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1. INTRODUCTION

Over the past decade there have been many "high order turbulence closure"
models developed and successfully used to simulate the diurnal evolution of
the atmospheric boundary layer (a.b.l.) (e.g. Wyngaard and Coté (1974),
Yamada and Mellor (1975), Zeman and Lumley (1976), Oliver et al. (1978),
André et al. (1978) and Sun and Ogura (1980)). The order of a closure is
determined by which quantities are directly predicted using prognostic
equations and which are, on the contrary, parametrized, i.e. expressed with
diagnostic equations in terms of the prognostic variables. Thus a
1st-order closure involves predicting ensemble mean variables only and

parametrizing all 2nd-order correlations such as the turbulent fluxes.

The models referenced above are all 2nd or higher order and thus cannot
strictly be regarded as parametrizations of the turbulent fluxes of heat,
moisture and momentum. Their advantage lies in their potential ability to
allow for non-local effects, in both space and time, in the turbulence
field. A 1st-order closure cannot do this since the fluxes are functions
of the local and instantaneous temperature, humidity and velocity fields.
However, there is a compromise between the simple 1st-order and the
computationally expensive higher-order closures; it is usually called a
11/2-order scheme. This closure retains only one prognostic 2nd-order
turbulence variable, the turbulent kinetic energy (t.k.e.). Models using a
prognostic t.k.e. equation are those of Bodin (1979), Yamada and Mellor

(1979) and Therry and Lacarrere (1983).

The work of the above authors supports the hypothesis that the important
non-localities in the turbulence field can be represented by mean flow
advection, turbulent transport and a finite dissipatior rate of t.k.e. All
these processes can be included in the t.k.e. equation. The other
2nd-order quantities are expressed in terms of the mean-field variables and
the t.k.e. It is known that a detailed representation of a.b.l. structures
and processes is required for a correct simulation of many mesoscale

features (Anthes (1978)). A representation of boundary layer turbulence

using a 11/2-order closure therefore seems an attractive propostion for



mesoscale models. In addition to providing an improved parametrization of

the turbulent fluxes, the formalism also allows diagnosis of consistent
values of other 2nd-order quantities. The variances of the three velocity
components can be useful parameters when using mesoscale models in
pollutant transport studies (Blondin and Therry (1982), Pielke et al.
(1982)). The variances and covariances of thermodynamic and water

variables are of use in representations of sub-grid scale changes of state.

An alternative approach to this mathematically complicated turbulence
closure scheme would be to devise a set of simpler ad hoc parametrizations,
one for each type of boundary layer (convective, shear driven, cloud capped
etc.) and for the transitions between them. However, such a scheme would
not be so easily vectorizable for implementation on the large vector
computers now used in NWP. This is because different computations would
have to be done at different, temporally varying, sets of grid points. A
11/2—order closure scheme is, on the contrary, of general applicability
(subject to the assumptions of its derivation and implementation) and thus

easily vectorized.

This note presents the theoretical derivation of a 11/2_0rdep turbulence
closure, discusses its implementation in a numerical model and presents
some results of its use in a one-dimensional and a three-dimensional

mesoscale model.

2. THE 1Y2 -ORDER TURBULENCE CLOSURE

2.1 Basic equations for mean variables and turbulent correlations

A basic assumption for all that follows is that the grid point values

computed in the numerical model can be identified with ensemble mean

values. Deviations trom this mean are assumed to be turbulent

fluctuations (denoted with a prime). The equations for the ensemble

mean model variables (v, velocity; =) , botential temperature; q,

specific humidity) are:
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6. = B (140.608q) is the virtual potential temperature, R is the
radiative flux divergence and F, F9 . Fq represents the horizontal
diffusion terms. In this note changes of state are not considered and
so there is no latent heating term in equation (2.1.2) and no
source/sink of water vapour in (2.1.3). A companion note will

describe the modifications necessary when changes of state occur.

Only vertical derivatives of turbulent correlations are included since
these are assumed to dominate in the a.b.l. It is the vertical
turbulent fluxes of horizontal momentum, heat and moisture on the
r.h.s. of these equations which parametrization schemes seek to

represent.

The approach to be developed here is based on a simplification of the
equations governing the second and higher order turbulent
correlations. It is worth writing these out in full in order to see
which terms have to be parametrized or neglected. The equation for

the turbulent kinetic energy Eiw & ({;ﬁ N2 4wt is
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The first term on the r.h.s. representé conversion from large scale
kinetic energy; the second conversion from large scale potential

energy; the third term turbulent transport of t.k.e. including



"pressure transport" and, lastly, £ is the rate of dissipation of

t.k.e. The material time derivative on the l.h.s. includes transport

of the t.k.e. by the mean flow.

The equations for the remaining second order terms are:
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In equations (2.1.5) to (2.1.15) there are three types of term which

have yet to be specified:

2 o The molecular dissipation terms, € /&, ¢ and ¢, for

7 %

t.k.e., potential temperature variance, specific humidity variance
and the covariance of potential temperature and specific humidity

‘respectively:

(o)
ii. The pressure correlation terms, denoted by the vectors P x f’_(i)

A .

(m)
and the deviatoric tensor P. ; these are defined by
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iii. The third order terms.



2.2 The parametrization of the dissipation and pressure correlation

terms

The dissipation terms are parametrized with the aid of the Kolmogorov

hypothesis of local, small-scale isotropy. They are given by
€=Efx 6= 0% , £ =9 n, &g =(07)|x
o [*] 3 A Z 3 ez Z 3

where ‘T, and 7T,; are dissipation time scales.

The pressure correlation terms are usually divided into two parts: (i)
the part representing the non-linear inertial interactions within the
turbulence field which provide the return-to-isotropy mechanism, and
(ii) the "rapid" part representing the interactions between the
turbulence and mean field quantities such as buoyancy forces and shear.

The parametrizations used are:
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where n?J: VJY?_. E Sﬁ is the symmetric, traceless Reynolds

w\®

stress tensor, h.: \’@' 1is the heat flux vector, S = vyi' is the
specific humidity flux vector and B;=‘%i\q'ej is the buoyancy flux
vector. The first terms, based on the Rotta energy redistribution

hypothesis, force the turbulence field back to an isotropic state;




T, and 7T, are the time scales for this mechanism. The remaining
"rapid" terms, involving the non-dimensional constants, ajq and a,, are

as prescribed by Launder (1975). The value of ap jis taken to be 1/3.

The pressure transport term vfp’ in the t.k.e. equation is neglected
or, equivalently, assumed to be proportional to the vertical flux of
t.k.e. and hence represented by the choice of constants in the

parametrization of this latter term.

2.3 The 1. -order closure assumptions

Equations (2.1.5) - (2.1.15) can be reduced to purely diagnostic
algebraic form by neglecting the material time derivative and the
divergences of the third order terms. This simplification of the set

of equations is usually called a 1Y%, -order closure (although Mellor

and Yamada (1982) call it a "level 2.5 model"). The only remaining

prognostic turbulence variable in this closure is the t.k.e.

With the parametrizations of the dissipation and pressure terms given

in §2.2 and these closure assumptions, equations (2.1.4) - (2.1.15)

become:
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form a closed set for the turbulent correlations in terms of the

prognostic variables v, e, 1 and E . After much algebraic

manipulation the following forms for the vertical turbulent fluxes

result:
wo = -k, 28 (2.3.14)
o7
IZ = - K, Q‘ (2.3.15)
02
W, = — K O (2.3.16)
REA

where the diffusion coefficients are given by:
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In these formulae the stability parameters Sz and N1 are defined by
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The variances of the three velocity components are given by

aE 7_/3 [E—f iy {Km S*+ 2Lk, Nlﬂ (2.3:21)
o = %[E + 7T, { o (zgu‘~ Sv‘) + K, N‘}:, (2.3.22)
o, = % E+ T, { Ko (13]- SJ) + K N’Q (2.3.23)

The equations (2.3.14) - (2.3.16) are the familiar flux/gradient
relations; these are stated as hypotheses in simpler parametrization
schemes. Equation (2.3.14), consistently with (2.3.6), does not allow
a counter-gradient heat flux. It is observed that through most of a
convectively mixing layer the temperature profile is neutral or even
slightly stable in the upper parts below the inversion. The heat flux
in such a layer nevertheless remains positive. A closure scheme of
this low order cannot represent this. However, a crude but
satisfactory way of overcoming this deficiency is to replace (2.3.14)
and (2.3.20) by

Gib =) (%% 2 n\

and xS 20 _ ) e d . respectively,
N pr(w Y )+ 5%

where ¥. is a slightly stable lapse rate; ¥. = 3 x 10"% %K m™" has been

used and found to be satisfactory.

1



2.4 The dissipation and return-to-isotropy time and length scales

All current higher order models and parametrizations assume that the
various time scales 7. are everywhere proportional to each other.
Mellor and Yamada (1982) regard this as a deficiency. However, in the
absence of any theoretical or experimental work to suggest a lternative
approaches, and for simplicity, the T; are here assumed to be given
by <T.=c. T where T 1is a master time scale and the ¢C; are

non-dimensional constants.

The time scale ™ is usually expressed in terms of a basic length scale

L:
— i3, (2.l1.1)

with L»given by the Blackadar formula:

,‘/::,I/-Q“
L

-
hz A (2.4.2)

k = 0.4 is Von Karman's constant. This prescription for L gives the
correct behaviour [~hkz as z-—>0 and gives an asy/zgtotic limit (> )\ as
2-> o0, There is, however, no dependence on local stability in (2.4.2).
André et al., (1978) and Sun and Ogura (1980) introduce some stability
dependence in statically stable regions which considerably reduces L
there. The latter authors do so by adding a term N/E''* to the r.h.s.
of (2.4.2) when N*>0. Here a slightly different approach is adopted;
in place of (2.4.1) it is assumed that

L

7 (2.4.3)
CEAF N>

i g

with [ given by (2.4.2) and F, a dimensionless constant. This gives Tuu|/(5g N)
as N*-»>+c0 and E-50 and reduces to the form (2.4.1) in neutral

conditions. Expression (2.4.3) can be written in the form of (2.4.1)
as
by

E“" X (2.‘3.)4)

12



where Ld = Ld(L,E,NZ) is a stability dependent dissipation length given

by

_ _LE™
lL = —
(E+F I*N*) (2.14.5)

It can easily be seen that l4={ in neutral conditions, i.e. the basic
length scale given by the Blackadar formula is the neutral dissipation
length. Also LdnaE1/%/(ﬁ{ N) as E/N*-0 which is the same behaviour as

the formulae of André et al. and Sun and Ogura.

Although the expression (2.4.3) is still ad hoc, it has the merit of
being a continuous function over the whole stability range. The
introduction of another constant F| might be criticised but, as we
shall see in the next section, it gives an extra degree of freedom when
choosing the various constants to give the correct critical Richardson

number and other empirical constants.

With the T, now expressed in terms of the length scale, we can

rewrite expressions (2.3.17) and (2.3.18) for K, and Km as:

TR d T (2.4.6)

Kin. = 675, B (2.4.7)

where the stability dependent mixing lengths for heat and momentum, Lh

and Lm, are given by

L See BN (B RIPN)L

. (2.4.8)
E RPN Focs‘[%i“—;]
E+F LN
&) /= 4 ;
bn = b G (E+RON) (2.4.9)
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The constants in these expressions are defined by

2

K= %C' > F.l =ecth ) F. :(l~ct.1)('1 (2':3—' Cl) . T F3 =2¢ [C"“A)Cs“f'%c':\‘f .

The asymptotic limit N for [ as z-> o is taken to be proportional to
the depth of the convectively mixed boundary layer when this exists but

not allowed to fall below 40m, i.e.

A= max (40, «k) (2.4.10)

where h is the b.l. depth .& = 1/g nas been found to give the best

results. h is determined from the potential temperature profile; it
is taken to be the value of z where a line of gradient 0.35°K km™
passing through the value of B at the bottom model level crosses the

profile (see Figure 1).

2.5 The determination of the empirical constants

The constants so far introduced ¢,c¢,,c,,c, and F, can be determined

3
from experimental and observational data. Most of this data is from

the surface layer of the atmosphere or neér-wall regions in laboratory
experiments. In these regions it can fairly accurately be assumed that
turbulent energy production is locally balanced by dissipation. Under
these conditions equation (2.3.1) for the t.k.e. reduces to diagnostic
form. This diagnostic equation for the equilibrium t.k.e. is the

quadratic:

El"' [_(Fﬁf F3+%COC'I)L1N1 ‘*’%Cl (Cu"CO)(}S’]E

; [F‘ (Fy e Feocs)UN'+ 3c <°-—fo)ELls‘]L1N‘ =0
(2.5.1)

The larger of the two roots should be taken since the smaller has the

physically unrealistic property of being negative whenever Ri=N"/S%>0.

14



In neutral conditions (2.5.1) reduces to

e

E*+%c(c-c)*'S'E =0
i.e. E=0 (the smaller, unphysical root)

or E =%c(co-c)*S (2.5.2)

If (2.5.2) is substituted in (2.4.9) we get

wt. :
L('\e .?1."“) = c‘#(a 7}&-(]——9_ L
m © “ 3 Ce Co

The Blackadar [l is supposed to be the neutral equilibrium mixing length

k. g,
for momentum i.e. mehc eg) = |, and so we must have

~ b/

Equation (2.5.2) for the neutral equilibrium t.k.e. can, with the use

of (2.5.3), now be written
g wbiord (st (2.5.4)

Now us* = ,“/YA' = |kul|S] ={*S* in neutral equilibrium

conditions so (2.5.4) becomes

et (ﬂEtLL, M') 2/ 2
E S oty

There are numerous experimental data for the ratio u;%/ﬁ in neutral

equilibrium conditions (or related quantities). The data presented in
Table 1 of Mellor and Yamada (1982) suggest 00'2’3 = 0.32 is realistic
(this corresponds to a value of 2.50 for the ratio q/ux in this table).

This immediately gives

Co = 5.52427

and ¢q = 1,04694

15



Also in neutral conditions the turbulent Prandtl number Pn¢:-K,/K, is
observed to be 1/1.35 (Businger et al (1971)). Using (2.4.9) we deduce
that

0% = 1,35 &y = 141337

Three of the empirical constants are thus determined from data relating

to equilibrium neutral conditions. The remaining two constants ¢3 and

F, are obtained by requiring (i) the equilibrium t.k.e. to vanish at a
critical Richardson number (Ri,) and (ii) the turbulent Prandtl number
to tend to unity as the t.k.e. tends to zero. From the zeroth order

coefficient in equation (2.5.1) it can be deduced that
F. <F3+’L§~c.cc1> Bt = P By (2.5.5)
Putting E=0 in (2.4.9) gives
Pl’t (E‘%O) = E'——-. EL :_’.I (205-6)
Cs F,

Using a value of 0.21 for Ri, (Businger et al (1971)) these two
relationships give '

03 = 3.08“92
and F| = 7.09759

The derived constants F; are then computed to be Fo = 0.730722,
F1 = 8057730, Fz = 11'57936 and F3 = 1”.88“0.

2.6 The truncation to first order closure

If the equilibrium t.k.e. given by equation (2.5.1) is substituted into
(2.4.6) to (2.4.9) diffusion coefficients Ky and K,, are obtained as
functions of L, Ri and |Sl. This is then a first order turbulence
closure., It is instructive to examine the behaviour of these functions

and compare them with those empirically derived.

16



Equation (2.5.1) can be written in the form

e*+ B(R:Ye + C(R:) =0 (2.6.1)

where e=§ﬂbo7J3 L’S‘X i.e. the t.k.e normalised by its neutral
equilibrium value. In (2.6.1) B and C are given by

B(R) = ¢”" (Fi+ Fy +5coca) Ri — | (2.6.2)
C(R:) = e P[e (Fyageoc) R = R ]R:

From (2.6.1)

e(R) = 4 [-8(R) + JBR)— hCRD) ] {263
This gives the asymptotic limit:

= Fh (R _ o R (36
BB TR e et T BAEIR

We also have e(0)=1 and e->0 as Ri—>Ri,, The function e(Ri) is shown
: in Figure 2. :

The neutral equilibrium value of K, is easily seen to be LZIS'.
Normalising Ky and Kn with (2|S| gives:

L. _E

{2 y
: R T S e e
cJ“LlSl ' ’_gb'vuf*'if‘




f;\'m are mixing lengths normalised with the neutral mixing length for

momentum and are given in terms of e and Ri by:

B VA iy , =213 o YV
€, (e, Ri) = F&= %@ (e + PR RL) (2.6.6)
.23 =
{e+co‘1f3ERL+chFo[e+co hR.]}

e +co PR R

fm (e)RZ) = fh %_‘-1 (C-"C‘;IIZF; RZ)
(e + co*PF, R:)

Both €, and {,, —> 0 with {,/0.,—> 1 as e—> 0. The equilibrium
values of these functions can be computed by substitution of e(Ri)
given by (2.6.3) into (2.6.6). The resulting functions

N (Ri)Ef‘;’ée(Ri);Ri)have the properties:

Ae,h = 0 and M/\:> 1 as Ri —> Rig

An(0) = 1, \u(0) = 1.35

\

: 2
o - ~2/3 .

>\h/)~m N%(F3-+%ccc1—F|> = .23 } as Ri—>-oco

F3+L3Ccc1 -FR

D298

In a similar way a normalised dissipation length scale f,( can be
defined: f,L= L‘L/L. The function ch (e,k;) is given by

UFS

£, (e, R:) = = o (2.6.8)
Jﬁ( ) (e"\‘C—e;“3 F Rl) :

and the function Aol (R;) = COL (e,(;z;)l Q;) has the properties:

N —0 o . Rire> B (2.6.9)

18



(o) =1

“l
and >\o{_ Pt _CE"J(%COCI) = L

: Re —> —
(Favieecs-F)" . i

The functions >\,,L)M);\ ([2\ are plotted in Figure 3.

The functions 5""»“ (IZ[) = km,k (e (R:)) Q:) have the properties:
Sm)k ¥ 1O as  Ri— R (2.6.10)

S‘M(O):] 3 §“(c’): .35

§i~ 30 R
as Ri—> —co

§m ~s 7-|Q[R1l”1

These functions are plotted in Figure 4. The asymptotic

dependence as Ri~—> - oo 1is that predicted by free convection theory.

The empirical first order scheme derived by Richards (1980), and used
in the operational coarse and fine mesh models (Foreman (1983)),
specifies the functions f'“»h (R;) from surface layer data. 1In

unstable regions (R:<0) the functions used by Richards (1980) are:

fw (Ro) = (l~l(>f25)m
fm (R) = (1~ bR

and

These are also shown in Figure 4 for comparison.
For a more direct comparison of empirical stability dependence with the

first order closure derived here the functions should be cast in

Monin-Obukov similarity form. This is done via the relations:

) .8
¢m = Rm ; €2:6:41)

19



¢h e kM”L/hh
and € =% = Ri ¢S]

The derived functions g{)m(f) and ¢k (f) are plotted in Figure 5.

The asymptotic limits are

b (Z) ~0:33]8] " and B (C)~ 01| a5 T -

~1
Again, the |§| i dependence as '§*4>—<ﬂ is in agreement with
the theoretical free convection limit. The empirically derived
Monin-Obukhov stability functions as given by Businger et al. (1971) are

also shown in Figure 5.

The derived Qbm)k have the correct general shape and numerical
agreement is very close in the unstable region for ¢m . Agreement is
not so close in stable regions for both functions and in the unstable
region for Qi\ . The Businger profiles were derived from surface layer
data and one would not expect diffusion or third order terms in the
t.k.e. budget to be important near the surface. The disagreement of
the first order closure with empirical profiles must, therefore, be due
to the treatment of the dissipation and pressure correlation terms.
Schuménn (1977) has shown that the parametrizations specified in § 2.2
for these terms do not satisfy certian "realisability conditions".
However, any remedy for these problems would introduce more
complication into the scheme and the choice of the additional constants

would not be clear.

2.7 The realisability of the 1'2 -order closure

The following inequalities involving turbulent fluctuations must hold:

kS

2 '
U—,V'I)W’z,el,zl >/O
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(e ) < (@) (@) , (W) ¢ @) ) (@V) ¢ (@) ER)

CrRRIGRID:

(V8 ¢ (P)(B™) | (@E) < (@)(F) , (Vo) < (F)(8Y)
and similarly for quantities involving q'.

The first set state that the variances of the variables must be
non-negative and the remaining conditions are the familiar Schwarz
inequalities relating covariances and variances. The parametrizations
of these second order quantities derived under 11/2_opdep closure
assumptions must satisfy these inequalitites for the turbulence field
to be "realisable". It can be shown that a sufficient condition for
these inequalitites to be satisfied is E 2 - FL U‘hqi where

Fo = F; + % C, Cy = 15.8705. This condition ensures a fortiori that

Kpy,m are finite and positive.

2.8 The turbulent energy flux

The remaining quantity to be specified in the 11/2_opdep closure scheme
is the turbulent vertical flux of t.k.e., w'E , Which is required in
the t.k.e. equation (2.3.1). A prognostic equation for this third
order quantity can be derived; it contains other third order
quantities and fourth order terms. The latter can be eliminated by

using the quasi-normal approximation (Lumley et al (1978));

«’Plrlél o~ o(/Pl U’S' s ol’b'l '3,6' . 0('87 '3[5'

When this is done the equation can be written as

DGE) o =t 3 = = |
Tt———— =4 W1yhnay2+' + g'e—;‘ (E ev’+w’zev,) (208-1)
- w"? QE’“_‘“”) S S
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P is a pressure correlation term parametrized as

P=-wE (2.8.2)
Ty

To obtain a simple diagnostic expression for w'E gradients of wind and
momentum fluxes will be ignored as will the material time derivative.

Then(2.8.1) reduces to

WE =t {-W L (Bewn )+ §5 (BB ¢ WTE) Y (280
o2 o

The two terms in this expression are each divided into two parts as

suggested by Therry and Lacarrere (1983):

1st term E = E1+E2 where

EF,=-3GR2E |, E = G2 (@)
o7 oz
2nd term B = Bq4B, where
8 =1 % we o B, =g (W +iTE)

On the basis of an experimentally determined budget of w'E Therry and

Lacarrére (1983) find that the terms E, and B, are relatively small and
so may be neglected. Equation (2.8.3) is thus further simplified to

e 2 (2.8.4)
w' E = 3’tk APoe élg: o %; w0,
oy

This expression for the vertical flux of t.k.e. contains a familiar

down-gradient term and a buoyancy term.

In a convectively mixing boundary layer the t.k.e. flux is obser&éd to
be positive whereas the vertical gradient of t.k.e. changes sign from
positive in the lower to negative in the upper part. A simple
down-gradient expression for W E would therefore give an incorrect
profile for this quantity and may be expected to transport too little

t.k.e. up to the inversion to .maintain entrainment. A reasonably good
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specification of w'E should be used if an accurate t.k.e. profile is
also required for wind variance estimates in pollutant transport

studies.

The buoyancy term in (2.8.4) may be expected to represent, partly at

least, the observed counter-gradient effects in the t.k.e. flux in

convective conditions. If the prognostic equations for QWIQ',vr*Y’)V,wyl w' 0!
bl l )
z 9'3, 0y’ g 3 E’7 2f3 are simplified in the same way as that for

w E the following diagnostic equations are obtained:

% w2, = Z’rb {—\,—\,—lel-f %V (PT \N'e\,’O;-t-pww'@V CL,)

— F 2.8.
“3é’-'9V QEL i WM E E ( 5)
v 92
where
%e:ev’z Pr O+ pug’
, = B+ & o' w'a_’—:'_,_' 2 5 20 wa )
E Dz<w oepag 7)o N PR SR s

e

and ‘ 3’6“( TW’ev'el-’-ﬁWW’e\l Z,) - [&1—1 W- /G'z +’l,37'3w :VTB_I?+{3: w'i‘z
Vu—

&
=7s{ %((&,9 O"+2P pw&ei + fw Ovi"‘) *%‘WG\.Z’ZN }

where N5 (. 5. L)

po 25850 1 2

o2

ga= pr

el %%(BT6{6”+62p1ﬁw5:91“+ﬁ~1é:%n)
i Fﬁr:; 643 1_‘3{371 PW éﬁi—; +3FT F)wl é‘Ti—'i + PWBiT,‘S
b 3'(1 {gév w‘@v' 33 +. Nl <PT‘1 \:75; +2/4T{3W W’6’Z’ +Pw" wlzt"" )} (237)

Equations (2.8.4) - (2.8.7) form a closed set and after much algebraic
manipulations yield the result:

| 3 Sl

TEeil 2E ok i (2.8.8)
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v [+ 1ot N+ by s N*) w? i (et N )t w'B’

where Ke = ‘ - (Z.qu)
E(I+Tg'r‘,f\ll)(i+'r‘,_n NY) + btote N ]
K, = Xel [z N?) W 27 W—g—] (2.8.10)
[(IT T2 Yq Nl)Of’tw'Te, Nl)*‘[*—tet N*
Ka, = ST T W v w8 (2.8.11)

[(H— 7, N*) ( l+% T N') - Lwrbd;; N’-]

where 127572 %SVJGV = —K, N* . The factor 3 in (2.8.4) and (2.8.7)

has been absorbed into the definitions of 7T, and tg respectively.
The timescales are all taken to be proportional to the master timescale
T given by (2.4.3). The constant cy jis chosen so that, in neutral
conditions Kg = Kp i.e. c,=c,

The remaining constants are C,=Cg=0.8ic, and cq=3cg.

NUMERICAL ASPECTS

3.1 The grid and disposition of the variables

The vertical arrangement of the variables is shown in Figure 6. The
t.k.e. and the fluxes of the main model variables are staggered with
respect to the main variables. The coefficients Kg, K, and K3 are
initially calculated at mid-level points since they are functions of
quantities there. However, they are required at the main levels in
equation (2.8.8). These coefficients are therefore interpolated to the

main levels.
The mesoscale model has its main vertical levels at 10, 110, 310, 610,

1010, 1510, 2110, 2810, 3610, 4510, 5510, 6610, 7810, 9110, 10510,
12010 m above ground with its mid levels half way between these. The
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one-dimensional model in which the scheme has been tested has main

levels at 10, 100, 300, 500, 700, 900, 1100, 1300, 1500, 1700, 2000 m.

Because the grid is, in general, non-linear in 2z, main levels are not
half way between mid-levels. Care has to be taken in interpolating to
main levels but no corrections have been applied in the vertical finite

differencing to take account of this.

3.2 The prevention of negative t.k.e. and violation of the

relisability conditions

The numerical solution of the t.k.e. equation can yield negative values
for the t.k.e. This physical impossibility is eliminated by setting a
lower bound of 10" “m2s~2., The diagnostic t.k.e. equation used to

calculate level 1 values (see § 4.3) gives unrealistic negative values

when Ri>Ri,, 1In these circumstances a lower bound of 10-3u*s"> is set.

The realisability condition E-%FLLINIZrO (see § 2.7) is enforced
throughout the integration. A lower bound of —0.935@/?6 is set for
L*N%*. This is slightly stricter than necessary and gives an upper
bound on 'fh=Lh/L of 10.32, i.e. about twice its equilibrium value as
Ri—>- oo (see (2.6.7)). The replacement of L*N? by this lower bound
has been found to be necessary only infrequently. More precisely, the
circumstances seem from tests to be restricted to the period just after
a nocturnal inversion has been erodcd and convective eddies are freely
and rapidly growing into the neutral layer left by a previous day's
mixing. During this process, lasting half an hour or so, the turbulent
energy and fluxes are increasing rapidly mainly through transport from
below. This implies that the {1/,-order closure assumptions, i.e. that
B(QF@W/Q& and a(@ﬁi?»bz etc. are small compared with local
source/sink terms, are not very good. Thus it is not so surprising

that this realisability "fix" has to be applied in these circumstances.
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3.3 Time integration and numerical stability

The substitution of the diffusivity gradient forms (2.3.14) -(2.3.16)
for the fluxes in the equations (2.1.1) - (2.1.3) gives diffusion
equations for the basic model variables. (They are not purely
diffusive - there are other terms which for the purposes of this
discussion can be regarded as "forcing" terms). For example the

potential temperature equation can be written as:

20 __ 2 ;== 5 J’ s
;W ol 5 le‘ 4o = = 0L . _d_é)_
ot 32<W ) R Ql(l\k '&) + Q (3.3.1)
% i
:Lijfusicm term ,S.crc;,.a term

It is well known that an explicit integration of this type of equation
will be numerically unstable unless the timestep is small enough.
Since this can be quite restrictive in regions where K is large and

small, an implicit time integration is often employed.

The situation is further complicated in this type of scheme by the fact

that Ky is a function of 20/@2 . Non-linear diffusion equations of
this sort and numerical instabilities associated with them have been
discussed by Brown and Pandolfo (1982) and Davies (1983). The usual

implicit time integration scheme for (3.3.1) is

AB = QAL + At g;{k: [« 9;:' +(!-°‘)%—2i] (3.3.2)

o< £ |

= AG~°(A(:9—- K:M = At Q*+?_(K:?,Qf> (3.3.3)
o2 oz ot 2%

However, it has been found that a non-catastrophic numerical
instability can manifest itself when (3.3.3) is used. The main feature
of the instability is an oscillation in space and time in K and hence

in the fluxes. The oscillations seem to average out so that the
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' profiles of the diffused variables seem reasonable. In fact there is a
very small corresponding oscillation in ©. The functional dependence
of K on 06/22 can lead to this small oscillation in © producing a
large oscillation in K. The instability is prevented from being

explosive by the smoothing of e by the diffusion.

The damping of this instability is achieved by recognising the
dependence "hidden" in K from the start. Writing the flux of b as

the general function of the gradient.:

va=g@q
ot
the generalisation of (3.3.2) is
(21 t -
0B = QEAL+ AE & «F;(D»@«>+(n~d)Fo<53!1> (330
oz o2 22

Now expanding Fe <96""/3‘z> as a Taylor series, to first order in AG,

5 (ae“‘) F (9@*) 2 F ; 2(00)

el>33 ) =h|\55 )t —/]/—| Z—=—

oz 2% ) %%) 32

and substituting in (3.3.4) a generalised version of (3.3.3) is found:

e 2 | pta(ae) | - t Q_( t@ﬁ_) (3.3.5)
AbB « At N Kh -5"_2 At{Q +32

h 02
where
~ IF I 2
Kh:-— g :Kh‘i-a h 3_—.
2(%2) 2(8}) o

Only if Kj does not denend on 20/92 does ﬁh:Kh.

The quantity K, is the effective diffusion coefficient for heat. This
can be seen by considering the general variable X whose turbulent flux

is given by

WEE o o CRS
PiA
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The rate of change of fK due to turbulent transport is

- (W) = .9_( ax) K, 2K 4 9Ka 2
oz 92 921 o7 -a‘z

Now exhibiting the dependence of l(x on the gradient EXﬁh and other
variables a :

we have

oM . A MY, oy
. X\ —~_3 ¢ s
2% 9(9:) CES Ja 9%

(W) = Ry ZX + 25 2 2%
z

=8 S - S 3.3,
9 9% Ja Iz 92 3y
where
Ry = kor 2R 2% — - a’;—__(w;;) (3.3.7)
2(%) o2 2(%%
and the second term in (3.3.6) does not include 9’Xﬂ3f', i.e. is not
diffusive.

The effective diffusion coefficients for the variables G‘i, w and v
can be shown to be respectively:

R’k = Kk (l‘f ‘.’1‘_ L’LN;)

(3.3.8)
Ry = ki (e b UN) (3.3.9)
K, = K...{E‘+ RUN+F L‘[(Q;‘)i— fe 1] l:l}/h (3.3.10)
Ky = K {E*-F;‘LN*FL[(-J% (2eV ] }/ts (3.3.11)
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where Ny = PTDBIQ?; ; NZ1 = pwa([/az

i = N 11 =1 =

b, = -?_“—E‘—”-——— - [):3 + gﬁ.;’i).f;_ﬁ:lﬁ."]/h
(E+FL L“Nl) £

L= E+ FEON' , b = (E+ N ¢, ,

t3: E+ F; L7“N1+ FOL’LSltz.

Hassid and Galperin (1983) have pointed out that for analytic as well
as numerical stability the effective diffusion coefficients must be
non-negative. The diffusivities K,,m are prevented from becoming
negative by the imposition of the realisabilcty conditions (see §
2.7). Additional constraints, without physical justification, have to

be applied to ensure non-negative effective diffusion coefficients.

These are
(N, € &R (3.3.12)
5 N{ N | (3.3.13)
and £, < (E+FCON)[t, where b, =F, (>S* (3.3.14)

The vertically discretised version of (3.3.5) has the form

where the 59;1 are the explicit increments and the matrix M is
tri-diagonal. The inversion of M to obtain the increments Aéh is

done by Gaussian elimination.
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It has been found necessary for numerical stability to treat the
source/sink and dissipation terms in the t.k.e. equation in a partially
implicit manner. Writing the t.k.e. equation without advection or

turbulent transport terms as

BE . E(E+F N 2 ) 2
ol whare G = ECE*C'%-‘ N 4k N = S

then the implicit time integration scheme used is

t
AE = - AELG(Et) = —AEG(EY)— At %%\ AE

i S [|+ gl <) At] AE = ~AEG®  whie §e= 26
Y

The function EE‘ is derived in Appendix A.

BOUNDARY CONDITIONS

4,1 Upper boundary conditions

At the top model level it is assumed that the turbulent fluxes of
momentum heat and moisture have no divergence. There are thus no
increments due to turbulent transports in the wind components,

potential temperature and specific humidity at the top level. The
upper boundary condition for the t.k.e. specifies that there is no

turbulent flux of t.k.e. at the top model level, i.e. (W'E)~1=O-

4,2 The surface fluxes of momentum, heat and moisture

The formalism developed in § 2 for the turbulent fluxes is not used
near the surface as it would require very high vertical resolution to
give accurate results. However, so long as the model's bottom level
lies within the so-called "constant flux layer"(the bottom few tens of
metres) then a parametrization of surface_fluxes based on Monin-Obukhov
similarity theory should be accurate enough. Such a scheme was

developed for the mesoscale model by Carpenter (1977 and 1979).
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Carpenter's scheme calculates the turbulent fluxes of momentum, heat

and moisture in the surface layer using bulk aerodynamic formulae:

(w’Yu,)Su.-S, :‘C])l\/_'liV‘ (4.2.1)
(W—l—é?)s% = —culvl (o, - 95&3) (4.2.2)

(xgl)surg == Cy l\lll X (2. o= is(\k (szg )) (4.2.3)

&K = |/<|+CN‘\!;’\':)

YV, is the horizontal wind vector at the bottom model level, ¥; 1is the
surface resistance to evaporation and Cj,Cy are drag coefficients
which depend on the bulk Richardson number of the surface layer and on
a surface roughness length. T}urf is a prognostic variable for
land points in this scheme. It is determined from an energy budget
involving net radiation, the sensible and latent heat fluxes into the

atmosphere and a heat flux into the ground.

4.3 The flux of t.k.e. from the surface layer

The first level above the surface at which the t.k.e. is calculated

from its prognostic equation is level {+1/5, A t.k.e. flux divergence
is therefore required between levels 1 and 2. The calculation of (JJ?E%
using (2.8.8) - (2.8.11) involves values of N*,S* and E at level 1.

the first two quantities are given by

N1= [gé.‘ (el—ésw b 4 Pﬂg_%_i <Z'—ZSJ(TSW€))}§(%> (hidat)

Z, U+ ow‘;o%z.) =

S'l: ,-;—-l?. 8(}[':> (4.3.2)

— — i 2
L o L 5 Ri = I ,ll .36 (9.‘Bsuxxf) o o.boaggc(z,—zs@t(nu}))
™ : (i+ o. bodg,)
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'6 (ZL.\ = Cu ¢h (2./L) R a (z_._> - Cp [qu (?./Lﬂl

chxnl

kl

4§and % are complicated functions of the bulk Richardson number ®R: and
log(‘l./lo ). They are in principle computable but the present

procedure is to replace them by their neutral values

t = ‘/L"a@'/*o) L ‘/[Lca @iz)] (4.3.3.)

Using these values of N* and S* a t.k.e. is calculated using the
diagnostic equation (2.5.1). The length scale appearing in this
equation is taken to be [=0.7kz . The factor of 0.7 rather than 1 was
found to be necessary to give reasonable values for E, in unstable
conditions. This is possibly due to errors introduced by using

approximations (4.3.3) in (4.3.1) and (4.3.2).

Consistent values of N*, S* E, w* and w0/ at level 1 can thus be

calculated and used to find Kg,6 K,, K,. Values of 6", 9—'-2—' and ?['T

at level 1 can also be calculated so that their gradients can be found.

4.4 The initialisation of the t.k.e.

The t.k.e., being a prognostic variable in this scheme, has to be
assigned initial values before an integration can proceed. Since
turbulent intensity is not measured in a direct manner routinely and
also to ensure a t.k.e. field consistent with the temperature, moisture
and wind fields, the initial t.k.e. is calculated from the diagnostic
equation (2.5.1). '«
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TESTS OF THE SCHEME

5.1 Simulation of Wangara day 33 with a 1-d model

Day 33 of the Australian Wangara experiment (Clarke et al. (1971)) is
now very well known. Almost all a.b.l. models and parametrizations are
tested on the data from this experiment. The choice of this particular
day's data for the simulations is due to there being negligible
large-scale forcings (e.g. advection and subsidence) and no cloud.
Therefore a one-dimensional model containing only the turbulence and
surface exchanges scheme should simulate the main features of the b.l.
evolution. The two exceptions to this are: (i) the correct simulation
of the wind profile, particularly the development of the nocturnal jet,
requires an accurate specification of the time - dependent geostrophic
wind profile and (ii) the nocturnal temperature inversion is just as
much influenced by radiative exchange with the cool ground as by
turbulent transport. The tests reported here used a geostrophic wind
constant in time and no radiative exchanges, except those in the

surface energy budget, have been included.

The simulation results were obtained using initial profiles from
observations at 06.00 hrs local time. The one-dimensional model was
dry except for the specification of the specific humidity at level 1
for the surface exchanges. A timestep of 120s was used with the

vertical grid specified in § Bl

The observed and simulated potential temperature profiles during the
daytime are shown in Figures 7 and 8 respectively. A well-mixed layer
which deepens and heats up during the course of the day is produced by
the model. The growth of the layer into the overlying stable air and
the rise in the layer's temperature are both underestimated between
15.00 and 18.00 hours local time. This can perhaps be attributed to
the fall off of the surface sensible heat flux (predicted by the
surface exchanges component of the model) at a rate greater than that
deduced from observations during this period (see Figure 9). The

evolution of the b.l. depth in the simulation is shown in Figure 10.

33



No data are available for the t.k.e. and fluxes so direct verification

is not possible. An assessment of the profiles of turbulence variables
is aided by plotting them in normalised form. Turbulent velocity
fluctuations are normalised with the convective velocity scale wx given

by
= |[3
we =[5 @@, )
v e
and potential temperature fluctuations with 5* defined by

6% = (W):ws /Wk

The height above the surface and mixing lengths are normalised with the

boundary layer height, h.

The profiles of the t.k.e. and vertical velocity variance at 13.00

hours local time are shown in Figure 11. The t.k.e. maximum | F I O fow

ot 2~0.4h. This result is comparable with that obtained by Andre et al.

(1978) with their 3rd-order closure model. The vertical velocity
variance profile is somewhat more peaked than that of the t.k.e. The
more rapid decrease for w? above the height at which it attains its
maximum implies that more of the t.k.e. is in the horizontal components
in the upper part of the mixing layer. This seems realistic since the
buoyant source of the t.k.e. is strongest in the lower b.l. and feeds
energy into the vertical component there. As buoyant parcels of air
rise they begin to turn over, i.e. their horizontal velocities

increase.

The kinematic heat flux and t.k.e. flux profiles are shown in Figure
12. The linear decrease with height of the heat flux (which gives a
uniform heating rate in the b.l.) is well simulated. The negative
overshoot of the flux near the inversion, the entrainment heat flux, is

underestimated by a factor of about 2. Observations indicate that

(;ﬁ?lﬁn:-oQGTFL whereas the factor multiplying the surface flux is about

-0.08 in the simulation. The t.k.e. flux is positive through most of
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the b.1l. despite the positive gradient in t.k.e. below z = 0.4h., This

is due to the additional terms in expression (2.8.8) for this flux. The
height of the peak of the t.k.e. flux profile, where the transport term
in the t.k.e. equation changes sign, is higher than André et al. (1978)

predict with their model.

Finally the profiles of the mixing length for heat and the dissipation
length are shown in Figure 13. The peak Om‘moﬁz 0.5h at z =~ 0.5h
accords with intuitive conceptions of the mixing length and its
variation within a boundary layer. The maximum value of Eq”/i is 0.7h
and agrees with experiment (Therry and Lacarrere's (1983) Figure 5

composites several sets of experimental results).

5.2 Some results from the mesoscale model with the 1Y, -order scheme

The scheme as described in this note, but without the use of virtual
temperature in buoyancy and stabilty terms, has been used in the
mesoscale model since regular trials began in the summer of 1983. Two
twelve hour forecasts produced by the model are présented here. Both
are for summer days when there was considerable heating of the land by

solar radiation.

The first case is a forecast from 06.00Z data on 14/7/83. Figure 19a,
for a gridpoint near Manchester, shows that initially there was a
low-level nocturnal inversion about 500 m deep overlying which was a
neutral layer of the same depth. The development of the low level
winds (at 110 m) and the temperature field (at 10 m) can be seen in
Figures 14-17. During the course of the day the model produces a
land/sea temperature contrast of over 10 degC which results in sea
breezes. This is most marked on the south coast of England. Figure 16
shows that by 18.00Z the sea breeze front has penetrated inland as far

as the Thames Valley.

Very little cloud was present to shade the ground in this similation
and in these conditions the erosion of the nocturnal inversion and the

development of a deep convectively mixed boundary layer is expected.
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Figure 19a, which is a time-height cross~section of potential

temperature for the bottom 2 km of the model, shows that this is what
was produced by the model. Figure 19b is the associated cross-section
for the t.k.e. The depth of the boundary layer, as judged by the
region of significant turbulence intensity reaches 1200 m by 14.00Z.
The t.k.e. between 1000 and 1200 m exists within the inversion; here
it entrains the potentially warmer free atmospheric air into the mixing

layer and in the process is converted into potential energy.

Figure 18 shows that by 18.00Z some convective clouds have developed.
When this forecast was run the deep convection parametrization designed
for the model had not been included and so all the cloud and their
associated circulations appear on the resolved scales of the model. Of
paﬁticular note is the patch of cloud which has formed near the
gridpoint (26,18). This is clearly evident in Figure 19a where the
potential temperature at model level 5 (1010 m) rises due to latent
heating after 17.00Z. This immediately has the effect of suppressina
turbulence. Since the boundary layer turbulence scheme takes no
account of changes of state it interprets the positive potential
temperature gradient as an indication of static stabiltiy. This is
unrealistic as the latent heating in the boundary layer should be

enhancing the sub-gridscale turbulent mixing rather than inhibiting it.

In the second case, run from a data time of 06.00Z on 24/7/83, the
region of convective clouds and their circulations, again on the
model's resolved scales, is far more extensive. Figures 20-26 show the
development of the low-level winds and temperature and the regions of
cloudiness. The clouds affect the development of the boundary layer
structure in two ways, one realistic and one not. Between about 09.00
and 11.00Z cloud above 2 km was formed in the mode! at the gridpoint
chosen for the time-height cross-sections (Figures 27a and b). This
reduced the solar radiation reaching phe ground. With the source of
buoyancy much reduced, the turbulence in the boundary layer can be seen
to die away and the erosion of the low-level inversion ceases. The sky
clears after 11.00Z and a convective, turbulent boundary layer is

re-established.
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The very rapid cessation of turbulence at about 14.40Z is, however, due

to the formation of cloud in the boundary layer at the model levels U
and 5 (at 610 and 1010 m respectively). This abrupt cut-off of
turbulence is not realistic and shows that a modification of the scheme
to allow for changes of state is needed. Part II of note will discuss
how this is done.

No systematic study of the performance of the boundary layer scheme in
the mesoscale model has yet been done. This awaits the implementation
in the model of the modified "wet" scheme. The interaction of the

turbulence parametrizatioﬁ with other parts of the model, particularly

the deep convection scheme, will have to be assessed.
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APPENDIX A. THE DEVIATION OF (e

Write G as the sum of a dissipation and source/sink term:

G= Gy+iGe wlore Gy E(Exriw)”
el

w88 = @0n g e Gex I 5
OE  QE 2E 9

Now the last term = Gs/-j_é and can be positive or negative; it is
therefore ignored. (It is required that 5‘E-:96/c7t: be +ve and inclusion of
this term has been found to cause trouble). Taking 9G:[3F = Gz, 2Gsa /9[;:
implies that only the dependence of Kk)w\ on E contained in the mixing
lengths (,h)m is considered for the implicit treatment of the source/sink

terms.

Now . oG
2 =§Eb:’\co(|+
oE

E
+F 1PN

P
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(

oE OE oE

S'L

i1

LN D) LS Dl (" L)
OE JE

Equations (2.4.8) and (2.4.9) can be written as

i 2 = h
. 13 Lh e /3C,_ E % l:(, 2 C"‘”L
o ™

&

= &
Cr tz Lh
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where k.= E+ FI*N’
by = E+ RN "+ b,

N A

o=
»
I

(E+RUN)/(E+ RN

p 3l (o) | (OWE L Bl b Dlnts _
DE 2\ JE oE JE -

and

2 (/y\ (Co.‘h(.m) — D Lh. (Co-”-! Lh) & a(.»\ tz
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From the definitions of tp and £3:
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- The required function fe is then given by
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