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Summary

Assimilation of thermal data into an ocean model near the equator often results in a dynamically
unbalanced state with unrealistic deep overturning circulations. The way in which these
circulations arise from errors in the model or its forcing and the equatorial dynamics is discussed.
A scheme is proposed to calculate a state with a better balance by using the observational
increments to the model to update slowly evolving bias fields. These bias fields augment the
model state and affect the model's pressure gradients. The properties of the augmented shallow
water equations are examined. When forced by steady incorrect wind stresses, solutions of the
augmented equations assimilating full fields of surface height data converge to the correct
surface height and vertical velocity fields. Results from an experiment applying this bias
correction scheme to an ocean general circulation model are summarised. They show that the
method produces more balanced analyses and a better fit to temperature observations.

1. Introduction

Assimilation of data into ocean models is becoming increasingly viable. Substantial in situ real-
time observing networks such as the TAO buoy array (Busalacchi 1995) and the ARGO (1999)
array of autonomous profiling floats have been or are being deployed. Satellite measurements of
the surface wind stress and sea surface height are also available for assimilation by operational
centres.

A particular problem for seasonal forecasting is that, unless particular care is taken, ocean models
do not retain the observational data assimilated into them for more than a few months but drift
away towards their own climatologies in the key regions of variability within a few degrees of the
equator. Ji & Leetma (1997) address this problem by careful choice of the time-mean wind stress
used to force their models and by calculating observed anomalies and assimilating them as
anomalies from their model's climatology. Alternative approaches using variational schemes
include the works of Yu & O'Brien (1991), who trialled a variational assimilation scheme in which
the wind stress field is a control variable, and Derber (1992), who developed a continuous
variational assimilation formulation specifically to address the problem of model bias. In the
latter scheme the control variable is the field of heating/cooling required to prevent the model
from drifting. Of particular relevance to this paper are some studies in the context of Kalman
filters. Friedland (1969) proposed augmenting the state vector by a model bias vector and
transforming the gain matrices of the Kalman filter to produce a computationally cheaper
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method. Dee & Da Silva (1998), hereafter referred to as DDS, have applied this idea to numerical
weather prediction (NWP).

In this paper we build on the ideas of DDS by developing a formulation of the augmented state
method to produce balanced analyses near the equator. Section 2 illustrates the spurious vertical
circulations and time-mean observational temperature increments made when temperature
observations are assimilated into an ocean general circulation model (OGCM) near the equator.
Section 3 discusses the dynamics of these circulations and a method for suppressing them is
described in section 4. Section 4.1 briefly reviews the theory of augmenting the state and 4.2
describes what we term the “pressure correction” method which combines the ideas from
sections 3 and 4.1. This method involves augmenting the model state by a bias error variable
and incrementing this bias using the observational increments in a specific way. The
characteristics of the method, when it is applied to the shallow water equations forced by
incorrect wind stresses, are explored in section 5. Particular attention is given to the conditions
under which the solution will converge to the truth and the rate of convergence. Section 6
compares our method with the assimilation of anomalies from climatology and DDS’s methods.
It also discusses the application of the method to seasonal forecasting and some directions for
future research. Section 7 is a concluding summary.

This report will form the basis of Part | of a paper. Part Il will present some results from the
application of the pressure correction method to two OGCMs. Some preliminary results from the
application of the pressure corrrection method to the Met Office OGCM system are shown in
Appendix B.

2. Problems arising from data assimilation near the equator

The problems which arise are illustrated in this section using two integrations described in detail
in Bell et al. (2000). The first assimilates surface temperature and thermal profile data. The
second is identical to the first except that no data is assimilated. The integrations start from a
state of rest with potential temperatures and salinities derived from the Levitus (1994)
climatology for the 1st May. They are forced by monthly mean climatological fluxes. The wind
stresses are taken from Hellerman & Rosenstein (1983) which are generally regarded as being
too strong in the equatorial regions. The model has global coverage, uses a latitude-longitude
grid with 1° resolution and has 20 levels in the vertical. It is based on the Cox (1984) code and
includes parametrisations of vertical mixing developed for coupled climate modelling. The data
assimilation component is based on the analysis correction scheme of Lorenc et al. (1991). The
estimated error variance for each observation is set equal to that assigned to the model field. The
horizontal error correlation scale used is 300 km, except within a few degrees of the equator. At
the equator the scale is 600 km along the equator and 150 km across it. Each thermal profile
observation is assimilated over a period of 20 days centred on its time of validity. No salinity data
are used and no salinity increments are made by the assimilation scheme. Observations valid
from the 1% May 1995 to 30™ April 1996 were assimilated. Neither an El Nino nor a La Nina event
occurred during this period. The integrations presented ran for two years. The data assimilation
run assimilated the same data in both years of integration.

Figures 1(a) and 1(b) show the time mean of the potential temperature field along the equator in

the Pacific for the second year of the control and assimilation integrations respectively. It is clear
from these plots that the assimilation acts to tighten the thermocline so that the temperature
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gradient is much steeper with data assimilation. Although the systematic bias in our control
integration may be slightly larger than in some other systems, because of the use of the
Hellerman wind stresses and a model with relatively poor north-south resolution near the
equator, it is difficult to eliminate biases of this nature from coupled ocean-atmosphere models
(Stockdale et al. 1993, Fevrier et al. 2000).

Depth (m)

Figure 1. Annual mean (2™ Year) potential temperature (°C) cross-section along equator
between 140°E — 90°W: (a) control without data assimilation and (b) with data assimilation.
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Figure 2. Annual mean (2™ Year) potential temperature increments (°C month™) cross-section
along equator between 140°E-90°W for run with data assimilation.
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Figure 3. Annual mean (2™ Year) potential temperature increments (°C month™) field at about
50m depth for the run with data assimilation.
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Figure 4. Annual mean (2" Year) vertical velocities (cm s7) field at about 250m depth: (a)
control without data assimilation and (b) with data assimilation.
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Figure 5. Annual mean (2" Year) vertical velocities (cm s™) cross-section across equator at
110°W: (@) control without data assimilation and (b) with data assimilation.
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Figure 6. Root mean square values of monthly mean vertical velocities over the region 5°N-5°S,
140°E-80°W: (a) at about 50m depth and (b) at about 250m depth. Dashed — control without
data assimilation. Dotted — with data assimilation.
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Figure 7. Annual mean (2" Year) zonal velocity (cm s") along the equator between 140°E-
90°W: (a) control without data assimilation and (b) with data assimilation.
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Figure 8. Annual mean (2™ Year) total velocity (cm s) field at about 140m depth: (a) control
without data assimilation and (b) with data assimilation.

Figure 2 shows the time-mean cross-section of the potential temperature increments made by
the data assimilation component during the second year of the assimilation along the same
section as Fig. 1. The increments are very large, exceeding 1.5°C month™ over large areas. This
indicates that in these regions over the course of the second year of integration the data
assimilation warmed/cooled the ocean by more than 18°C and the ocean model cooled/warmed
the ocean by similar amounts. Thus the ocean model cannot be considered to be in a satisfactory
dynamical balance during the assimilation, and any forecast made from an assimilation state is
likely to drift very rapidly during the first months of the forecast. Figure 3 shows a horizontal
view of the time-mean potential temperature increments at about 50m depth. The increments
are confined to within 15 degrees of the equator with the strongest increments being applied
very close to the equator. There are also large time mean temperature increments in the areas of
the Gulf Stream and Kurushio currents not shown here but we do not attempt to examine these
regions.

The time mean fields of vertical velocities near 250m depth for the control and assimilation runs
are displayed in Figs. 4(a) and (b) respectively. It appears from these plots that the data
assimilation is inducing unrealistically large time-mean vertical velocities at this depth. The
vertical cross-sections of the vertical velocity at 110°W shown in Figs. 5(a) and (b) support this
conjecture. Figures 6(a) and (b) show the root mean square (rms) values of the monthly mean
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vertical velocities over the region 5°N-5°S, 140°E-80°W as timeseries for the second year of
integration at two depths for the control and assimilation runs. They show that at 50m depth

the vertical velocities in the two runs are similar in magnitude but that at 250m depth the
magnitude of the vertical velocities is much stronger in the run with data assimilation included.

Figures 7(a) and (b) show the zonal velocity along the equator for the same sections and
integrations as Figs. 1 and 2. The wind-driven near surface westward current and the eastward
equatorial undercurrent are clearly apparent in the control integration, though the maximum
strength of the undercurrent at 80 cm s™ is slightly weaker than it is observed to be (120 cm s™).
In the assimilation experiment, the undercurrent does not penetrate as far to the east in the
model as it should do and the surface currents are reversed at about 150°W. Westward flowing
currents to the north and south of the equator at about 150m depth can be seen for both the
control run and the run with data assimilation in Figs. 8(a) and (b) respectively. The run with
data assimilation has much stronger horizontal velocities both in the equatorial undercurrent and
in the current to the south of the equator.

In summary, in the region of the equatorial Pacific, the assimilation integration has a more
realistic thermocline structure than the control (Fig. 1) but its model component is not in
dynamical balance (Figs. 2 and 3), it has unrealistically large annual mean and monthly mean
vertical velocities near 250 m depth (Figs. 4, 5 and 6) and its equatorial undercurrent is less
realistic than that of the control integration (Figs. 7 and 8).

3. Physical Discussion and Motivation for Proposed Method

3.1 Dynamical response to imposed density increments

The schematic shown in Fig. 9 suggests how assimilation of thermal data near the equator results
in such large vertical velocities and accumulated thermal increments. It depicts the changes in
the North-South direction to a state, initially in dynamical balance, which result from decreasing
the density of the water (step 1) at some depth. Because of hydrostatic balance the pressure
relative to the surroundings will increase above this depth and/or decrease below it (step 2).
Assuming that the dynamical response is not dominated by the Coriolis acceleration (see next
paragraph) the high pressure above the region of lower density will drive a divergent horizontal
flow and the low pressure below will drive a convergent horizontal flow. As the 3D flow in the
ocean model is non-divergent these horizontal flows drive upward vertical motion through the
region where the density was decreased (step 3). The ocean is stably stratified so upward vertical
motion will increase the density of the water and hence oppose the density change which
induced the circulation.

The direct response to density assimilation increments just described is qualitatively accurate for
any high-frequency inertia-gravity waves generated. It is not qualitatively correct for any
planetary waves generated at mid-latitudes. Near the equator it is not quite clear whether it is
relevant to planetary waves; this point was one of the motivations for the analysis presented in
section 5.

6 of 27



Assimilation of data into an ocean model with systematic errors near the equator \_/\-.

A

2. high pressure]

v

1. negative density
increment

>2_ low pressure]<

Figure 9: Schematic of the dynamical response to an imposed density increment. Numbers
correspond to the steps described in the text of Section 3.1.

WIND STRESS
(a) <

o
>

PRESSURE GRADIENT

WIND STRESS

() =

~
g

PRESSURE GRADIENT

WIND STRESS

(© 5

~
-

PRESSURE GRADIENT

CORRECTION

Figure 10: Schematic of the main dynamical balance along the equator between the surface
wind stress and pressure gradient: (a) reality, (b) data assimilation and (c) pressure correction.
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The schematic in Fig. 10(a) illustrates the main dynamical balance along the equator which is
between the wind stress and the pressure gradients. In normal years easterlies blow along the
equator in the Pacific. The surface wind stress is mixed down only over the top 50-100m of the
ocean and to oppose this stress by a suitable near-surface pressure gradient the surface of the
ocean tilts so that it is higher in the west than the east. This pressure gradient reduces markedly
with depth because the water on the eastern side of the Pacific in the upper ocean is colder than
that on the western side. In El Nino years the easterly wind stresses are weaker and the surface
pressure gradients and sub-surface density gradients weaken to maintain the overall balance.

3.2 Origin of systematic error

Figure 10(b) illustrates the way in which data assimilation disrupts this balance in the case when
the wind stress driving the ocean model is too weak. In this case assimilation increments to the
density field over-strengthen the subsurface pressure gradient. Similarly unbalanced pressure
gradients could result if the parametrisation of the downward vertical mixing of momentum
input by the wind stress were flawed. Equatorial ocean models were enormously improved by
Pacanowski & Philander’s (1981) parametrisation of this process. But as the parametrisation of
this process is very difficult it is likely to have significant residual errors. Also, if the salinity
gradients in the model are incorrect, assimilation of temperature data in some regions may,
perhaps after some initial improvement, increase rather than decrease the errors in the density
gradients. In such a case assimilation of temperature data would again set off vertical motions.

4. Formulation of Method

4.1 Augmented state treatment of models with systematic errors

For models containing systematic errors, a standard approach is to augment the model state
with a set of systematic model error variables (Friedland 1969 and DDS). This section presents
the main ideas involved in this approach. The notation is based, wherever possible, on Ide et al.
(1997).

The evolution of the true state of the ocean, x, € R", from time ¢, to ¢z, is taken to be
described by the stochastic vector difference equation

X =M (x, w) + 0, M

where superscript t represents true fields, M':R"xR™ — R" is the true system operator,
u, € R™ is the vector of true model inputs (such as the surface wind stress) and n, € R" is a
vector of random disturbances, assumed to form a white Gaussian sequence.

The observations are assumed to be given by the equation

Y. = H, (x,)+5, (2)
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where y, € R* is the vector of observations available at time ¢, which is related to the true state
of the system through the observation operator H, :R" — R” and contains random errors

g, € R” which are assumed to form a white Gaussian sequence.
The equation which models the system can be written as
Xen =M™ (X ,u)+ 0, (3)

where superscript m represents model fields, M™ :R"xR™ — R" is the model system operator
and n; € R" is a vector of random disturbances, assumed to form a white Gaussian sequence.

It is usually assumed that the forecast model is deterministic, 1y’ =0; is perfect, M" =M"; and

has perfect inputs, u, =u, . In this case, the normal data assimilation process may be applied and
the analysed solution can be made to converge to the true solution over time by suitable choices
of the gain matrix, given certain conditions. For ocean models, these assumptions about the
forecast model are not valid. This is also true for many other applications such as humidity fields
in NWP. When modelling systems such as the oceans, the exact representation of the true system
on the model grid will not be known, and approximations to the true operator have to be made.
Also, the inputs to the model are not always known accurately.

We now suppose instead that the model used to propagate the state variables and inputs
contains systematic errors. We write this assumption as

M"(x,u)=M"'(x,,u,)+T(b,), (4)

where b, € R? and T:R? — R" is some operator which is to be chosen. The vector b, is not

strictly the systematic model error vector after introducing the operator T . However, we call this
vector the model bias in this section for convenience. The operator is included because it is
possible that only certain parts of the model will contain systematic errors, i.e. g<n. T is
usually taken to be the identity as in DDS but there are other possible choices. In the pressure
correction method described in the following subsection, we take the operator T to be of a
specific form, based on our understanding of the nature of the systematic errors.

We assume that the evolution of the model biases is governed by the stochastic vector difference
equation

b, =W(,x)+{, (5)

where W :R?xR" — R? evolves the model bias variables and {, € R? forms a white Gaussian
sequence.

If the normal data assimilation process is applied to the system with systematic model errors, the
analysed solution will not converge to the true solution as time increases. If we augment the
state vector with the vector of model bias variables and apply the data assimilation process to
this augmented state however, then it can be shown in the linear case that the analysed state
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vector can be made to converge to the true state vector, given similar conditions to those for the

normal data assimilation problem. This convergence assumes that we know how the systematic
model error evolves in time.

The idea of state augmentation can be applied to any of the data assimilation methods. In the
case of Optimal Interpolation, the analysis step can be written as

x¢ =x{ + K[y, - H,(x])], (6)
b; =b] + K[y, — H,(x{)], 7)

where the gain matrices are determined by

K; =P/, ¢OH[H,PL (¢ )H] +R, 1", (8)
K =P/, (t)HI[H, P/ (t)H. +R,]". )

Here, P(f ,(t, )€ R™ is the forecast error covariance matrix for the state variables, P(fd])(tk)e RP"

xx

is the cross-covariance matrix between errors in the state and errors in the model bias variables,
H, € R?™ is the linearised observation operator and R, € R*** s the observation error
covariance matrix.

As well as converging to the true state vector, a potential advantage of this method is that we
obtain an estimate of the errors in the model which might help to improve its weaker
components. A difficulty of the method is that we may not know exactly how the systematic
model errors evolve. If we can make a reasonable estimate, however, the analysis of the
augmented state should provide a better analysis than that without the systematic model error
correction.

4.2 The pressure correction method

We now introduce specific choices for Kﬁ , T and W for the bias correction, aimed at reducing

the effects of the systematic errors described in sections 3.1 and 3.2, that is to restore the balance
between the surface wind stress and the model’s pressure gradients. We assume that we have
observations of potential temperature and salinity only, and use these observations to produce
bias fields which will correct the model’s pressure gradients.

fn the normal data assimilation procedure, increments to the potential temperature and salinity
fields are made using the differences between the observed and model forecast fields. To
produce estimates of the bias in these model fields, an analysis of the form of Eq. (7) is
performed, i.e.

o =0 +KLG -HIO)), S =SU+KUIS-HSSDL  (10)

where g, and S, are the potential temperature and salinity respectively at time 7, , superscript
b indicates a bias field, superscript a indicates analysis, superscript findicates forecast,
superscript o denotes observations, H_ interpolates from the model grid to the temperature
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observations’ positions and H; interpolates from the model grid to the salinity observations’
positions.

The forecast model of 8. and S. is assumed in this paper to be constant, so that
0i =0, Sh=S" an

although this can be altered if something is known about how the bias fields evolve. Initially, the
temperature and salinity bias fields are set to zero, i.e. 8¢ =S, =0.

The expression for the gain matrix for the bias variables written in Eq. (9) involves the cross-
covariance matrix for the errors in the state and model bias variables. Statistics for this calculation
would be very difficult to obtain so we choose this matrix to be of a simple form,

K! =-aK}, (12)

where ¢ is a constant between zero and one.

The estimates of the biases in the temperature and salinity fields described in Eq. (10) should
now be used to calculate a bias in the pressure field so that the balance described in section 3.2
between the pressure gradient and wind forcing can be restored. This is done by making use of
the operator T in Eqg. (4), so that the bias fields are not simply added onto the model equations.

Instead, a biased density o} is calculated through the equation of state,
P =pE " +6.°.S; +S,) - pr, (13)

and this is used through the hydrostatic equation to produce a compensating model “pressure”
field,

pi(2) = [ —p}gdz. (14)

where z is depth, H is the depth of the ocean and g is the gravitational constant. The pressure
at the bottom of the model is kept the same during this calculation. Also, the model’s potential
temperature and salinity fields are not altered during this operation.

The corrected pressure field is now used in the horizontal momentum equations which can be
written in the continuous case as

" /9t +Tw™)— f" =—a(p™ + p*)/dx+97_/ 0z, (15)
ov" /9t +T(v" )+ fu" =—-d(p" + p’)/dy+97,,/ 9z, (16)

where (x,y) and (u,v) are the eastward and northward coordinates and velocities respectively,
(z,,7,) are the corresponding components of the wind forcing and I' represents an advective
operator. The extra pressure gradient terms on the right hand side of these equations will act in
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the opposite sense to the pressure gradients resulting from the nomal assimilation increments.
Where the response of the model was to oppose the assimilation in the original scheme, the
relatively small bias correction increments to the pressure field will slowly build up until they are
of significant amplitude. The resulting pressure gradients will oppose those imposed by the
original assimilation increments as in Fig. 10(c), restore the balance between the pressure
gradients and the surface wind stresses, and hence prevent or at least dampen spurious
circulations. Where the model responds “positively” to the assimilation, re-inforcing its
increments, the time-mean assimilation increments will be small and the response to the
additional pressure field insignificant.

The compensating field p® is referred to as a pressure correction because it is a scalar field which

is related to the temperature and salinity bias fields (11) through the density and hydrostatic
equations (13) and (14). Strictly speaking however, when the main errors in the model system
are in the wind stresses driving it, the vertical distribution of these momentum inputs into the

model (as discussed in section 3.2) dp®/dx in (15) should be interpreted as a correction to
d7,,/dz rather than the pressure gradient dp™ /dx .

As the pressure correction method only changes the pressure field in the model’s horizontal
momentum equations, it is fairly clear that systematic errors in the wind stress curl will not be
“corrected” by the technique; i.e. the model will not converge to the true solution when there is
a time independent error in the wind stress curl (see sub-section 5.2). In mid-latitudes it is
arguably an advantage to use a pressure correction field which will generate mainly geostrophic
and non-divergent velocities. Also it may be that when only observations of tracers and surface
height are assimilated a suitably chosen scalar correction field is sufficient to dampen any
unphysical motions generated. This topic is discussed further in section 6.

5. Convergence and stability analysis for method applied to Shallow Water
Equations

Much understanding of equatorial dynamics can be gleaned from consideration of small
amplitude motions superimposed on a horizontally uniform stratified state at rest in a flat
bottomed ocean (Gill, 1980, 1982). Each internal mode of motion can be considered separately
and is governed by the shallow water equations (SWEs) in which the effective depth H. depends
on the vertical mode number (Gill 1982) and the surface height, 7, corresponds to the amplitude
of the density perturbation in this vertical mode. Thus the analysis of the SWEs is very relevant to
the assimilation of observations of ocean density near the equator.

Davies & Turner (1977) presented some analytical results on the convergence of SWE models to
the true solutions when fields of temperature and pressure data alone are nudged into them.
Section 12.8 of Daley (1991) provides a useful summary of results on a f -plane. To make the
algebra tractable full fields of subsets of the model fields are assumed to be available for
assimilation and are simply nudged pointwise into the model fields. Here we suppose that the
wind stress forcing is in error and that the model equations are otherwise perfect.

In sub-section 5.1 the pressure correction method is applied to the SWEs and a set of equations is
derived for the evolution of the errors in the model fields. The following sub-sections analyse the
solutions of this set of equations on the equatorial B-plane. Stationary solutions for stationary
forcing are discussed in 5.2 then the energetics in 5.3. The dispersion relation for solutions in the
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absence of forcing is derived in 5.4 and analysed for the pair of roots corresponding to gravity
waves in 5.5. Results for planetary and Kelvin waves are stated in 5.6. The additional set of slow
wave solutions arising from the new variable, h, is considered in 5.7. In order to complete the
analysis, particular solutions with time dependent forcing by errors in the wind stress are
required. These can be constructed using the ladder operators exploited in Gill (1980) but the
details are not presented here.

The analysis of the solutions for an f -plane is a simple extension of section 12.8 of Daley (1991).

The solutions for stationary forcing differ significantly from those for the -plane (see sub-section
5.2). As the solutions for a f -plane have a curious character and are of little relevance to the

problems described in section 2 they are omitted.

5.1 Statement of pressure correction equations

As is standard in control theory methods, we write down the model equations with the model
variables denoted by a superscript m and suppose that a related set of equations holds for the
true fields which are denoted by the superscript t. The true fields are thus supposed to satisfy:

ou'/dt— f' =—gdn'/dx+7, 17)
' /ot+ fu' =—gon' /dy+T, (18)
on'/dt+H,(du'/dx+dv' /dy)=0 |, (19)

where f is the Coriolis parameter. Equations (17) and (18) are the eastward and northward

components of the momentum equations and (19) is the continuity equation. We will set
f =By, which is a good approximation near the equator.

The equations governing the evolution of the model as it assimilates full fields of surface height
data using a nudging method with the pressure correction method are:

ou™ 19t — A" =—gdl dx(n" +h)+7" (20)
W3t + fu" =—gd /(" +R)+T" 1)
on™lot+em™ —n')y+ H,(ou™/dx+ov"/dy)=0 |, (22)
onldt—y(m™-n')=0 . (23)

Here h is the surface height correction field (“the pressure correction” field for this model). Full
fields of surface height are assimilated into the model using a nudging coefficient ¢ in (22).

Similar assimilation increments proportional to 7™ —#' are made to h, but with coefficient —y .
We will take y,e>0and y<e€.

Denoting the difference between the model and true fields without superscripts,
y"-y'=y for y=uvnr,7, (24)

and subtracting (17)-(19) from (20)-(22) respectively one obtains
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ouldt— fv=-gd/ox(n+h)+t, , (25)
dv/ot+ fu=-gd/dy(n+h)y+z, , (26)
dn/ot+en+H,(du/dx+dv/dy)=0 |, (27)
on/d~m=0 . (28)

5.2 Stationary solutions for stationary forcing

When y#0, (28) implies that n=0 for any stationary solution and (27) then implies that
du/dx+dv/dy=0. For the 3D problem mentioned at the start of the section this implies that the
vertical velocity is zero. Thus when the pressure correction method is used the stationary
solutions for the density, pressure and vertical velocity fields all match those of the true solution
even when the solution is driven by incorrect wind stresses. This is to be contrasted with the
stationary solutions obtained in the absence of pressure correction (y=0) for which none of these
fields match the true solution

When y#£0, the curl of (25) and (26) determines the error in the northward velocity driven by the
error in the wind forcing:

—-Bv=07,/0x—07, /3y . (29)

du/dx+av/dy=0 then determines du/dx and prescribing u=0 at the eastern boundary fixes u. The
divergence of (25) and (26) gives an elliptic problem for h,

g(0°/0x* +0%/dy*)h = f(dv/dx—0du/dy)+07, /dx+0d7,/dy , (30)
which can be solved using boundary conditions on the normal derivative of h.

5.3 Energetics

An energy equation for (17)-(18) can be derived:

Vza/at{He(uz +vi)+g(n+h)’ +1/2th2} =
Y (31

Hux-gHNV, [u(n+h)]-ge-yn

The first term on the r.h.s. of (31) is the work done by the wind stress. The second term is a flux
which given suitable boundary conditions is zero for the domain integral of the energy. The third
term is a sink of energy. The last term on the l.h.s. can be viewed as an additional term in the
energy, the energy of the pressure correction field. In the absence of wind forcing this energy
norm must decrease until n and hence h is zero everywhere. The important point is that there are
no spurious sources of energy.

5.4 Dispersion relation for homogeneous solutions

Various methods can be used to eliminate u, 7 and h from (25)-(28) to find a single equation for
v
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iza/at(a/ame)(azv/azz+fzv)—(a/amy)(v:av/am/ﬁv/ax)=0 . (32

ce
See Appendix A for an outline of a derivation. Equatorially trapped solutions of (32) which are
periodic in x can be sought in the form

v=v(y)expilkx—ar) . (33)

Four solutions should be obtainable for each k They decay to zero if and only if the imaginary
part of @ is negative. By introducing a change of variable for y one can re-cast (32) into a
standard form. The new variable is complex-valued so we denote it by Z. With the following
choice Z is non-dimensional

y=az |, (34)
5) 0

a‘*:%(“”ﬂ , (35)
B\ w+ie

(32) can then be re-written in the standard form
o 2, 2K o
a*BPA=w* -a Bk + Bkl w) . 37)

As Z% is an analytic function, (36) is satisfied in the complex Z plane by its analytic function
solutions. The standard solutions,

v=exp(-Z?/2)H (Z) , A=2n+1 , n=012,.. , (38)

where H, is the nth order Hermite polynomial, are bounded as |y|— <o, provided Re{c’ }> 0. If

Re{c’ }< 0, the solutions which are bounded as |y| — o are

v=v,exp(Z /DI (Z) , —A=2n+1 , n=012,. . (39)

Equations (35), (37) and (38) or (39) together define w.

Solutions for w are sought below assuming that the timescales of ¢ and/or ¥ are slow compared

with the timescales which otherwise determine @. The typical values of the dimensional
parameters involved in the problem are S=2x10"m"'s", ¢ =3ms", and
k=10"m™. Combinations of these which have the units of a frequency are 8/k=2x107s",
(B1c,)"* =8x10"°s™" and kc, =3x107s™". The non-dimensional ratio
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_ @n+D)Be,
r= & 6(2n+1). (40)

is an important quantity. In practice r is quite large, particularly for long zonal wavelengths and
large values of n. The assimilation scheme described in section 2 uses a time window of 10 days

(on either side of each observation) and the rate £ =1/10day™ =107°s™". ¢ will be considered to
be a small quantity relative to these other quantities or to the frequency w,of the original
solution i.e. £/w, < 1. The rate y is expected to be 3 to 10 times smaller than & Thus it is more
relevant to take y to be the only small quantity in some cases.

5.5 Gravity wave solutions

The standard approximation to the dispersion relation for gravity waves is to neglect the term
Bk/@ on the r.h.s. of (37). Using (38) the dispersion relation is:

W =a* B+ n+ Dt pr . (41)
When £ =y =0 the solution has
@} =(ke,)* +(2n+1)Bc, = (kc,)’(1+71) . (42)

Writing @ = @, + @, +...with @, = O(€) we expand (41) about the solution (42). To simplify the
algebra we introduce § defined by

1+8)=a’Blc, . (43)

The dependence of §d on @, will be calculated shortly (in (45)). Substituting (42) and (43) into
(41) one obtains

20,0, = 8(ke,)’(2+r). (44)
From the definitions (28) and (36)

w+iy 26 = —(a)0+c:),,)(e—y)2
w+iE (w,+w,) +(e+w,;)

(1+38)* = (45)

where the subscripts r and i indicate the real and imaginary parts of a quantity respectively and
the second equality is the imaginary part of the first equality. Thus combining (44) and (45):

2+r
(1+r)

—~
~—

4wlr = _(8_}/)

(46)

In the absence of any forcing the gravity waves decay towards the true gravity waves at a rate
within a factor of 2 to 4 of €—.

16 of 27



Assimilation of data into an ocean model with systematic errors near the equator \_/'\-.
ﬁ

5.6 Planetary and Kelvin wave solutions

For planetary waves the standard approximate form of the dispersion relation neglects the term
equal to @®on the r.h.s. of (37). A very similar calculation to that for gravity waves gives

_-Blk
= a+r

N E=
and “’“:‘7;“1“51 . (47)

W,

Note that the assumption £/ @, <« 1is unlikely to be realistic for moderately large values of r.

It is characteristic of Kelvin waves that v=0. The component of the momentum equation parallel
to the equator and the continuity equation determine the motion and seeking solutions periodic
in x and t as before one finds:

(miw+e)w* =k’ (~iw+y) . (48)

There are three roots which for small € and ytend to ay=0 and a)g = (kce)z. The root w, =—kc, is
excluded because its solution is not bounded for |y| — c=. The root with @, = kc, for smail £and

v has w,, given by (46) with r=0. The root ax=0 is discussed in detail in the next sub-section.

5.7 Additional slow wave solution

When ¢ =y =0, n+h=u=v=0 is a solution withw =0. We will explore this solution for small
values of y assuming that € =0(1).To find the structure of the solution it is necessary to work

through several orders in y of the dispersion relation. It transpires that it is best to work with the
full dispersion relation (37). After squaring and using the definition of « in (35), (37) can be
written in the form:

A (w+ie)(w+iy)w*pic = (a)+i8)2

(49)
—20°c? (w+ie)(w+iy)k(wk+ B)+c* (o +iy) k* (wk + B)

Writing @ = @, + @, + @, +... where @, is of O(}), and assuming that fc,and (kc,)’ are of

similar magnitudes to 0(ﬂ2cfy2) (49) gives

W, =—iy . (50)

Thus this root decays at the rate 1/y. To find the structure of the solution we examine (49) next to
O(,Bchy“) which gives
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corce

izisa)(—' 2022 _ 4,.2p02.2 _‘“i/lzgyz
L (=iy) B =c,w, Bk :wz—Tzcz— . (€)))

e

To this order the solution does not decay away from the equator because

cl (w+iy Ay?
a“:ﬁz( ie ) R =)

so o is a pure imaginary number and (38) and (39) describe functions oscillating in y like
exp(ikcey2 //1}/). To find the scale on which the function decays to zero (49) must be examined

to the next order O(ﬁchyS) which gives:

2., iy’A* | A€
o= {A*-1}- e L e (53)

Note that @,, =0 for the mode with n = 0. Except for this case to O(y*)

ﬂZ

where p; and p; are positive constants of O(1).

. ~-—2=-ply’(+ip,y) (54)
w+1E

a“—i w+iy\ iw,to, ©, o, _
ig-y) (@-%) &

The value of a*is the same whether solutions (38) or (39) are being calculated because only 4°
appears in (49). For each solution only one choice for the sign of the square root of a* will satisfy
(37). From the position of A in (37) it is clear that & will be the same for both solutions (38) and
(39). Then if Re{a*} >0 solution (38) will be bounded and if Re{a*} <0 solution (39) is the
relevant bounded one. The meridional structure of the solution is of the form

=7 w2 ex iy’ Sk w2Vl . (55)

exp—5 = €x p

P— p =€Xp
o —ipy(1+ip,y/2) 12v4 2p,

6. Discussion
The pressure correction method has some similarities with the assimilation of anomalies from

climatology. It is simplest to discuss this in terms of the SWEs as studied in section 5. The
observational increments in the anomaly assimilation scheme are given by

An='-7")-("-7m), (56)

where the overbar indicates climatology. Thus the equations for the climate anomaly assimilation
scheme corresponding to (20)-(22) are
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ou™/dt— " =—gon" /ox+1, (57)
v /ot+ fu" =-gan" /Ay +1), (58)
on"lot+e(n” -7" -n' +7')+ H,(0u™ /dx+v™ /dy) =0. (59)

Following DDS let an unbiased estimate of the surface height be denoted by#™. For the climate

anomaly scheme 7" =n" +77' =71 . Writing h= 7" -7 and assuming that h is independent of
time one obtains

ou™ /3t — " = —gd/ x(Fi" +h) +7", (60)
W™ /3t + fu" =—gd /(A" +h)+ T, (61)
ofi" 1ot +e(fi™ —n')+ H,(Qu™ | dx+v" /dy) =0, (62)

which is identical to (20)-(22) when 7" =7n™ and k= h. Thus the climate anomaly and pressure

correction schemes are formally identical. There are however two important differences between
the two schemes. Firstly, the pressure correction method builds up the correction field
interactively whilst assimilating data and so can respond to any changes in the model biases.
Secondly, the surface height and tracer fields in the pressure correction method will converge to
the true fields whereas those of the climate anomaly scheme will converge to biased fields
(whose climatological means equal those of the model integrated without data assimilation).
This is an advantage for the pressure correction when it is applied to coupled ocean-atmosphere
models because its surface temperature analyses will be unbiased and hence suitable for
interaction with the atmosphere model.

The three bias correction methods summarised in section 5(b) of DDS all differ from our method
of pressure correction. Their final method, "on-line estimation with feedback", appears to be
closest to our scheme conceptually but in their formulation the bias field for the change over one
time-step of the surface height, &, is added directly as a correction to the surface height field.
Hence, if the data assimilation is univariate and only surface height data are assimilated, their
scheme will only make a bias correction to the evolution equation (59) for the surface height
whereas the pressure correction scheme would amend only the momentum equations (57) and
(58). Their other "on-line" method appears at first to be similar to an "interactive" form of the
anomaly assimilation given by (57)-(59) in that the forecast model uses a biased state vector
(DDS (100)) as in (57) and (58) but the analysis step (DDS (105)) draws the biased state towards
the true state (as in (62)) rather than towards a biased state (as in (59)).

For seasonal forecasting with coupled models, appropriate specification of the decay of the
pressure correction field during the forecast period will be necessary to reap much benefit from
the pressure correction scheme. The best approach will depend on the way in which the analysis
stage has been performed. If the surface fluxes used in the analysis stage do not originate from
the atmospheric model used in the coupled forecasts, the biases in the two stages will probably
have different characteristics. In this case, the bias field should be decreased to zero fairly rapidly
in the forecast. The only advantage obtained by using the pressure correction method would be
that the initial analyses are more balanced and so the model may take slightly longer than
previously to drift to the biased state given by the new forcing fluxes. If the atmospheric model
used in the coupled system supplies the surface fluxes during the analysis then the model biases
are more likely to be similar in both stages, though assimilation of data into the atmospheric
model could clearly alter the characteristics of its biases. Even if no data is assimilated into the
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atmospheric model, the bias field is still likely to vary significantly over seasonal timescales and
should probably be allowed to decay towards zero over a period of 3-12 months.

This paper has only discussed assimilation of temperature and salinity observations. The
extension of the method for use with the large amount of altimeter data which is currently
available is an area for future work. These data would be important for the application of the
pressure correction method away from the equator, especially in the western boundary currents
where coarse resolution models have significant biases. It may also be useful to attempt to
estimate biases in the horizontal component of the stress tensor which has non-zero curl.
Equation (29) suggests that it may be possible to use northward velocity observations to make
corrections to this component. The application of the pressure correction method to more
sophisticated data assimilation methods, such as the various approximations of the Kalman filter,
is another area which might be examined in the future. The ideas presented here might also be
adapted for use in atmospheric models with significant biases near the equator.

7. Concluding summary

It has been shown that simple assimilation of thermal profile data from the equatorial Pacific (e.g.
the TAO array of moorings) into an ocean general circulation model can result in unrealistically
strong vertical motions (figures 4-5) near the equator which counteract some of the increments
made by the data assimilation scheme and lead to similar increments to the model state being
repeatedly made by the assimilation scheme (figures 2-3). Figure 9 illustrates the "equatorial
bonfire" dynamics of the response of an ocean model to unbalanced density increments near the
equator. Figure 10 illustrates and section 3.2 discusses how difficulties in representing the
momentum balance in the equatorial oceans can lead to an ocean state with a biased density
field and hence unbalanced density assimilation increments.

Section 4.1 outlines the general theory of augmenting a model's state vector by a bias state
vector and estimating the bias state vector by data assimilation methods (see particularly (7) and
(9)). The pressure correction method is presented in section 4.2 (equations (10)-(16)) as an
application of the general theory which, motiviated by the dynamics discussed above, makes
specific choices for estimates of the covariances between errors in the model state and the model
bias. In particular it assumes that the biases in the model equations are confined to the
momentum equations and amends them only by addition of a pressure gradient bias field.
Section 5 analyses the characteristics of the method when it is applied to the shallow water
equations on a S-plane with incorrect windstresses driving the model and full fields of surface
height available for assimilation. The model errors are shown to evolve according to (25)-(28)
and the errors in the unforced (gravity, Rossby and Kelvin) waves are shown to decay with time.
The first paragraph of section 5.2 establishes that time independent erroneous wind-forcing does
not generate erroneous surface height or horizontal divergence fields even when there are errors
in the curl of the wind stress. Section 6 relates the method to assimilation of climate anomalies.
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Appendix A

Reduction of modified shallow water equations to a single variable

To derive (32) from (25)-(28) we firstly eliminate u. From (25) and (26)
O*v/0r* + fPv=—g (0% /dyor(n+h)~ f3/0x(n+h))=—gA . (A1)
The curl of the momentum equations and the continuity equation also give
H,(V;dv/0t+ fv/ox)=—(d/0t+€)(d’n/dydt - fon/ox)=—B .  (A2)
From the definitions of A and B introduced in (A1) and (A2), and (19)
0/0t(d/0t+€)A=(d/dt+y)B . (A3)

Equation (32) may be derived by substituting expressions for A and B from the l.h.sides of (A1)
and (A2) into (A3).

Appendix B

Results of applying pressure correction method to FOAM

The integration assimilating data described in section 2 has been repeated using the pressure
correction scheme as described in section 4.2. The weighting of the error covariance described in
equation (12) is chosen to be (i) & =0.1 and (ii) &« =0.3. Figure B1 (a) and (b) show the time
mean potential temperature fields for these two integrations in a form which enables direct
comparison with the results discussed in section 2. Figure 1(b) and Figs. B1(a) and (b) are
generally in quite close agreement — the thermocline still contains the tight temperature
gradients - but there are discernible differences particularly below 100 m depth near 90°W. Table
B1 presents statistics describing the fit of the analyses to thermal profile observations within 5° of
the equator from a three-month period during the second year of integration just before the
observations are used (forecast) and at the time of validity of the observations (analysis). The
second column of table B1, labelled o=0, presents values for the standard assimilation
integration without pressure correction. The values show that the thermal fields from the
pressure correction integrations fit the observations more closely at 50 m depth than the
standard assimilation. At 200m depth, resuits from the three integrations are very similar.

The time mean potential temperature increment fields from the three assimilation runs along the
equator in the Pacific are shown in Fig. B2. It is clear that the temperature increments are much
smaller in magnitude for the runs with the pressure correction included than for the standard
integration shown in Fig. 2, and are constrained to the top 150m. The maximum values for the
pressure corrected runs are about 2°C per month compared with 4°C per month for the run with
normal data assimilation. Figure B3 shows a horizontal view of the temperature increment fields
at 50m depth for both the pressure corrected integrations. This shows that the increments are
still concentrated near the equator.

21 of 27



Assimilation of data into an ocean model with systematic errors near the equator %

o

| Depth (m) a=0 o=0.1 a=0.3
Variances of (67 —8°)
47.85 1.10 0.98 0.85
203.7 0.72 0.72 0.75
Variances of (8° - 6°)
47.85 1.00 0.88 0.77
203.7 0.67 0.64 0.68

Table B1. Variances in the region 140°E - 80°W, £5°N/S of (forecast — observations) and (analysis
— observations) of temperature for the period May — july 1996.

In Fig. B4, the annual mean vertical velocities from the second year of integration at 250m depth
are presented. The pressure corrected runs both have significantly smaller vertical velocities at
this depth than those for the run with normal data assimilation. The magnitude of the velocities
in the pressure corrected integrations are now comparable to the control run without data
assimilation, though the locations of upweliing and downwelling are different in all four
experiments. Figure B5 shows that the large annual mean vertical velocities below 150m depth
which were present in the run with normal data assimilation at the 110°W cross section have
been eliminated.

Figure B6 presents zonal velocity cross sections along the equator in the Pacific for the pressure
corrected integrations. The maximum speed in the equatorial undercurrent and increased
eastward penetration of the current in both pressure correction integrations are significant
improvements over both the control and standard assimilation integrations. The surface currents
are now of similar structure to the control, with the reversal of the surface currents in the run
with normal data assimilation having been eliminated. The meridional structure of the horizontal
velocities is presented in Fig. B7 (a) and (b) which shows that the general structure of the
currents are similar in the pressure corrected runs to the normal assimilation integration, the
main differences being a weakening of the main equatorial undercurrent and an extension of the
current further to the east.

Figure B8 displays the annual mean bias correction field, 8°¢, at 50m depth for the second year
of integration. The field for 0=0.1 has relatively modest values (typically smaller than 2.5°C) and
the largest values are within 15° of the equator to the North and South. The bias correction
thermal field for 0=0.3 has a somewhat similar structure to that for a=0.1 but much larger
amplitudes. A vertical cross section of these fields is given in Fig. B9 along the equator. This
shows that most of the field is concentrated in the top 200m and is sloping down towards the
west, the values being positive above the thermocline and negative below it.

The annual mean pressure correction field, p®, has been calculated using equations (13) and

(14). The gradients of this field in the x and y direction at the surface are shown in Figs. B10 and
B11 respectively. These quantities are the mean correction to the momentum equations (15) and
(16). This shows a surprising result in that the gradients in the y direction are larger than those in
the x direction. This is unexpected because the wind stresses are largely zonal in the equatorial
Pacific and so the errors were expected to be mainly in the zonal direction. This result could
indicate that processes other than the vertical mixing of momentum are not well represented in
the model, such as the meridional transport of momentum.
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In summary, within the equatorial waveband in the Pacific, the assimilations using the pressure
correction method fit the thermal observations better near 50 m depth, have smaller time mean
vertical velocities near 200 m depth, require smaller time mean assimilation increments at these
depths and have a better equatorial undercurrent than the standard assimilation scheme. The
gradients of the pressure correction field show that the assumption that most of the errors in the
momentum equations come from incorrect wind stresses and their parameterisation in the

vertical is not necessarily very accurate as there are might also be systematic errors in the
horizontal transport of momentum.

Depth (m)

Figure B1. Annual mean (2" Year) potential temperature (°C) cross-section along equator
between 140°E — 90°W: (a) pressure correction, o= 0.1 and (b) pressure correction, a.= 0.3.
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Figure B2. Annual mean (2" Year) potential temperature increments (°C month™) cross-section
along equator between 140°E-90°W: (a) pressure correction, oo = 0.1 and (b) pressure correction,
a=0.3,
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Figure B3. Annual mean (2" Year) potential temperature increments (°C month™) field at about
50m: (a) pressure correction, o= 0.1 and (b) pressure correction, o= 0.3.
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Annual mean (2™ Year) vertical velocities (cm s7) field at about 250m depth: (a)

pressure correction, o= 0.1 and (b) pressure correction, a. = 0.3.
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Annual mean (2™ Year) vertical velocities (cm s™') cross-section across equator at

110°W: (a) pressure correction, o= 0.1 and (b) pressure correction, o.= 0.3.
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dbxzc: totol u velocities (cm/s) along equator
B AT o

Depth (m)

Figure B6. Annual mean (2™ Year) zonal velocity (cm s™) along the equator between 140°E-
90°W: (a) pressure correction, a.= 0.1 and (b) pressure correction, o.= 0.3.
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Figure B7. Annual mean (2™ Year) total velocity (cm s™) field at about 140m depth: (a) pressure
correction, o= 0.1 and (b) pressure correction, o= 0.3.

Figure B8. Annual mean (2™ Year) bias correction field (°C) at about 50m depth: (a) pressure
correction, a= 0.1 and (b) pressure correction, o = 0.3.
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Figure B9. Annual mean (2™ Year) bias correction (°C) along the equator between 140°E-90°W:
(a) pressure correction, o= 0.1 and (b) pressure correction, o= 0.3.
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Figure B10. Annual mean (2" Year) field of %: (a) pressure correction, o = 0.1 and (b)

pressure correction, a. = 0.3.
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b
Figure B11. Annual mean (2" Year) field of ZL: (a) pressure correction, o = 0.1 and (b)
y

pressure correction, o= 0.3.
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