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Introduction.

This note describes an attempt to use finite difference and finite element
schemes based on a locally defined co-ordinate system in a forecasting model.
In such a scheme the co-ordinate system may be different on adjacent
grid-boxes or finite elements and therefore to avoid transformations from
one system to another it is neceséary to work in terms of invariant
quantities 1ike div grad and curl. It is quite common for hemispheric and
global models to use different co-ordinate systems on different parts of the
globe, the very early model of Phillips (1959) using mixed map projections
and the polyhedral grids used bySadourny (1972) are examples. In these
cases transformations between different co-ordinate systems had to be
carried out. In thie note an attempt is made to use schemes which avoid
the need for co-ordinate transformations. However, it is found that this
restricts the choice of numerical method severely and prevents the construction
of a stable approximation to the forecasting equations on a moderately
irregular grid with orography included. This approach therefore does not
seem to be a competitor for operational forecast use, unless some new way of
using it can be found.

Description of a local co-ordinate scheme for the shallow water equations.

Ve can write the shallow water equations as follows using standard

notation:
u # Ly
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As a first example we consider integrating (1) using a finite element
approximation in which all the variables are.defined on an irregular
triangular mesh. All scalars, or vectors with a component only in the
direction, are defined by piecewise linear interpolation between values at
the vertices of the triangles. Even though we use a different co-ordinate

system on each triangle, scalars can still be defined in this way without




needing transformation. However vectors have to be defined independently
on different triangles so we dafine them to be constants on the triangles.
With these definitions it is easy to calculate all the quantities
required to solve (1):
d) is piecewise linear and can be written as i¢~xh
where the @, are values at the vertices and the X,
are piecewise linear basis functions

is constant on each triangle with components defined by the

<

local co-ordinates.
wi: W, constant on triangles but is independent of the co-ordinates,
80 a value can be assigned at{ each vertex.
Vd& is constant on triangles with components (?g‘ ' o4 )

%

S can be approximated by the Galerkin method as follows:
' A
Since S only has a component in the k direction, write

’S: zSAXA « Set

defined in the local co-ordinates.
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where fL is the domain over which we are solving (1). Since u is
piecewise constant, it cannot be differentiated, so we have to integrate the

right-hand side of (2) by parts:
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The Hour}d'ary integral vanishes and the remaining terms can be calculated.
The divergence Slu can be calculated in a similar way to the
vorticity. There are no simple advection terms of the form 5.V¢ in (1)
but such terms can be calculated as the scalar product of the vectors “

and V4’ on each triangle independently.
For clarity the approximations are set out below for a regular grid

with triangles of unit side and points labelled as in Fig. 1. We use the

Galerkin approximation (see Tech Note 82) to convert values of scalars
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calculated on each triangle independently to values at the vertices.
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(Qd, )9 . ( ¢“.¢1 : %(d’,'_ )i( ¢3 . d..,.) ) , similar for other triangles.
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Then the full approximations to (1) become:
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vhere E:lul,d4 w? defined by (3)
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This echeme can be generalised using the same principles to use the
vorticity and divergence form of the equations. Alternatively the Galerkin
approximation for fitting piecewise linear functions can be dropped and simple
averaging used instead, leading to a general finite difference approximation.
This is obtained from (4) to (8) by replacing the terms of the form

Tdy * b rddy v dgrdgrdy)
by ¢w o« This mskes the scheme entirely explicit.

Simple analysis of the scheme.

In many respects the scheme for the shallow water equations described
in the previous section is like a finite difference scheme on a mesh staggered
as shown in Fig. 2. The problem lies in the non-linear advective terms.
To avoid co-ordinate transformations no vector quantities can be averaged
over different triangles, only scalars. The scheme for the geopotential

advection term

w 99
ox
is analogous to the finite difference scheme
= 8.hd 20
o * “'O 3
and the schemes for the velocity advection: terms u‘)“ are derived from
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where the finite difference approximation is
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where the finite difference approximation is
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Neither (9) or (10) are normal finite difference schemes for advection and
the.eimple product in (10) is likely to lead to non-linear instability.
Thus we would not expect a particularly good result.

Now consider the finite element version. Non-linear stability of
finite element models is usually assured by the Galerkin approximation to

products, for instance WV is approximated in one dimension by
2 T I L= = | =2
—3—(!»1) &> 3 (uv) ] zu.v e 4 ‘M'V ¥ -c w -V -vz wv (11)

Using the local co-ordinate scheme, however, most of the products in the
advective terms are products of vectors with the gradients of scalars.
Both these quantities are represented as constants on triangles, so the
product scheme consists of single multiplication on triangles followed by
fitting bagk to linear functions using the Galerkin method.

The analogous -on dimensional scheme is thus:

— R

2 | — g
Slw) s Jla) = W (12)

where (Wwy) is defined at grid-points and w and v are defined at
midpoints., This sthemeis liable to aliasing, as can be seen at once if

ww eand Vv are both two grid-length waves. The averaging to transfer

from midpoints to grid-points does not help. Thus the extra stability of the
finite element Galerkin scheme is lost.

Experiments and discussion.

Attempts were made to use the formulation described in Section 2 in the
following ways:
8) Onan icosahedral -grid with ‘the same co-ordinate system on each face
of the icosahedron. The equations used on the projectipn are as set out
in Sadourny (1972).
(1) With semi-implicit finite element scheme using :velocity
potential and stream function.

(ii) With explicit version of (i).

(1ii) With explicit finite element scheme using velocity components.
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(iv) With explicit finite difference scheme using velocity
components.
b) On the same grid as (a) but using spherical polars and
subdividing the icosahedron using lines in the latitude/longitude
plane (as in Cullen (1976)).~ This was only done with method (iv).
In each case theintegrationg'proved impossible to stabilise without
doing unacceptable damage to the synoptic features. The blow-up occurred
in each case where the maximum irregularity of the grid was close to the
western end of the Himalayas; there were also problems over Greenland.
Considerable effort was spent in checking for possible programming errors
and eventually it was concluded that the failure was due to the inherent
instability of the numerical scheme. The requirement that vector quantities
cannot be averaged leads to a simple unambiguous formulation but it prevents
the use of the techniques that have been found necessary in the past to
stabilise forecast integrations.
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List of figures:

Fig. 1 Numbering of nodes and triangles for schemes (3) to (8).

Fig. 2 Staggered finite difference grid analogous to local co-ordinate

grid.
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