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A FULLY IMPLICIT LAGRANGIAN METHOD AS AN ALTERNATIVE APPROACH TO NUIERICAL WEATHER

PREDICTION,

1. Introduction

The conventional formulation for a grid point model involves holding the
horizontal coordinates of the grid fixed in space and representing the equations
of the fluid flowing past thé grid in Fulerian form. In spite of various attempts
(ez Crowley (1968), Gadd (1978)) to aleviate the disruption of structure caused
by the numerical treatment of advection, the rapid destruction of detail on the
smallest resolvable scales remains an almost unavoidable consequence of the
numerical representation of advection on a fixed grid, as is apparent from Figure
1. The dynamical consequences of this erroneous disruption are largely unknown
but could conceivably be severe on all.scales resolved by a few days for a synoptic
scale model. An alternative approach, largely neglected in recent years, is to use
a grid which is itself advecting with the flow and to compute the trajectories
of each grid point from the forces implied by the disposition of its neighbours.
This has been undertaken with apparent success for an amorphous ensemole
of points by Mesinger (1971), whilst semi-lagrangian methods (which still rely
to a large extent on a fixed grid) have been attempted for simplified formulations
of the dynamical equations, for example, Wiin-Nielsen (1959) and Sawyer (1963).
Their results compared favourably with Zulerian methodé. Recently, Robert (1981),
(1982) has attempted a semi-lagrangian algorithm'to simulate a 'shallow water'
system on the sphere using semi-implicit methodé to retain numerical stability
with a time step of two hours (considerably greater than that permitted in the
more conventional methods). His results appear very encouraging with nunerical
errors attributable to the relatively Iong timesteps étill remaining émall.
However, apart from this work the;e appears tg be little active research into
the use of Lagrangian integration methods in meteorology although in 6ther branches
of fluid simulations Lagrangian me%hods have proved their value, often in the
form of vorticity codes (eg Christiansen (1970), (1973)). While research into
Lagrangian methods has declined since the emergence of primitive equation models
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the performance of th& best of these Eulerian #todels remains somewhat disappointing
considering their.resolution and complexity. It seems that the resolution to which
structures may be faithfully dealt with in the fixed grid models is far short of
the resolution that the grid is fheoreticaliy 6apab1é of. It is important to
realise that this applies also in the vertical where a poor representation of -
advection must presumnably lead to a very serious misrepresentation qf geostrophic
ad justment - essentially the'process of different%al vertical motion (implying
vortex stretching) that sustains the nice balance observed between the wind and
pressure fields and governs the degree of vertical coherence of features as well
as their rate of development.

It therefore seems timely to reconsider the possibility of applying Lagrangian
methods in a way carefully formulated to overcome the intrinsic shortcomings of
the Bulerian technique without incurriﬁg any more computation that is absolutely
necessary to achieve numerical stability and the desired accuracy. Our concern
will be mainly with the treatment of dynamics since this is where most problems : -
are likely to arise. However, it must be emphasised that one of the chief
motivations for considering a Lagrangian approach is that it seems to be the
most natural way of simultaneously handling any large set of physical fields whose
evolution is dominated by advection. This is certainly the case in an attempt
to model the detailed development of weather, either for the purpose of operational
forecasting or for simulating the processes whose statistical behaviour constitutes
climate, Except for certain small scale features forced by topographic contrasts,
the Lagrangian framework is eSpecially effective at slowing the rates of change
of the principal dynamical and bulk—physical.variables; suggesting.the.important
numerical advantage that for the méjority of processes one might éet by with con= .-'
siderably longer timesteps: In particular, through thé use of implicit_techniques .
the modeller may be finally freed from the unreasonably short timesteps imposed
by the advective CFL criterion.

Obvious disadvantages of the Laérangian formulation spring to mind: the

evaluation of spatial derivations commonly used in the governing equations is



not such a direct process and constitutes an additional computional penalty

for each such evaluation. A more serious objection is that a truly Lagrangian
grid will rapidly distort beyond the limit of its usefulness as a coordinate
system suitable for the accurate-numerical ;éersentation of the physical processes,
This problem is clearly most acute at the smallest resolvable scales of motion
and requires a periodic renewal or 'rezoning' of the grid in order to avoid a
numerical disaster. Rezoniné essentially entails the defining of a new regular
grid.and the accurate interpolation of the data stored on the old grid to the
new grid points., lMany standard Zulerian advection schemes may be thought of as
quasi-lagrangian methods involving a simple rezoning to the original grid at
every timestep. In a Lagrangian model it is not usually necessary to rezone
every timestep but it must be done every few steps. Since the Lagrangian time-
step will usually be several times laréer than the equivalent fmlerian limit
set by the CFL criterion we may expect that a Lagrangian grid rezoning operation
occurs only for a considerable number of time steps of a comparavle Iylerian
model, and for this duration the explicit calculations of advective terms are
entirely avoideu, +e should therefore be able to justify lavishing a great deal
of care on the interpolation process to ensure that the consequent degradation
of information is minimised.

A further provlem with the straight-forward Lagrangian approach concerns
the accuracy of the large scale structures. In a well constructed fmlerian
coordinate system there usually e;ists a high degree of regularity and smoothness

which is not guaranteed in the Lagrangian grid once the small scale motions

- have begun to deform it. It is due to the intrinsic Smoothness of the Eulerian

grids that large scale fields can be very accurately differentiated (implying
that, except through non-ljnear interaétions, large scale motions should be
simulated faithfully). The small scale twisting and~buckling of the”Lagrangian
grid will very probably jeopardise the acéurate representation of the‘larger

scales even when rezoning'occurs well before the onset of any actual numerical
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catastophe., It is never expected that a numeq%cal simulation is particularly
accurate near the limit of grid resolution but it would be ironical if the
presence of these small scale motions were to spoil the simulation,of the other
scales of flow also.

These problems have been given some consideration and the proposals outlined
in the following sections are intended to provide a reasonably logical guide for
the construction of Lagrangian models structured to overcome the in%rinsic
difficulties just mentioned. «hile it is not inténded to convey the impression
that.the application of Lagrangian methods will lead to simpler coding it is
expected that the Lagrangian method should exhibit high standards with respect
to the principal desideraté of numerical simulation, viz:

(i) Stability

(ii) Accuracy

(iii) Computational economy
The extra complexity compared with typical fulerian code should, in the long run,
be adequately compensated for by the ability of the proposed Lagrangian method
to be easily generalised to arbitra;y order of accuracy in space and time
differencing and by the facility with which quasi-passive quantities may be
advected.

2. Dynamics in a Lazrengian framework

e shall assume that a point T> in space at latitude 96 north, longi-

tude f) east and height X3 .is described by the Cartesian coordinates

of its projection in a polar stereographic frame,

F> = (jO(,, P ,7C3)

xoe bun (fl% -'Q5> Cos B
T

where
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The equator is mapped to the unit circle, 0, 4o [ h) the Greenwich

o2 : ; ¢
x, 20 as shown in Figure 2. The use

meridian to the line, 2 =© ,
of an orthomorphic (or conformal) projection has obvious advantages when dealing

with vectors. Small distances ds are given by the metric formulas

2 2
ds' = L (d=+d=) + &g
a?.

. £2)
where (08 is the map factor,
4 2
. -L , . = .l—— (’ + D(“' + XZ )
(4 S-98) 2re ()

Te is the radius of the earth.
An equally wvalid representation of P more suitable for locations in the

southern hemisphere is?

d./ = tdk (u) CC'-(- G
Z
xl/ = "'6((41 (ﬂ/'c+¢) Sin 8 | (4)
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Phe transformation between these choices is simply:

{
6\) i ;/
where W = 20t 12X - : (5)
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We quote without proof some geometrical results valid for a surface viewed
in orthmorphic coordinates. The 2-dimensional gra,diéht "Bf a scalar, S is

given in G, coordinates:?
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Under parallel transport by an infinitesimal displacement, th; the vector

\4 changes its components according to:

({V,’ - 21 43‘3 EJK /\x .E:( \/( o : (7)

sker

in which the factors representing the effect of the curvature of the coordinates

are the vector components:

i (Y((‘F“))k 8 gi;x (8)
and é‘z TR R A T

It follows that the covariant derivative of a vector field, \/ iss

(Y y>;_,‘ - Oa-\/J i Z em AK SJ(\/L (9)

’AX; 'K,("

In the case of polar stereographic coordinates these expressions are particularly

simple,as, from (3) and (8):

/\K o EEF i , : (10)
Te

Using (7) and Newton's third law, a particle influenced by a net horizontal

=

force-per-mass,

~ s Changes its velocity components at the rate,

{‘:’; i F', + 22 UJ' ((:Jn/\u. E;('U(
Jt a5

(11)

where the velocity,

(12)




we now obtain

d;i i a<lF;+‘ 2 AJ UJ'U.' -+ é“ UJ' Q-KAKE;( UL>

4t :
(13)
= a (F; + (r.)
'
where G— reduces explicitly to
2 il
G’a = /\I (Uu ’Ul ) + 2A2 U' UZ
| o) (14)
. 2N, LU, - N, (U. U,
In a Lé,gra.n{;ia.n description of atmospheric motion the terms f correspond

to the resultant of the pressure gradient, Coriolis and frictional forces and, as
a cursory scale analysis will verify, these contributions are generally much larger
than the 'geometric' terms, g‘ ; |

We introduce Lagrangian coordinates, XI 3 Xz i X; and assume that each
is a sufficiently smooth function of X, , Xz , X3 to allow differentiation
as often as is required, 3y definitions, these coordinates do not change following
a particle. It is natural to choose one of these coordinates,- say Xg to
increase from O a:t the terrain surface to some uniform maximum ‘va.lue, sé.y X;T
at ahypothetical near-horizontal material surface at a height sufficiently .
removed from the levels of interest to prevent effects of the erroneous estimation
of the elevation of this surface from being ser';.ous. In the lLagrangian view,
: >(4 ,'Xz ) X3 and t ~ are the independent va.z-ia.bles.of the meteorological
equations and the dependent variables include %, Xz , Xz In addition
we introduce the dynamical variables:

o (%)

Exner pressure function

where P is the pressure and ﬂef -is some constant reference pressure. Also




Ve & g = (b-')/a/ = Poisson's constant.

G =5

the density /O is then

potential temperature

2]

|
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~4% )
o R{pe? = 7T v (15)

Xs)~-

defined

A nmaterial element of the fluid occupies a constant 'volume' of (X,)Xz)
-space and, assuming bagrangian conservation of mass, the quantity, X
as the mass per unit 'volume' of (X; ,Xz ,X} ) — space is a’static distribution
for any given set of Lagrangian coordin‘a;bes. We call this quantity the 'coordinate-

density' and note that it is related to physical density by

a

X = Ti; (16)

where J is the Jacobian,
T = det [ j;'] -
i (17)
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Adopting +the shorthand,

( é 1 ; 4-&( /' E dc

n

for Lagrangian derivatives of arbitrary field, e , then the dynamical equations

may be grouped as followsi-—

g'f: = Ol(F,w*G,)-

% sig el ) > (19)



where CT, ) &rl are defined in (14) and
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with < defined in (17).

(20)

(21)

(22)

(23)

(24)

In a non-hydrostatic model the 'hydrostatic equation' (21) would be replaced

by

5E3 ==9 -G 6 %iz |
3

Finally, we wish to replace all partial derivatives —

i

(25)

from equations (19)

to (24) by derivatives wi’bh‘reSpec‘c to the independent variables, ie terms of the

form ?_ This is done by application of the 'chain-rule':

oX;
...‘9' -
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It is therefore possible to express all the spatial derivatives in th

3 —

b)(l' ,J |

equations Im+4Trm—af first-derivatives with respect to the Lagrangian coo

>(‘ . Viscussion of the frictrTew :-d heating terms is left until section
discussion of processes involving moisture,.

Possible boundary conditions are:

fXg(X,)(z, °> = ZO(IUX‘)-

where ;Zo is the topographic elevation
T
(X, , X, X, )= Zt (28)

where ZT is the height of the rigid lid. .The upper condition, (28) could no
doubt be refined to prevent spurious reflection of disturbances.

3. DNumerical representation in snace

Since thd accuracy of the dynamics crucially depends on the accuracy of the
spatial finite differencing, and in particular, on the coefficients ;‘ in
(26) it is appropriate that we endeavour to maintain a Lagrangién computational
grid on which the variation of the IX; is smooth wi%h respect to the )(}
If this can be achieved, we may be confident that, by using high-order finite
differencing formulae the tranéformation of the other differential quantities

from "gradients in 2§ "  to "gradients in 2&" will be done with negligible:

‘loss of accuracy. 7To this end it is proposed to introduce periodically a selective

nunerical filter of the dependeﬁt variables (especially X ) to remove structures
that are of a scale in 2{ - sSpace approaching the grid resolution (for example,
less than 4 grid lengths,). It is possible to devise multipoint filters that have
this effect. '

In a lagrangian grid there is almost certainly nothing to be gained by a
staggering of the different dyngmical variables so a single computational grid

L
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of points varying smoothly in Zg is recommended; Within this restriction of
smoothness it would probably be desirable to exploif the great versatility of

the Lagrangian formalism of the dynamics in order to alleviate some of the other
practical problems of implementation, such as the requirement to overlap efficiently
the transfer of data between core aﬁd backing-store with the computations on the
data in core. ©9ince high-order spatial differeﬁcing requires broad regions of the
dynamical fields to be in core simultanecously it is better to scan the data in

an order that naturally tends itself to the holding,and continuous transferring,

of well-proportioned 'blocks' as opposed to long narrow 'strips'. In this

respect a helical grid arrangement, as illustrated in Fi;;;;ure 3, is oetter than

a more conventional ‘'latitude-longitude' arrangement. Topologically it would
consist of a single long ribobon of successive rows of data, each row (across

the ribbon) containing of the order 10 to 30 grid points and the ribbon wrapped

as many timés around itself as is required to cover the sphere with the grid-
resolution chosen, like the continuous .peel of an apple. The tw; almost-antipodal
grid-singularities would (as with all grid singularities) require special treatment.
Away from these points the transfer of data to and from backing-store would be

b

along 'fronts', A and C,spanning 3 or 4 widths of the ribbon as indicated in

Figure 3 and would allow the application of high-order differences (involving

broad spans of grid points in each direction) to update the points in the central
part of region B that is temborarily in core. It should be noted that with this
arrangement of‘data the resolution of a global model is limited not by the available

core-store but rather by the total available backing-store that can be accessed

while computations proceed. The latter quantity is generally many times the former

and this will justify the adoption of numerical schemes that are extravagant on

(temporary) storage in order to be economical on computation and very accurate in
the final results.
4. Bumerical integration on time

Having stated in the introduction that one of the most important potential
benefits of a Lagrangiah f&fmulation is the ability to perform the time-integration

with fewer (ie longer) steps we should discuss here the kind of numerical methods



that are suitable for this proovlem. In conventional forecasting models the timesteps
(a few minutes) are so much shorter than the timescales of primary interest (& few
hours) that little accuracy is lost by using methods that are formally of a low order
of accuracy in time. This is no longer true for a Lagrangian model with a relatively
long time step so in order to minimize time~trupcation error it will be necessary

to construct methods of integration that possess a high order of accuracy in time.
Also, the existence of feedback timescales much shorter than the periods of interest
requires that the methods of integration are equipped to handle these rapid feedbacks
stably (but not accurately since rapid modes do not appear to ve meteorologically
significant on the synoptic scale). What are required are high-order-accurate
implicit methods of integration, a sufficiently general class of which will néw
be described.

de start by grouing the dynamical variables into 'prognostic' variables

- R 6 ) and 'diagnostic'. variables, ( X3, X B i ). In principle,

if the three dynamical modes per grid point (one meteorological mode, two gravity
modes) are uniquely determined by the evolution of variables X, , Xz, 7
of the prognostic set, then the remaining variables, X3 5 c() JC may oe
determined frgm them by the diagnostic equations (21), (23) and (24). It is
therefore necessary to use accurate time—integration methods for C(,/ 3(1‘,6;
only since the other variables follow from them diagnostically. For algebraic
convenience we shall identify the prognostic variables, ( Jf,) X2, 9 ) by

( Y, )')1/,_ : % ) and the diagnostic variables ( Xy, &K ) by

( W : s VQ ) respectively. We shall regard equations (19), (20), (Zé)

as the 'prognostic equations' for ( Vﬂ 5 9’1 ?@ ) and equations (21), (23),

(24) as the 'diagnostic equations'. Nétice that the prognostic équations have
terms explicitly containing time-derivatives of the pfognostic variables. To
implement the accurate implicit methods, first augment the prognostic variables

with a number of their successive time-differentials,

eg 2 e
\k = Vl"}' b \ (29)
’J tJ—t—j J=0)"---M :
i gn



plus some auxillary variables,
ya v 2k R
2.0 = ] - N

which record other characteristics of the evolution of the respective prognostic
variables \K . M determines the eventual order of accuracy of the scheme
in time and N is empirically determined by the number of auxilliary variacvles’
required to maintain numerical stability.

In what we call the 'predictor step' we use this expanded set of variables to

project the 'state' forward a time step, St by means of a modified Taylor

expansion:
0 L (4 Y L /I."*:')Z;? \
y/i,j (¢ +8¢) = ZTK y:,x(t) : 2 RJK %;;K(t) ‘\ g = ene @ F
K=o 7] (30)
" :
[¢] [ l‘: l} 'l, 3
Z")J. (f+8é): Z %’K x'}k(é) (J"' I, N
K=1
0 ' /
f
ie V : e 7- ' Q \/
deognieioiig SOy i
o / [ &
ot e O el Bb Ak
where ( WL, %L >é are the prognosti.c state~variables at time % used

v o 5
for this 'preuictor' step and ( W V. )é“((\ are the resulting state

‘variables thus predicted at time £+ 64 2 ' The matrix 7:u is the con-

stant Taylor-coefficient transfer matrix,
¢ (k- ) )
T o : :
J'k e ( k >"\) > 39 B
. (-1

(31)

and. S and R are constant 'ma.trices-empi'rica.lly optimised for the typicai

M



feedback characteristics of the model.

¢
The initial prediction va. is clearly obtained without any explicit

v

dynamical information and in general will need to be corrected in order that the

governing equations are satisfied. The remaining (diagnostic) variables at time,
'f=4é£ may be iteratively estimated from the diagnostic equations (using their
values for time ¢ as a starting guess). o

The 'predictor step' is followed by the 'corrector step'. The error-residuals

o
are calculated from the prognostic equations applied at each grid point to j?

/ 4

(ie substituting Vk/, for 9Q and 94&2 .for' _9? ). Then
a set of corrections are iteratively inferred from the magnitudes and spatial
distridbution of these residuals to refine the estimates of the variables at 1E1L£f~

in a way strictly constrained to be of the form:

Mt "o N
L//' ' (X 'l:fgf): }y : (X’t+8{> b q" (X)£+ét) P)
1) S~ 7 yy -~ A
, 0 <n<sl-t
Nt 3 [=1,2,3 (32) -
‘1 .
X: (Z( ,t+&)= //K'-)J(X)ﬁgt)‘f- q (X, {—+<S£>QJ,
2J o i
where ( F%} 3 C?K,> are a pair of constant vectors, also empirically estimated

for the characteristicé of the model, énd ‘N is the index of this iteration.
Associates with each iteration of these prognostic variables is a recalculation
of the diagpostic variables. The correction components, gi(?g).éq Sf:) at
eacﬁ grid-point will be derived from the residuals of the prognostic equations
typically by solving elliptic equations similar in structure to those that appeér
in diagnostic balance constraints for fi%tered models. The particular techniques
used to derive those corrections are not crucial to the nature of the inﬁegratioﬂ -

technique so long as the successive state variabples,

. " ‘
fose, 2. 2) © anl ‘kk =9, 5 ¢

M

'

conform to the governing equations with progressively diminishing residual error

o

- as M increases, However, the rate of convergence of this iteration to determine

s e
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the total corrections, ;? q; (ZS ,{156) might be greatly accelerated

by adopting the very efficient modern relaxation-methods such as the 'multigrid’
technique, Brandt et al (1980).

A vital feature of these methods is that it is not necessary to iterate the
corrections to perfection in order to guarantee an accurate and stable overall
prediction. It is merely sufficient to iterate the corrections enough to impose
the information inherent in.the governing equation upon the 'state' comprising
the current dynamical variables and other computational variables. It is the
predictor-steps rather than the corrector-steps that ensure a high formal order
of accuracx and for this reason we shoﬁld not underrate the importance of the
extra compuﬁational variables since, in their relationship to one-another they
implicitly carry valuavie dynamical information.

The use of high order accurate implicit methods has a fairly long and well
estavlished history in the numerical solution of ordinary differential equations
and a comprehensive introduction to the techniques is given in Gear (1971). Their
application in the solution of partial differential equations is less.well
estavlished although there is no impediment to their adaptation for use wi%h the
more complex systems of equations such as the governing equations used here. Their
behaviour in more complex systems can be approximately analysed by separating out
the eigenmodes of the numerical system using a relatively simple linearisation,
thereby reducing the analysié to the form used for analysing ordinary differential
equation methods.

The implicit method is uniguely specified by the order of accuragy, M the

‘number of auxilliary variables, N per prognostic variable, the NxN

matrix S (which, for stability,must have eigenvalues of absolute megnitude

less than one), the (MH)X N matrix Q 5 the (M*1) -~ element vector P
and the N - element vector Q which determine the allowed rat;i.o of correctilons
to the computational variables )P;’j and Z.‘,K associated with prognostic

variable % By a canonical transformation of variables %J- and Z s
4

it is possible to reduce matrices S “and R to relatively simple sta.nda.rd

forms, greatly simplifying their theoretical analysis and optimisation. Beyond
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that, there appears to be no elegant method of choosing the best set of values for
these quantities and one must presumably resort to some form of computer-aided
optimisation, controlled by the expected range of the dynamical system's feedback
times and its timescales of meteorological interest, by maximising an appropriate
composite measure of the scheme's accuracy (eg at different forcing frequencies
and system-feedback times) subject to the overriding requirement of numerical
stability. Dahlquist (1963) has proved that no high-order implicit methods of
the form we have considered are stable for all possible linear stable feedback
characteristics of the system. Nevertheléss, for the finite r;nge of feedback
times (ie up to the most rapid gravity oscillation resolved spatially) in a
finite model there do exist practicél methods of the type desc?ibed in general
terms here that are adequate.

5. Unscrambling the grid (rezoning)

After a while any initially regular'bagrangian grid becomes hopelessly tangled
and it is essential to renew the grid well before this disaster occurs. There are
clearly many ways of interpolating data from one (slightly scrambled) grid to
another (less scrambled) grid but to do this in a way that faithfully retains
the information on the original grid requires some care. It would be almost
pointless t§ mar an otherwise accurate integration of a La.gra.n;g-ian model by a
periodic interpolation that uses a crude and inaccurate algorithm (eg linear, or.-
low ordersplinés). Also it would be wastefﬂl not to exploit the existing structural

regularity of the old grid when interpolating to the new, Ve shéll suppose that we

PRl A n
wish to interpolate the data from the old ( & i, X}) grid to the
. A2 A/ A/ ST % ' :
new )ﬂ 3 X, ; )(3 . grid in a way that guarantees a high-fidelity
7 _

reproduction of the physical information'( )( denotes the coordinates of the -

i
grid surfaces).,
A A A
’ / ’ )
While it is quite feasible to interpolate to each (X, B Xz < X;
S ' A A A
point directly from a set of (X, » Xz . Xg) points using a polynomial

method of formally high-order of accuracy, this method can become disproportionately

expensive when the order of accuracy required becomes large. 'eg for a formula of

- 16 -
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| 9th order accuracy (in one-dimension this meang interpolating using a polynomial

| fitting 10 grid points) in each of the three directions the number of computations
by the direct method would be at least 10 x 10 x 10 individual multiplications

and additions for a single target—point. ie.for a 5}*id of" Ng points that means
about 1000 I4 multiplications and additions even iﬁ the artificial situation in

. which the interpolation coefficients are assumed to ve already known. Clearly

a method that can reduce this excessive computation would be advant;geous. Suppose
instead that the interpolation between the grids is conducted via intermediate

grids (which we assume also have about N@ points) according to the three step

schemne

(5‘(:; 5(2;;(3> __9.0%1/;)”(2,; >/‘(3) (33)
. L )A(:)f(;) —> ()A(,/)A(z/ X;)

Each step now involves about | O Nj multiplications and additions, ie only about
30”3 for the entire sequence. Thus by interpolating to the new grid via two
'hybrid' grids it is possible to achieve an accurate transfer of data quite
efficiently. The difficult problem is determining the relative positions of the
grids. This problem is made easier if, as we shall assume, the 'standard' unscrambléd

/ :
X coordinates are analytic, or least readily evaluated, functions of position.

~

A A A
Then, since all the X (X‘ , )(2 : X;) are known (being dynamical variables)

we may assume that




are also knowne.

A D AT A
To interpolate from grid ( X, ) Xz P X;) to (X/ ; Xz ’ X3>

A N PR |
it is required to know each X,(X’, X, )(?>_ From the list of values
~ A
/ A N A : ;
X‘. (X, ) Xz . )(3) on the appropriate -line of constant X1 and Xg
it is possible to make a sensible first estimate p

)(r(o)'Z X (7?/, 7?2 4 5\(3) . (34)

for a particular intermediate grid point. This estimate is imposed by the following:
scheme (Newton's method):
(») /
(i) For estinmate X, derive the actual value of X, by the

accurate interpolation

7 (n) 7 A 3
i (n)
X[ e Xl (XI 9 XZ ,'X3> (35)
n, Fika i
(ii) Compare this with the intended value 3 X| , and infer a correction »
.
to the current estimate, X, :
( ) /7 (n) A/
nei (v) A >(
><' i )(; 2 >(} I (36)
A
(DXI )
. AX, a[)/)rcx
£
oX, = : L X,
where —_ is a simple differenee approximation to ol
éx/ uypprox r : : ’b)(

A A : ,
(along constant Xz and )(3 ) in the appropriate interval of the )(, o
grid. ' Sl
(iii) Repeat (i) and (ii) as many times as is required to obtain convergence.

Ag A oA
When X, (X,, Xz ) X3> is known for all such points it is possible to

-

carry out the first step of (33) for eny variable available on the old
N VAl Al ; X 5 / X J J
()(‘ 2 )(i./><3 ) grid. We interpolate ><z and 3 so

that
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O
and X;(X"’ ;(z ) )(3)

are ¥mown. The procedure (34), (i), (ii), (iii) is then applied to the next step,

to obtain,
A
n A
/ /
><2(/)9 ’ >(z ’ >(3,>
and hence: (by interpolation):
rFfy Ay ¥ )
Finally, by the same procedure, we iteratively get
Ay "/ - )
X'B (X' ? Xz ) X')'
so that the sequence of interpolations (33) may now be executed for 811 the
dynamical variables.
The algorithm outlined above will only work if the various grids intesect each
other in a well behaved way, so that the intersections required for process (33) are
wnique and distinct. In theviscinity of the grid singularities we will be forced .

to use special methods, probably involving the interpolation first to some locally

regular grid.

6. Tma‘tmeht of su‘o-—-{*rid-scale processes and embedded structures

In this section we examine the specia! difficulties and, in some cases,
opportunities provided by a Lagrangian formulation for the treatment of .physical
and dynamical processes on scales too small to be accurately resolved by the compu-

tationa.l grid. The obvious difficulty with the treatment of manifestly anisotropic

processes such as convection, ooundary—la.yer fn ction, radiative transfer and

vertical turbulent heat transport is the loss of the vertical alignment 6f grld
points that is taken for gra.nted in an Bulerian model., This means that physical
pa.ra.metm.sa,tlons must be formulated in a pa.rt:.cula.rly careful way in order that
they be applicable in a model whlch at any given time has an effectively general
curvilinear grld—coordlnate system.

The sort of approach that seems most likely to succeea in a Lagrangian frame

is one that expresses the relevant physical processes in a way that is forma.l].y

A e




invariant with respect to coordinate change. Vector (and tensor) calculus

epitomises this property and suggests that if the forcing of the resolvable

dynamics by physical processes can be expressed entirely by +the divergences

of fluxes (vector or tensor fields) then the problems of physical paramé¢trisation

may be satisfactorily solved. The fluxes themselves should in turn be coordinate-
jinvariant diagnostics of the local flow. Certainly processes of a diffusive nature .
(friction, turbulent heat transport in the boundary-layer,etc) can indeed de
characterised in flux-form énd, provided the fluxes themselves are temporarily
held as explicit variables of the model, the equations involve.no more than first
derivatives in space.

physical variables (held

eg. making Reynold's stress components, ’r;

at Lagrangian grid points), we have

{mm}_“ oo e I (37)

with T', = l/( S(B.C,\ (38)

Eles (K = aiffusivity)

which, by application 6f the 'chain-rule' can be simply expressed in terms of
the Lagrangian coordinates.

: The representation of convective activity by a flux—field might also be
feasible, The effects that are significant dyﬁémically are those that result in
a transport of heat, mass, moisture and possibly momentum. .Ey incorporating
additional physical variables at each grid point to represent the magnitudes
of these (upward) convective fluxes and modifying the mass continuity equation : o
(23) to allow for the-divergence of 'convective mass-flux' (ie a source term at
the level of the top of convective updraughts and a sink at the bottom) it seenms
quite plausible that the statistical results of many convective updraughts can
be properly accounted for, With additional fluxes, downdraught effects may be

dealt with in a similar way. TheSe fluxes would then obey their own diagnostic




R
equations, presumably involving each other, the vertical gradients of temperature

and momentum,and humidity.

Radiative processes can clqarly be writteniin flux~form, the additional
physical variables of the scheme being in this case the upward and downward
radiant flux intensities of an appropriate nunber of spectral bands. Again,
the vertical divergences of these fluxes would force the large scalé dynamical
variables.

"While this tentatively proposed approach to physical parametrisation requires
several additional '"physical' variables, they would usually be diagnostic variables
and therefore would not necessarily need to be retained when the fields are written
to backing-store. However, to avoid the possibility of numerical instability
and to be consistent with the dynamics these parametrisations should be made
'implicit' together with the dynamics, and hence iterated each time step.

Where the intrinsic charac%eristiés of a Lagrangian scheme can be most
profitably exploited is in the automaitc advection of explicit detailed smb-grid- A
scale structures whether they be 'physical' features such as rain bands, strato-
cumulus sheets, cloud clusters etc.dr 'dynamical' structures such as fronts, squall
lines, mesoscale vortices depicted in a passive or semi-passive way by an advected
pattern of subgrid-scaie potential vorticity. One.possibility is to construct =2
'map' of embedded structures on a relatively fine grid formed by subdividing the
Lagrangian computational grid, and using informative quasi-conservative variables
such as potential vorticity, total Humidity mixi#g ratio etc and to allow this map
to be transported automatically by the large scale dynamics with the embedaed
variables updated dnly infrequently and with only the crudest (ie.computational}y
cheapest ) additional equations. An obvious 'source' for this fine scale structure
is the grid-scale component of flow deliberately filtered from the main Lagrangian

grid (see section 3) in order to-maintain‘its;éﬁbothness. The fine scale variables

N

o o T A
would of course be subject to the rezoning operations but not by accurate

methods as those sugzested in section 5 since these fine scale patterns aré\not\\ﬂ_waﬁ;\

sufficiently reliably known (even initially) to justify that expense.




The embedded structures will be especially useful for short range and mesoscale
forecasts althoush in the absence of proper 'dynamics' for these features they
might require rather careful interpretation. The ability to advect relatively
fine-scale potential-vorticity structure at mihimal Eomputational expense is
potentially of immense value since at appropriate forecast times (eg every six
hours) it would be possible to iteratively invert simplified (elliptic) equations
of balance forced by this fiéld in order to infer the corresponding'detailed fields
of wind, pressure and vertical velecity (without ;equiring these quantities to be
held.and continuously updated through intervening times). Also, with a little
more effort, the detailed winds thus oontained could be applied to update (by
advection) the detailed potential vorticity pattern to allow for the self-inter—
action of the small scale flow, With such a 'two-tier' configuration of Aynamicg
based on a coarse-scale Lagrangian model carrying embedded structure it might well
be possible to achieve high-resolution forecasts at a computational cost and at a
standard of accuracy that could not be matched by conventional methods.

A radical approach to the problem of numerical weather prediction is suggested,
base@ on the treatment of dynamics and physics in a Lagrangian framework and numeri-
cal techniques of space-differencing, time-integration and grid-rezoning that can
be readily extended to arbitrary order of accuracy so as to minimize all forms of
numerical truncation and interpolation errors. An essential component of the pro-
posed approach is that the governing equations are solved in a fully implicit way,
thus avoiding the possibility of linear numerical instability which, in various
forms, still continues to plague conventional models. - The growth of structures
of a scale barely resolved by the computational grid would be periodically con-'
trolled by application of selective lowfpass numerical filters.

The proposed approach would require extensive backing-store (discs) because
of the extracomputational variables required to achieve very accurate and stable
integration in time with relatively iong time steps., But it should be relatively

economical on computation considering the resolution and standards of accuracy

that can be expected for the technique. While it mi‘ght now pe premature to attempt




-

.

to construct a full multi-level Lagrangian model aloné the lines presented here,
it would be of value to investigate the performance of the proposed methods on

a simpler system such as the inviscid shallow-water equations in a small rectangular

domain with rigid walls or cyclic boundary conditions.
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Figure 2
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Advection of an impulsive 'spike' across 20 grid lengths by a uniform flow
with CFL numver, U 8t/ = /4 ysing the following methods:
(a) exact; (b) upstream differences; (c) centred leapfrog; (d) Gadd's

scheme.
Djagram to show the effect of the polar stereographic projection.

Part of a helical grid system showing zones at which data are being read

out (4), used for computation (B), and read in (C).
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