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Summary

The theory of extreme values requires that the maxime (or minima) are drawn

from the tail of a distribution of observations which belong to a single population.
Failure to satisfy the theory can therefore be due to the inclusion of observa-
tions which are insufficiently extreme or which belong to more than one population.
It is demonstrated that in meteorology these reasons are often alternative inter-
b expressions of the same problem, namely lack of data.

A series of extremes may be regarded as belonging to the same population if
a single forcing factor is responsible for the whole range of extremes encountered.
The seasonal variation of meteorological variables means that a complete set of
daily values do not belong to a single population, but it is shown that analyses
of annual extremes are still to be preferred to those based on monthly data.
Topography often acts as a second forcing factor by introducing fohns and
standing waves, and by encouraging the development of stationary storms.

The return period at which extremes approach a physically imposed upper limit

“

varies widely with element and location. When the observed extremes fall well
short of their upper bound, it is suggested that they can appear to be unbounded
above. In the case of short duration rainfall, this can be interpreted as being
due to changes in the organizational structure of convective storms as we pass
from the lesser to the greater extremes.

1. Introduction

A knowledge of the highest and lowest values which meteorological variables
are likely to attain in a given number of years is important to many aspects of
engineering design. The analysis of extreme v:lues is therefore a topic of great
importance in meteorology, and very good general accounts of the subject are given

. by Gumbel (1958) and Jenkinson (1977). |
r Many extreme value analyses of meteorological variables have been undertaken
in the past. In the UK for instance, temperature‘has~been analysed by Hopkins

" and Whyte (1975), wind by Hardman et al (1973), and rainfall By Jenkinson in the
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. Flood Studies Report (NERC, 1975). The application of extreme value analysis to
-meteorological data is seldom without its problems. Hopkins and Whyte, for
example, found that the predicted upper bound of temperature was too low, while
Jenkinson found that rainfall extremes appeared unbounded above., Hardman et al
encountered problems with outliers, ie observations which, when plotted on
extreme value probability paper, did not lie on the same general curve as the
remainder of the data. An example of an outlier is shown in fig 1, which displays
maximum temperature in June at Ivigtut on the south west coast of Greenland.
Most of the observations lie between 1300 and 2300, but the highest recorded
temperature is 30°C.

In this paper, the assumptions behind the theory of extreme values are
examined, and the difficulty of meteorological observations in meeting them is
discussed. Suggestions are made as to how the various problems posed by analyses
of meteorological extremes may best be interpreted. All the data used are tabulated
in Appendix 2. They were either held in manuscript form within the Meteorological
Office or extracted from the year books of the appropriate country.
2s Jhsory

Consider a series of independent observations belonging to the same popula-
tion and divided into samples each containing N observations. The series of
extreme values is constructed by selecting the highest (or lowest) observation
from each sample. The results of this procedure are illustrated in fig 2, which
displays achematically the probability density functions f(x) of the parent: and
extreme value distributions. The extreme value distribution is usually expressed
in terms of the cumulative distribution function F(x), which represents the

probability that an extreme value is less than x, and is given by
Fldal (4
Flx) a7 56dax =1 - [T §6ddx
—R e

Let the average number of observations in each sample greater than x = n.

Then the probability that an observation is greater than x = n/N

and thé probability that an observation is less than x . e - 1—n/N.v
Hence F(x) = probability that a maximum value is less than x = (‘Ln/N)N
. = if.p = n/N is ‘small. | 1)

Exactly how small p must be is discussed in the next section following an argumeni
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" put foreward by Jenkinson (1969).

When the cumulative probability F(x) is plotted against x, an S-shaped
curve iS. obtained. It is usual to transform F(x) to a new variable y, known
as the reduced variate, in which the cumulative probability distribution is
represented by a straight line when plotted against x. (see fig 3). For the

extremei value distribution, a common procedure is to set
g ™ -~ ‘03 (H)
that F{J‘)" QIPE e
The variable y can be related to the return period T. The value x which has
the probability 1/T of being exceeded in any one sample is said to have a return
prebabitey Aensity Smchiow o= the
period of T. The valve y = O corresponds to the mode of thefextreme value

distribution.
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Jenkinson (1955) obtained a general solution for x in the form
..kg
x = x°+el(.|:_k€___]
On a graph of x against y, X is the value at y = O, is the slope at y = O, and
k is a curvature parameter. The solution may be categorised into 3 types corresponding
l
to separate solutions previously obtained by Fisher and Tippett (1928). They have come
to be known as Fisher - Tippett types I, II, and III and are characteristed by their

different shapes when plotted on a graph of x against y (see fig 4)

(i) Type I corresponds to K = O and forms a straight line. It is the solution
popularised by Gumbel (1958) and is unbounded above and below.

(ii) Type II corresponds to K € 0 and is bounded below but not above.

(iii) Type III corresponds to K Y 0 and is bounded above but not below.

3. Small samples

The theory of extreme values requires that the extremes.should be drawn from
the tail of the parent distribution. This can be achieved by selecting from a large
sample, ie by making N large, and this is reflected in equation (1) by the ccndition
tnat p = n/N should be small. If N is insufficiently large then a numoer of the
lesser extremes will not be drawn from the tail of the distribution.

Consider an analysis of 50 yearsfof maximum temperatures for July. The number
of observations from which eitremes may be extracted is 31, but serial correlation
reduces the numbér of independent values N to afound 10. The highest temperature
'observed in 50 years will be associated with a value of n of around 0.02. In this
case, e and (1-R/N)N, the latter term subsequently being denoted by Z, both equal
0.980, and so the theoix of extreme values is satisfied. Suppose, however, we conside
a modest extreme for which n = 2. This is associated with a temperature obser;ation
which, althbugh the highest in a given July, has been exceeded 100 (independent)
times in 50 years of record. In this case o equals 0.135, but Z is only 0.107; It
is clear, then,that this case fails to satisfy the theéry of extréme values. If N is
increased to 30, a value more appropriate to annuai maximum temperatures, Z is
increased to 0.126, while if N equals 150, corresponding approximately to 5 year
extremes, -then Zléquals 0.135. -Thus it can be seen that when temperature extremes

are sampled once every 5 years, nearly all the maxima satisfy the theory of extreme
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vales, but that if the sampling period is as short as one month, only the more extreme

maxima do sO.

In any extreme value analysis, the greater extremes will always satisfy the
theory more than the lesser extremes. Thus, in any given extreme value plot, a
failure to draw observations from the tail of the parent distribution will be most
readily apparent in the less extreme observations. There the influence of the
parent distribution may be expected. Since the type I distribution has a skewness
of 1.14, these effects will be most evident when the parent distribution has
negative or large positive skewness. This is illustrated in fig 5 for maximum
temperature in January at Oxford. The general extreme value distribution has been
fitted by simulating 5 year maxima using a computer program designed by Jenkinson
(1977). Although the general curve is clearly bounded above, snd may be fitted by
a type III distribution, the lowest 4 points clearly reflect the negative

skewness of the parent distribution. (para eonit OWﬂﬁ%g)
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The contrast with the effects of a positively skewed parent distribution is
evident in fig 6, which displays maximum temperatures for August at Santander, on
the north coast of Spain.
Pognts drawn from a normal distribution are plotted on extreme value proba-
~ bility paper in fig 7. It can be seen that a sample of normally distributed obser-
v’ vations could easily be accepted as belonging to an extreme value type III distrif
bution. In practice, the only criterion for obtaining a set of data which displays
linearity on extreme value probability paper is thit it should have a skewness
close to 1.14. Since positively skew distributions are common in meteorology, this
explains why many sets of 'extreme values' appear to be well fitted by the type I
distribution even though N falls short of that required by theory.
4. Mixed distributions .
The discussion in section 3 assumed that the extremes were drawn from a
single population. _Where the observations are derived from several independent
populations, each may be treated separately. One area where this approach has
been adopted is in the analysis of winds in regions affected by tropical storms
(ie hurricanes, typhoons). The generél methodology is well described by Gomes
and Vickery (1977). .

If the data contain samples from Q populations, and the distribution of
extremes of the qth population are denoted by Fq(x). then the distribution of extremes

‘associated with the mixed distribution &f given by
: F(I—) = T(.%:' Fq,(x)

A simple example is illustrated schematically.in fig-g. The extreme winds are
assumed. to\belong to two populations, those due tc hurricanes, and those due to
ofher causes, Each sef of extremes is assumed to belqngtowztypel distribution;
f The combined probability distribution will then appear to be unbounded above, and

- to be similar to a tjpe ITI distribution. Fig9 p¥esents an extreme value plot

of winds fpr.Progreso, in the Yucatan peninsﬁla of Mexico. In this case, the

discontiﬁhity in the data is exceptionally well marked.
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A problem with analyses involving hurricanes is that for many locations

'the storms themselves are rare while instrumental records are brief. The data

are therefore subject to considerable sampling error. The problem has been

tackled by usinga statistical model to simulate hurricane winds. This involves expressing
the wind in terms of the intensity of the storm and the distance from its centre, and

then taking into account the frequency of hurricanes in the general vicinity

of the station. A type I distribution is then fitted to the simulated series

of extreme winds. Provided the fit is good, this is a perfectly reasonable
practical step to take. The distribution may be regarded as an adequate description

of the synthetic data, and may be usedto estimate return values within the range of simu-
lated extremes. The relation has, however, no theoretical basis. For the data to satisfy
the theory of extreme values, any given location would need to be visited by a large number
of hurricanes each year. Extrapolationof the type I distribution beyond the range of simu-

lated extremes therefore lacks any theoretical justification.

5. Seasonal variations

Most meteorological variables undergo a pronounced seasonal variation, and
consequently the observations cannot be regarded as coming from the same popula~
tion. By extracting annual maxima, therefore, the theory of extreme values is
not being properly satisfied.

Consider a variable (eg wind) whose values rise to a seasonal maximum in
(say) December. Suppose that a type I distribution is fitted to maximum values
for December and the year. The results are illustrated schematically in fig 10.
The slope for the monthly maxima will always be steeper than that for the annual.
This is because the highest maximum for December is likely to be close to that
for the year (if not equal to it) while in a season in which no strong winds
are recorded in December, the annual maximum will occur in another month.

Fig 10 shows that linear extrapolation of the monthly relation will always'
lead to higher estimates than those for the year. Clearly, linear extrapolations
of both lines is not possible. Either the slope of {he annual fit has to
increase towards that of the monthly, or the slope of the monthly relation haé
to decrease towards that of the annual.. |
: Carter and Challenor (1981), analysing winds and wave height, obtain return

values from linear extrapolation of the monthly extremes. The annual maxima are taken to
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represent a mixed distribution in which the data for each month are regarded
as belonging to different populations.

An alternative view is as follows. Consider a variable which is identically
distributed throughout the year. By extracting annual maxima, N is 12 times as
large as for monthly maxima. By imposing a seasonal variation, N is reduced
to one quarter (s&y) of its previous value, but this is still larger than that
for monthly maxima. Accordingly, extreme value theqry is more nearly satisfied -
for annual than for monthly maxima.

In order to decide which argument is correct, consider first the case of wind.
One can easily imagine a month which is mainiy anticyclonic, and in which no
deep depressions pass close to a station. A low maximum wind is then recorded
for the month. Similarly, for the case of short duration convective rainfall,
one can easily imagine a summer month in which very little thunderstorm activity
takes place. A low maximum rainfall is then recorded. It is these low maximum
values which are responsible for the steep slope of the plots of monthly maxime.
These 'extremes' are clearly not being drawn from the tail of the parent distribu-
tion. In other words, for monthly maxima, N is too small. The independence of
monthly maxima, as required by the mixed distribution approach, may also be
questioned. It follows that extrapolations of analyses of annual maxima are
more firmly based than those of monthly maxima. It also follows that analyses

of m year maxima (for m ).1) will be even more firmly based than those of annual

maxima.

6. Populations and forcing factors

The theory outlined in section 2 required that the extremes be drawn from.
a series of observations which belonged to alsingle populafion. This condition
ma& be relaxed to enable the original observations to belong to several populations.

As long as the extremes are drawn from Just one of these populations, and the

sample of opiginal data belonging to that populéticn is large enough, the theory

-l

will be satisfied.

Consider a series of daily temperatures in January to be constructed from .

observations made at two stations, one in the arcfic and the other in the tropics.

-

-6 -
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Suppose that for each year of data, 31 observations from the arctic station are
followed by 31 observations from the tropical station. If the complete data series
is then divided into samples of size 62, and all the maxima were observéd (say) at the
tropical station, then all the extremes will come from the same population. The
appropriate sample size, however, will be only 31, and not 62.

Thus extreme value theory does not require that the original observations be
exclusively drawn from a single population. Provided all the extremes belong to’
one population, and the associated sampl; size is large enough, the original data
series may be comprised of observations from a large number of sources.

Meteorological observations may be assigﬁed to different populations accerding
to the external mechanism or forcing factor chiefly responsible for producing
the observation. A series of extremes may then be regarded as belonging to the
same population if a single forcing factor is responsible for the wnhole range of
extremes examined. In meteorology there are so many degrees of freedom that this
¢ condition is rarely completely satisfied., In practice it is reasonable to regard

the observations as belonging to the same population if one forcing factor is
dominant.

Consider maximum temperatures in summer at a place like Oxford. The mean
temperature (thickness) of the lower half of the troposphere may e regarded as
the dominant forcing factor. As the thickness is determined oy advection and
dynamical subsidence, each may strictly be regarded as a separate variable, but
on the hottest days they are highly correlated. Sunshine is another possible
external va?iable, but at Oxford nearly all hot days in summer are sunny.

Suppose we could find a location which was almost permanently overcast.

Then the extremes of maximum temperature would-follow a typ; A% 8 i distribution with
i thickness as the dominant external factor, but the observations would be drasn

from cloudy days instead of sunny onés. If there was then one sunny day, the

0

maximum temperature would be higher than before, and the type ITI curve would

- Nl
e

no longer provide a good fit to the observations. . This‘would be because sunshine

had become a second forcing factor.
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In their analyses of annual maximum temperatures over the UK, Hopkins and

Whyte (1975) found that a type III curve fitted to all the data produced an
upper limit which was close to the highest recorded temperature, ie too low.
This would be because on the days which produced the lower maxima, a com-
bination of high thickness and prolonged sunshine may nof have been achieved,
and so these observations may be regarded as belonging to a different popula~
tion from the majority of the maxima. This form of heterogeneity in annual
extremes has previously been suggested by Jenkinson (1969).

In some locations, especially near coasts, wind direction is another
possible forcing factor. We could imagine a coastal resort where the maximum
temperature was almost always limited by a sea breeze. If on rare occasions
a sea breeze failed to develop, much higher temperatures than usual would be
observed, and a type III distribution would not provide a good fit to the
observations.

In Britain the best examples of the effect of a second forcing factor on
temperature are found in places affected by the fohn. Fig 11 displays a
plot of maximun temperature for January at Aber in North Wales. The majority
of observations may be fitted by a tjpe III curve where thickness is the
dominant factor, but the more extreme points may be regarded as lying on ancther
curve in which the fohn is a forcing factor. The fohn is quite capable of
producing the highést temperatures observed (1800) since on thoée occasions
temperatures at 900 mb were around 11°C. As fohns are rare, the events plotted
in fig 11will not represent extremes selected from a large sample, and there is

no question of their satisfying the theory of extreme values. The dotted lines

~ sketched through the fohn events in fig 9 are therefore purely empirical, and

have no theoretical basis. A :

Another example of topography introducing additional forcing factors con-
cerns the case of the Sheffield gales of 16th February 1962. These are des—
cribed by Aanensen (1965) and were caused by standing waves set up by the
Pennines. - Much stronger windé were observed than if:fopograpLic effectslgg@

been absent, and so this event belongs to a different population from the

majority of gales at Sheffield.
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The outlier in the data for Ivigtut presented in fig 1 was probably caused
by a fohn. Temperatures of 30°C around Southern Greenland are quite possible
as is evidenced in fig 12 by a plot of maximum temperatures for_June at
Teigarhorn in south east Iceland. There the appearance of a type I curve is
caused by the absence of a dominant forcing factor for many contiguous points,
with thickness, wind direction, sunshine and fohn all playing a part.

|
7. Populations and sample sizes

In general, any set of data can be divided into a number (Q) of populations.
As Q increases, the number N of independent cases from which the extremes are
selected decreases. Thus while the aim of dividing data into separate populations
is to provide a firmer foundation for extreme value analysis, this aim is
negated by a decrease in N, The failure to satisfy extreme value theory is
really due to one cause - lack of data. The two reasons advocated thus far,

. namely mixed populations and insufficiently large N, are merely different ways
of expressing the same problem.

Consider the example of maximum temperature for Jamary at Cxford (fig5 ).
In section 3, the lack of homogeneity in the data was expressed by saying that
N was too small. The lowest values of the maxima were clearly not being drawn
from the tail of the complete distribution. There is another way of looking at
the problem. The majority of obserﬁations in fig 5 will be associated with
incursions of tropical maritime air across the country. These can be regarded
as constitutiné one population. The lowest January maxima in fig 5 are clearly
not associated with tropical maritime air, and can therefore be regarded as
: belonging to a different population.

In section 6, Hdpkins and Whytes'! (1975) analysis of annual maximum
temperature was discussed. The failure of tﬁe type III distrioution to proviae
sensible extrapolations was attributed to the lower maxima belonging to a
different population‘from the majority. An alternative way of expressing the
problem is as follows. Hopkins and Whyte show that "he lowest annual maximum
at Oxford is 23°C. Since the average maximum in.July is around 22°C, an
- observation of 23°C is clearly not being dr?wn from the tail of the parent
distribution. -ﬁence the.failure to.obtain a good extreme value analysis can

be ascribed to insufficiently large N,

S




Similarly, consider a plot of extreme winds at a place like Progreso
(fig 9) where hurricanes are a feature of the climate. Ones' immediate reaction
is to ascribe the lack of a good fit to a general extreme value distribution as
due to the presence of two populations, ie those winds due to hurricanes, and
those due to other causes. Suppose, however, that sufficient data were available
for a long series of century (as opposed to annual) maxima to be extracted. Then
all the extreme events would be caused by hurricanes, and a good extreme value
analysis for a single population could be obtained. It follows that the plot
in fig 9 may be regarded as an inadequate sampling of hurricanes, ie the lack
of fit to a general extreme value distribution is caused by too small a value
of N.

The formation of a combined probability distribution from a number of
populations (as indicated in section 4) is only valid if the populations are
independent. Determining the independence of populations may not be easy, and
many of the different populations described above probably could not be
considered independent. In any analysis, therefore, it is sensible to keep
the number of populations to a minimum, and to regard the data as belonging
to a single population where possible. In general, this aim will be furthered
by the chéice of as large a value of N as possible (eg 5 year maxima instead of
annual maxima).

8. Rainfall and the type II distribution

Annual extremes of daily and hourly rainfall are frequently best fitted
by a type II distribution, and this has'always caused problems of interpretation.
In the Flood Studies Report (NERC, 1975). Jenkinson groups observations according

to the magnitude of the fall which has a return period of 5 years. He shows that
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the greatest departures from a type I distribution occur for § year falls of

20 mm in England and Wales and 15 mm in Scotland and Northern Ireland. These
falls correspond to a duration of around an hour, which is a typical duration
of thunderstorms. The departure from a type I distribution is also greater in
England and Wales than in Scotland or Northern Ireland. These facts suggest
that the type II appearance of.the observations may be related to the behaviour

of individual convective storms.

Warrilow (1981) has shown that by faking the distribution of storm movement
into account, modest rainfall extremes which»follow a type III distribution
following the storm (Lagrangian) are.convertéd to a type II distribution when
observed at a point (Eulerian). This is likely to account for most‘of the type
ITI behaviour of observed rainfall extremes. Other possible contributory factors
are as follows:-

(i) The complete distribution of short duration rainfall displays large positive
skewness, so any failure to satisfy extreme value theory due to insufficiently
large N will result in a concave upward distribution of the lesser extremes.

(ii) Most of the larger extremes will be due to thunderstorms, but in many
places, some of the lesser extremes may be due to frontal rainfall. The mixture
of populations would then give rise to a type II appearance to the observations.

As convection will be dominant in the heaviest frontal rainfalls as well as in
thunderstorms, however, the distinction between the two may not be as great as

at first appears. Some of the heaviest rainfalls have been frontal in origin,

. but have containgd embedded thunderstorms., If we restrict consideration to

convective.stbrms, however, it is true that as we pass from the 1es§er to the
greater extremes, the organizgtiongl structure of storms also changes; from
single cell through multicellﬂyp supercell. Hence the increasing organizatisnal
structure of storms as we pass froﬁ.smé;l to iarg? return periods is likely to
contribute to the type II distribution of rainfall .extremes. iz

(iii) In certain areas, topography.may encoﬁrage.%he"developﬁentiof staiiggany
storms and give rise to a_distribution.of stqrﬁ movements different from that

considered by Warrilow. In districts thus affected, the conversion from the

.

Lagrangian to Eulerian frame of reference will result in some spectacular type

- 171777?" l7 5 A IS » A .



II curves, and very large point rainfalls may have relatively modest return
periods. In the UK, some of the large storms that have occurred in South
West England, together with the Hampstead storm of 1975, may enter this

categorye.

) 9, The Upper Bound

Many sets of metcorologicél extremes are well fitted by the type I distribu~
tion, but this is unbounded above. If physical coﬂsiderations impose an upper
bound,then eventually the type I distribution must give way to the type III.

For events related to the duration of a single physical entity, eg a thunderstiomm,
gale, or an afternoon maximun temperature, it is clear than an upper limit

to extremes must exist. For longer duration events, eg monthly rainfall, which
involve a succession of physical entities, a realistic physically imposed upper
limit is more difficult to visualize and evaluate. Most practical applications
are covered with short duration events for which the concept of an upper limit

is valid, and we now restrict consideration to these cases.

o The return period at which extremes approach’ the upper limit varies
widely with element. In the UK, for instance, maximum temperatures approach
their upper boundfor return periods around 100 years, while for rainfall
Jackson (1979) shows this does not happen until return periods of the order of

a million years are reached., For a given element, the return period at which

the upper bound is approached will also vary from place to place.

Consider the case of matimum temperatures. First compare typical iniand
and coastal sitéé. For any given return period, the maximum temperature on the
coast will be lower than that inland; The upper limit oﬁ‘the coasf, however,
may be the same, or nearly thé saﬁé, as inland. Although optimum conditiqgg.

B will be rarer, it is still p;;;ibie to imagine a set of conditions in whicﬁ’

o the highest coastal temperatures would ﬁe'(nearl;} the same a§vthose inland.
The situation is illustrated schematically in fig: 13, The inland station is
represented by curve A, gnd the coastal resort by curve B. The upper limits.
at both locations are similar, but the return pefiod at which this is approached

- b

is larger on the coast.
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| . ' Suppose we now move from a linear stretch of coastline to a headland.

" For any given return period, the headland will experiénce lower temperatures
than the remainder of the coast, and the highest temperafures experienced inland
may never be reached. The slope of the extreme value analysis, although smaller
than that for other inland or coastal locations, may well remain linear for
longen return periods than in the previous two cases. This is illustrated by
curve C in fig 13. Over the open sea, however (curve D), the probable

maximum temperature will be much lower than over the land, and will probably

be approached at similar (modest) return periods.

The same arrangements may be extended to other elements. In the case of
wind, for instance, curve A may represent places like the Faeroes, where
intense depressions are frequent; Curve B may then represent places further
South, eg Valentia, where deep depressions are less frequent but still possible.
.In the case of rainfall, districts with frequent thunderstorms will be represented
by éurve A, while curve B represents places where they are less frequent, but
still possible.

In general, the return period at which the upper limit is approached is
inversely proportional to the frequency of the physical conditions which give
rise to the probable maximum valﬁes.. The modest return periods at which this
occurs for temperature may be related to its more 'continuous' nature when
compared for instance, to the 'discrete' nature of gales and rainfall.

. When a set of extremes fall well short of their upper limif, a highly

- gkewed parent distribution and an inadequate sampling of limiting physical
conditions are indicated. The lack of data for extreme value analysis is

then acute. If the observed extremes are believed to belong to the same

population as those‘near the upper limit, it can be argued that the observed
extremes are not being drawn from the tail of the single population. Alternatively,
if it is argued that 'the observed extremes are being'drawﬁ from the tail of

one population, then there are grounds for thinking that the highest possible
extremes belong to another populatibn. Under either argument, the observed

extremes'aré likely to display the appearanée of béing wnbounded albove.

L ogans
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10. Conclusions

The theory of extreme values assumes that the maxima (or minima) are-drawn
from the tail of a distribution of observations which belong to a single popula-
tion. Failure to satisfy the theory may therefore be caused by the inclusion
of observations which are insufficiently extreme or which belong to more than
one population. In meteorology, these reasons are alternative
ways of expressing the same problem, namely lack of data.

Most meteorological variables undergo a pronounced seasonal variation, and
consequently the observations cannot be regarded as coming from the same popula-
tion. The problem may be tackled by regarding monthly maxima as bélongihg to
separate populations, and then combining them to obtain a distribution of
annual extremes. This approach, however, is compromised by the inclusion of
insufficiently extreme monthly observations, and it is better to perform a
straight-forward analysis of annual maxima.

In meteorology there are so many physical processes involved in the creation
of a series of observations that defining a single population is difficult.

In practice, a set of data may be regarded as belonging to the same population
if a single forcing factor is primarily responsible for the range of extremes
encountered. Topography can often act as a second forcing factor. It can

cause high temperatures or strong winds through fohns and standing waves, and
produce high point rainfalls by encouraging the development of stationary storms.

The return period at which extremes approach a physically imposed upper
limit varies widely with element and location. When a set of maxima lie close
to the upper bound, a type IIIL distribution of the extremes may be expected.
When the observed extremes fall well short of their upper limit, however, they
may appear to be unbounded above. In the case of short duration rainfall,

this may be interpreted as being due to changes in the structure of convective

s storms as we pass from the lesser to the greater extremes.
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.Aﬁpegggx 1 = Plotting Positions on Extreme Value Probability Paper

Intuitively, one expects a return period of around M to be associated with



the largest of a series of M observations. This thinking is expressed by

ascribing a cumulative probability p to the mth ranking observation of

P -r—:lh _ (41)
This formula was first suggested by Weibull (1939) and was popularised by
Gumbel (1958). The data used in this paper were plotted according to the
relation % WM=034

M+038 (42)

This equation was first proposed by Beard (1943) ané has been widely used in
the UK Meteorological Office following its adoption by Jenkinson (1969).

If 100 years of data are available then the first ranking observation is
attributed a return period of 101 years by equation (A1) but 145 years by
equation (A2). The difference between the two is essentially the difference
between the mean and the median.

If 1000 years of data are available, then the event with a return period
of 100 years may be approximated to the value of the 10th ranking observation;
The distribution in time of these 10 largest events is not uniform. Their
separation is bounded below by one and so a positively skew distributiocn emerges
in which the median separation is less than the mean. Thus wunile the mean
separation of the 10 largest events will be 100 years, the median separation
will be less than this. Now the largest event in 100 years of data lies close
to that whose median recurrence interval is 100 years. It can be shown that the
mean return period of such an event is 145 years, and this is the result given
_ by equation (A2).

It can now.be seen that it is the skewed distribution of the separation_
of the most extreme events which cauées the largest obse;vation in N to have
a return period greater than M. Tﬁe Weibull formula will only be correct 3f
the largest events are unifor;ﬁy'distfibuted‘in time. An excellent review‘éf
plotting positions in general .is given #y Cunnan; §1978), who recommends.the

PR

use of the relation
pﬂm-0.4 y i
"M+ 0.2 o

-5

e RN : r“!



The difference in the plotting positions given by the above equation is
generally small except for the largest extreme. In the case of a set of
extremes which fitted the type I distribution, use of the Weibull plotting
positions result in a slight 'type II' appearance of the observations, with
the pésition of the largest event having the greatest error.

Appendix 2 - Data

A = Maximum temperatures in June at Ivigtut (°c)
B = Maximum temperatures in January at Oxford (OF)
C = Maximum temperatures in August at Santander {“e)
D = Annual maximum gusts at Progreso (m/sec)
E = Maximum temperatures in January at Aber (OF)
. F = Maximum temperatures in June at Teigarhorn (OC)

Year 1872 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 188
B 46 D o >4 35 53 56 55 47 53 o1 55 55 55 52

Year 1886 1887 1888 1889 1890 1891 1892 1893 1894 1835 1896 1897 1898 1899 150G
A 16.6 18.3 20.5 15.2 21.3 21.2 20.7 17.4 16.1 21.9 18.0 23.0 20.0 16.9 19.
s A SRR YR e 56.. . 52 .o 35 0 53 9055 M A

Year 1901 1902 1903 1904 1905 -1906 1907 1908 1909 1910 1911 1912 1913 1914 191
A 21.0 20.6° 20.6 19.1 18,4 19.4 17.4 17.8 22.2 17.T 17.3 19.9 18,3 4.1 3.
B sp. ma. ek 54 85 K6 B2 5Bl B 00 0 5. 35 - Jg

Year - 1916 1917 1918 1919 1920 1921 1922 192, 1924 1925 1926 1927 1928 1928 193
- e, 16-6 - 19.4 1502 13.7 18.6 2002 17.4 21.4 - 20-0 21.7 16.
5T 9% 55 52 55 25 51 54 ' 52 55 53 55 56 53 58
: 30 31 27 38
172 25.6 17.8 -24.4 19.4 19.4 16.1 19.4 18.9 23.
60 60 54 56 63 61
16,8 20,3 " 17:8 23.3 2542 19,90 175 -2Vl 204

HEoow»>

J Year 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 194

19.4 20.2 18.2 16.5 19.4 21.1 16.0 17.4 18.4 16.1 18,6 17.3 17.6 18.0 19.
§2. W5 hywagA s 84 o- 5] A3 04 o e T 48 SRR
56 32 - 28 ize 06 21 <35 g3 hEs g a4 A8 AN ERE
19.4 22.2 27.8 17.8 23.3 22.2 22,2 33.3 20.6 22.8 22.8 19.4 21.1 20.0 1&.
o1 57 .86+ =85 530 AL B8 B SRS E6 O 5o . SFve o= tn38
20.3 23.6 22,1 23.9 20.6 27.8 2049 2207 0.5 22.2 251 18] 13T @30 1%

HEHUow>

- 16 = .



Year 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
A 16.2 23.1 19.6 19.2 21.0 21.7 18.6 20.0 16.5 20.5 19.8 19.6 17.8 18.0 18.8
B 51 56 57 53 54 % 52 55 56 53 54 57 55 52 54
C 30 31 29 24 27 30 29 39 29 29 25 30 26 28 34
D 52,2 21.1 34.0 32.0 48.0 42.0 38.0 17.0 41.0 32.0 44.0 36.0 36.0 31.0 19.4
E 5 56 56 56 61 23 53 54 57 2 56 58 65 55 58
F 17+3 17.0 18.1 22.0 16.0 17.5 16.6 18.6 18.7 18.1 19.2 17.7 16.2 17.5 24.1

Year 1961 1962 1963 1964 19t5 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

- B 23 9 41 54 53 54 o 55 56 51
C 30 25 23 34 27 27 25 30 24 25 28 28 32 27 28
D 16.7 18.9 19.4 18.3 22.8
E 55 D0 48 57 2z 57 57 55 58 58 65 56 56 58 58
F 17.0 . 17.9 22.2 18.0 17.0 14.3 16.5 18.0 15.2 16.2 15.5 19.5 150 16.2 15.5

Year 1976 1977 1978 1979 1980
c 30 24 24 27 30
E 55 54 52

i T :
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