without bias correction

55

~~
- -- true solution

bacl<ground

ooseo~~~.__-..
.0

35

I ,,
30

25

20

15

10

5

0
-" -to -5-20 15

\ .....1\ 1\ ,"
" \, ,I \1 \
/ \. J ..

-~0~----------------~5----------------_J'0------------------'5

time (sees)

~.-~----------~.-------~------.-~------------,

to

20
o0:-----------------5~-------------- 10 15

lime (sacs)

32



Figure 33: EKF assimilation on the Lorenz equations with perfect observa-
tions using bias correction: (i) the state (ii) x-component (iii) the analysed
bias
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Figure 35: EKF assimilation on the Lorenz equations with noise on the
observations using bias correction with averaging at the end of the time
period: (i) the state (ii) x-component (iii) the analysed bias

~2~0-----_~'~5----~,70----~_5~----~0~----~5------~'0~----~'5~----:20

~r.,,---------------r----------------r----~----------,
10

K 0

-10

10 15
time (sees)

1.5 _"

0.5
bias In )(' equatiOfl
bias In y equati<>l'l
bias in r equation

-0.5

-1.5 I

_2L_ L_ ~ ~

o 5 10 15
time (sees)

Figure 36: EKF assimilation on the Lorenz equations with noise on the
observations using bias correction with averaging over a moving window of
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4.2.3 Summary of Results

The addition of the bias correction term in the data assimilation appears
to account well for a constant bias with perfect observations in both the
oscillating system and in the Lorenz equations. When noise is introduced,
however, the fluctuations in the estimated bias are large compared to the
bias itself when using the SCM. The Kalman filter bias estimate contains
less noise but is still far from smooth. By averaging the bias prior to a
forecast, the effects of the noise were reduced at the end of the assimilation
and there were slight improvements in the subsequent forecast in both the
SCM and the Kalman filter. Smoothing the analysed bias over a moving time
window when there was noise in the observations proved to be effective in
the oscillating system and the Lorenz equations and the resulting forecasts
were improved.

When the coefficients in the oscillating system were changed, the constant
bias correction did not work as well as was hoped. Altering the model to take
this different type of bias into account shows improved results. One way in
which it might be possible to make an educated guess at the type of model
needed for the bias would be to use the scheme with a constant bias and
observe how the bias evolves in time. The assimilation could then be done
again using this model for the bias.

The experiments done with the SCM and the Kalman filter have not in-
cluded the correct information about the statistics of the system. In practice,
the statistics of the system will not be known very accurately so these exper-
iments give an insight into how the bias correction method will work when
applied to real problems. With the correct information incorporated into the
error covariance matrices, the bias correction method produces smoother and
more accurate analyses.
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5 Conclusions

In Section 3.3, the data assimilation methods described in Section 2 were
tested on an oscillating system and on the Lorenz equations. The Kalman
filter appeared to be the method which produced the best analysis on the
linear oscillating system when there was noise on the observations. This was
expected given the theory in Section 2. When tested on the nonlinear Lorenz
equations, all of the methods produced good analyses when assimilating for
7.5 seconds. The EKF gave the worst forecast although this could be due to
the chaotic nature of the Lorenz equations rather than a bad analysis. As-
similating over a longer time interval with fewer noisy observations showed
that the EKF actually stayed closer to the true solutio~ than the other meth-
ods. The amount of computer power needed to compute the Kalman filter
analysis is much larger than for the other methods due to the fact that the
error covariance matrices have to be evolved at each time step. This becomes
a problem when dealing with systems such as the atmosphere or ocean as
the matrices are too large for even modern supercomputers to handle. Sim-
plifications of the Kalman filter do exist however where only a small part of
the error covariance matrices are evolved [4], [12].

The method of accounting for bias described in Section 4.1 was tested
using the SCM and the Kalman filter. The models were modified by adding a
constant bias. Both methods gave promising results when there were perfect
observations. However, adding noise to the observations made the analysed
bias fluctuate a great deal about the true bias which gave a poor analysis
of the state. Using the Kalman filter to account for this gave better results,
but the bias was not as smooth as expected. The method of averaging the
analysed bias over a moving time window appeared to smooth the bias to
the correct value, which gave improved forecasts. When the coefficients were
altered in the model for the oscillating system, assuming a constant bias gave
a good analysis of the state - it is the forecast which is the problem. Using
an oscillating model for the bias gave a much better forecast. In practice,
the way the bias evolves would be difficult to ascertain. One possible way
round this would be to observe how the bias evolves using a constant bias
correction and modify the model for the bias using this knowledge.
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A Appendix
This appendix contains figures corresponding to the experiments described
in Section 3 which are not shown in the main text.
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Figure 1. Experiment 2a: Assimilation on the Lorenz equations with perfect
observations using the AC scheme.
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Figure 1: Experiment 2a. Assimilation on the Lorenz equations with perfect
observations using the AC scheme
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Figure 2: Experiment 2a. Assimilation on the Lorenz equations with perfect
observations using the 0 I scheme
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Figure 3: Experiment 2a. Assimilation on the Lorenz equations with perfect
observations using the EKF
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Figure 4: Experiment 2b. Assimilation on the Lorenz equations with noise
on the observations using the SCM
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Figure 5: Experiment 2b. Assimilation on the Lorenz equations with noise
on the observations using the AC scheme
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Figure 6: Experiment 3a. Assimilation on the Lorenz equations with perfect
observations using or
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Figure 7: Experiment 3a. Assimilation on the Lorenz equations with perfect
observations using the EKF
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Figure 8: Experiment 3b. Assimilation on the Lorenz equations with noise
on the observations using the SCM
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Figure 9: Experiment 3b. Assimilation on the Lorenz equations with noise
on the observations using the AC scheme
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