METEOROLOGICAL OFFICE

26 OCT 1997

LIBRARY

MET O 11 TECHNICAL NOTE NO 257

A PRACTICAL AFFPROXIMATION TO
OFTIMAL 4-DIMENSIONAL OBJECTIVE ANALYSIS

by

ANDREV C. LORENC

APRIL 1987
revised SEPTEMBER 1987

submitted to Monthly Weather Review.

~

Met O 11 (Forecasting Research)
Meteorological Office

London Road

Bracknell

Berkshire RG12 28Z.

This work was performed while the author was a visiting scientist at the
National Meteorological Centre, Washington D.C.

N.B. This paper has not been published. Permission to quote from it
should be obtained from the Assistant Director of the abave
Meteorological Office Branch.

FHAP




A FRACTICAL APFROXIMATION TO
OFTIMAL 4-DIMENSIONAL OBRJECTIVE ANALYSIS

AMDREW C. LORENC

Metecrcological Offices Bracknell RG12 28Z, England.

AFRIL 1987

revised SEFTEMRER 1987

submitted to Monthly Weather Review




ABSTRACT

HH

arm iterative fow-dimensiconal objective analy=1is scheme 1t
described. The method is derived by appraximating & variaticnal
algorithm which should give arn optimal four-dimensional analysis.

The camplete set of cperaticonally available observations, and

gperational analysls and forecast codes, are usead. Irm this the
seheme differs from most other studies cof  optimal e~

dimensional analysis, which make fewer approximaticns  in the
algorithm. but use simplified models and data.

The scheme was developed using the optimal interpolation
analysiss nonlinear normal—-mode initialization. and nested-grid
forecast model from the Regilonal Analysis and Forecast System of
NMC . Te these were added an approximate adjoint model of the
forecast. and a code to implement a simple descent algorithm.
Tests used the operaticnal cbservaticon database.

The scheme was successful  in producing a dynamically
consistent four—dimensicnal analysis which fit the observations.
without totally impractical computer costs. However Tor the one
test -ase studied. the forecast from the scheme’®s analysis was
slightly worse than that from the operaticnal analysis.

The tests highlighted scome deficiencies of the cuwrrent
operational analysis, initialization, and forecast codes. They
alsc indicated areas where further develapment of the scheme is
desirables in the adjoint forecast model and analysis error

estimaticn.




1. INTRODUCTION

The objective of this work is te try to ioplement, in A
practical environment. some of the fouwr-—dimensional analysis
thecry which has been developed thecreticallys, and tested in
simple  models. T  ervors introduced by a forecast over the
peviad spanming the cobservations are neglected, thern the
"optimal" analysis is defined by the three—dimensicnal s balanced,
cstate which simultanecusly best fits a background state, and the
chservaticns over a pericd of time, when forecast using the
standard model . The full sclution to this variational problem
has been derived and tested with a very simple model in  Lorenc
{1988) .

The aim here is to construct an  approximaticon to the
thecretically corvrect method. using if pessible existing programs
for  three—-dimensiconal analysis (3D0I), forecasting. etc. By
using the full cbservaticnal dataset available for coperational

forecasting, and the coperational forecast model. we hope to

demonstrate that the aschemne e capabhle cf practical
implementaticn. Compared to the "three—and-a-half" dimensional
analysis given by currently coperaticnal data—assimilation

schemes, & four—dimensiconal scheme should more corvectly use
tendency information in the cbservaticns. and be more readily
adaptable to the use of asynoptic data. We alsc hope to indicate
a way in which the current methods can be medified to become more
nearly four-dimensicnals without a disruptive sudden change to a
conceptually different scheme. By using availlable programs as

components in the new scheme, we will be able to switch to up-to-




which would cause the model forecast fields
fAs well as this. the method has potential

practical "spin-up”

successTul

from a three-dimensiconal analysis.
Thie sohemes Frés riect bean ceve loped

implementaticon in the near futurejg

rule that cut. One practical use might be to

consistent
diagnostic study.

A review of analysis methods for numerical
discusses the

which relationship between

Imterpolation (0I), constrained variational

e
v
problem of current operational forecasts.

the scheme will well fit the cbhservations

current computer

four—-dimensiconal analyses of research datasets.,

date versions as they become available, and to  transfer the
mathed easily to other mod allowing this research to proceed
in parallel with other developments. We aleo minimize the amount
of new code required. In particular all the handling. Srtivigs
selection, and spatial interpolation of observations, which take
the bulk of the effort in coding a practical analysils scheme, are
Eept wnchanged in the 3DOT component.

An  ldeal fouwr-dimensiconal scheme should be able to use the
tendency informaticn in cbservations. for instance observations
indicating that a low is deepening should generate upper flows

similarly deeper.
alleviating the
& 7

at the end

of the 40D analysis periocd with a forecast from  the begirnming.
This forecast will be consistent with the model s dynamics  and
physical parameterizations and can be extended into the fTuture.
avoiding some of the spin-up problems. in parameters like
convective rainfall. which ccocuwr when initializing a fTorecast

oy cperational
canstraints

produce dynamically

foar

weather predicticn.
so—called Optimal

miviimizaticn. the
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adiabatic perturbaticn form of the model. Many of the above
merticned approximations are anly valld for "balanced" fieldss;
the oconcept of  balance also provides wseful  information for .
constraining  the analysis. Section 9 discusses thilis aspect.
Secticn & sets cut the iterative proceduwre which resulits from all
the preceding discussion. This procedure might indeed have been
arrived at as & "common sense'" reascnmable thing toe doy  readers
ict interested in the mathematical justificabion may skip the
intervening detalled equations. Section 7 describes the test
scheme implemented wsing the operaticonal analysis and forecast
praograms. gives results from test analyses and forecasts for &
single case, and discusses how the approximations made have

affected results. Finally in section 8 we give our conclusions.

. BASIC EQUATIONS

4-D analysis, represented as a single vector.

Y cbservations, distributed in 4-Dy represented as a single

vechor.

t subscript indicating "true". hence:

# "true" value of x. chtained by projecting the true

atmospheric state onto cur finite basis for x.

Y "true" value of y. which would be cbtained from hypeothetical

ercror  free instruments. with the same rescluticon and

i
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K

K

1z

it

”ialemeﬁts-af W o

averaging characteristics as the actual instruments.

chserved data values.
subscript to functicn. indicating that 1t can be nonlinear.
generalized interpolation  from w-representation  to ¥y

representation. such that if we have an estimate x of % »
1 t

then y =K (3 ) is the best estimate of ¥y
i m i it

Matrix of partial derivatives of K  with respect to the
T

elements of 3.

3-D analysis at the initial time covered by the 4-D
representation X with the same space-representation.
forecast model. used as prognostic conStraint on  permitted

values of x. by the relaticnship n=lE (W)
2 . e
Matrix of partial derivatives of G with respect

\
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 the transformed variable v.

background fileld for wy the best available estimate of w

t
giver o prior knowledge. without wsing vy
(18
adjoint. Hermitian transpose.
*
background error covariance matrix. B=<i(w -w J(w ~w ) =
= o
*
chservation error covariance matrix. O=<{y -y ily -y ) =*
ok o ot
representativeness error covariance matrix.
*
E=ddl (% Y=y YK (% )=y ) ¥
T ke t (R t
=]
transformed control variable. v=B {w-w )
I
iteration index. E.g. w is the best estimate of w at the
1 t

PTth iteration.
difference of curvent best estimate from observed values.
dy = y —y = K (x )=y = K (6 (w )=y = K (G (w +B v ))-y

i 3 i | C Rt o Tt | < [ e i (<

penalty functicony whoese minloum defines the "best" analvsis.

Y

penalty functicon equivalent tO'J(Q)g: expresseB in te;gsr afig e




and representativeness error distributions.)

b subscript which when applied to 2w or v denctes the

background pricor estimate of the best analysis, and when

applied to penalties J or L denctes the component of the

penalty measwring the fit to the background.

2 differentiaticon of function by argument.
m subscript distinguishing time-slice. (It is convenient for

mariipulaticon of  the 4-D representations 3 and v to

partition them intoc a finite number (D af time—-slices

dencted by subscript m).

i

amccthing operator  for the diagenal matrix of normalized

analysis errars.

T ricemivial validity time for observations in time-slice m.

m

tonb f are matually exclusive subscripts. and always precede 1

(iteration) and m {(time-slice) which are added in that order.

b. Fenalty functicon and derivatives

Lorenc (1988) showed thats, 1if Gaussian errvor statistics are
assumed. and errors in the forecast model duwring the time spanned

by the current cbservations are lgnored,. the optimal analysis can



be obtained by minimizing & penalty function J with respect to
the three-dimensicnal field (w) at the beginning of the current
periad. The penalty function measures the deviation dy from the
chservaticons of a forecast from w. plus the deviation of w from

the background information. (In secticon % below we discuss an

additicnal constraint that w be balanced.)

dy = K (6 (w)) — ¥y (1)
i IR Ci
¥ =i #* =1
Jlw) = dy (Q+F) dy /2 + (w-w ) B (w-w ) /& (&)
W] (]

We uwse an iterative descent algorithm to  search  for this

Ml mum . Subscript 1 is used to indicate values at & particular
iteratian. As explained in Lorenc (1988), 1f we are to use only

a few iteraticns of a simple descent algorithm, and not deviate
too  Far  from  the backgrouwnds it is better to use a descent
algorithm derived in terms of a transformed variable v rvather
than the basic variable w. This makes differences between the
analysis and the background smoother. rather than generating
sharp spikes to fit clesely the cbservations. In the appendix we
set out the equaticns defining the terms which will be used  1n
such a descent algorithm. Note that. despite the use of ¥
conceptually to derive the equations. the fields need never be
represented in terms of v. Indeed this would be impracticable
since we do not have a convenient rvepresentation for the
background errcr covariance matrix B or its inverse. which enters
in the transformation from w to v:

=1
v = B (w -w) (3)



We call the penalty function in terms of  this transformed
variable L. Expressions for L and its derivatives are given 11

the appendix.

Go BOSIC DESCENT ALGORTTHM

Fer  the approximately guadratic penalty functions  that  we
assume above, if all the terms above are known,s the best
algerithm for finding the minimum of the penalty function is that
of Newton: IF v is an approximate minimum of L, then a better

i
approximation is given by

v =y - {L77(y )F LTy ) {4
i+1 i i i

=

If this is accurately evaluated, the transformaticn from w to v

has no effect. We shall however introduce some approximations
- 1 8

belaws which make BIL" (v )73 diagonal. This can only be

, . 3 : iR A e

justified for the transformed equaticns, and gives the iteration

some of the properties af:ﬂa“preCpnditiohed-rﬁteepéiﬁ

algorithm, sc the transformation of variables is importa




3. USE OF THE THREE-DIMENSIONAL ANALYSIS FROGRAM  3DOI

a. USE OF

ERROR, AND FIT OF OBSERVATIONS TO GUESS

The fouwr—-dimensiconal analysis problem is difficult to handle
in practice  for operaticonal resclutions. Howsver  there is

cansiderable experience with a reasonable approximation to  the

equivalent three-dimensional  problens the e called optimal
interpolation method (01). At time T O gives an approxximate
in

miviamum fors

¥* -1 * -1
J (x) = dy (0 +£ dy + (% -x ) B (x -x ) (&)
mom im m m im m b m  bm
8 1 assumed linear. so the minimizing fField 2 1s glven
Tm am

explicitly by

= = = T Py ) b S 3 {72

'
H
I
=2
i
s
H
~
=
+
o
~
g
o
+
i
~r

d ( G R (SO R 3R DR € L
am  bm m mooom m m m o m cm  nim bm

We call the programs for doing this the 3DOI. They actually use
the equivalent form (Lovenc 1986):
% @ g

- SRR OB R SR SR i) GV T O ) $591)

am  kim (i i M m m c o vim bam
They approximate this large matrix inverse problem by many
smaller ones. each for a small selection of the data, and each
providing only a few elements of the analysis increment vector
W e
am bm

3D0I  programs also usually calculate the estimated analysis
error variance; the diagonal of A

m

11

it



B = (x =-x Yy -x )
m A tm ain tm

= (K (0 +F 3 K + B (107

Or else they  calculate  the normalized error  variances; the

diagenal of A divided by the diagonal of B.
m
Thirdly. since they calculate all the cbservation increments

dy {defined as vy -k (3 1)s  they can readily calculate the
m como vim bm
cbheservation pernalty J for the backoround field ;.
m i
It instead of the background field 3 » we feed such a 3DOI
b m
pragram with the cuwrrent best estimate x fraom an iteration of a
1m
four—dimensional analvsiss then it will give us estimates of the

chservation penalty for 3«  and expressicons invelving its first
N
and  second  derivatives. Usirng dx to  dencote the analysis
fh
increment from the 3D0I program, we get:

s ~1
6 ST 0% e Wl i .7 (0 +E )rdy (11
i im 1 Mo 1m
# £, =i =1 * vk
R e G A R e S T ) : B ) cly ¢1E)
m iy m om it m mm im

and the (normalized) diagoenal of A .
m
b. AFFROXIMATIONS TO COVARIANCES

Our intenticn is to use a 3DOI program to calculate the values
just described, as & component of an iterative procedure fTor
finding an approxximate minimum to Liyv), ocuwr four-dimensional
penalty function. We need first to  justify 'some further
approdimations  in owr handling of B A and 6 » since we camot

ffi m
store  and manipulate these matrices for & full rvesclution NWF

12



mecde ]l . Let us  Tirst non-dimensiconalize 3 by a diagonal

- 4

normalization matrix 2. such that (£x) &x is a measwre of energy.

The normalized background error covariance is then given liy:

S ¥
& X =8 )V (% =8 ) 2
(] ¢ o) €
%

E i1s a matrix whose columns are the normalized elgernmades of the
packground error covariances and b is a diagonal matrix of ervor
energies for each mode. E is self-inverse. It both the truth
and the background are balanced, then a linearization of the

balance relationship leads to some of the elements of b being

MEATr Zerc . The same. unbalanced, modes should alsce then be near
fero  in vesults from the 3D0I programs. both in A and dx . e
m i

neglect these modes, and concentrate on  the balanced mocles .,

Applying the normalization to the linearized forecast model G «

m
and expressing it as a sequence of time-steps. gives
G|
- 2l Solith vt BEM E (13)
i 1 =1 o

It seems plausible to assume that the error structuwre of the
forecast background can be described as a random distribution of
energy among modes of the model. Fhillips (1986) suggested
equipartition of energy among Rossby modes. with random  phases.
If this is soy then the modes in E must be expressible as simple
sums and differences of the modes of My in complex  conjugate
pairs. If the partition of energy in b is equal within each

pairy then M and b will commutes:

b M=Mb (14)

l




Hemce B and G also commute:
m
BG =6 K (15)
m it

These assumnptlions are only valid fer  gpatially homogeneous
eriror distributions (ctherwise the random phase assumplticon above
is net corvect). I B has some spatial variability., for instance
From variations i1m observation density at earlier times., then we
are neglecting the advection of this structure 1n  the errors
during the forecast.

We need alsco to make some assumpticns about A . since the 0O
if
program  ocnly  provides  information  about  1ts  diagonal. The

correlatiorn structure of the analysis errors 1s & fTunction of

ohservaticon distribution. Where there are nce observations,
analysis errors are identical to background ervors. Where there

are obhservations. the spatial correlation of analyslis errors will
tend to dvop  toe  zero at  abowut  the observation separation
distance. We make the convenlients but rather gross. assumption

that the structure of A 18 similar to that of B. sc that

m
=1 =1
B & = a (1&)
fm i1
where a 18 & diagonal matvix made from the normalized ervor
m
variances calculated by the 0I program. The validity of this
assumpticn depends on the representaticon chosen for x. We are

not  at liberty to allow any arbitrary values for the elements of
A For instance B is often modelled (see section 7 below) using
the geostrophic assumption and a fixed horizontal correlation
structure. This determines the lecal relationship between height

and wind error varliances. Since we are assuming that the

14



analysis 1 similarly balanced., ard  has similar B
correlaticons. we  must enswre that the analysis ervor  variances
implied by a obey the same relaticonship. Thus  locally. the
elements of a for height and wind must be approximately equal.
The 3DOI estimates of normalized analysis error variance have no
such constraint; they allow large differences between the implied
correlation  structures of the analysis errors and the background
ErironTs. Thus before use in this approximate scheme as ©the
elements of g, these rnormalized analysis errors should be locally
averaged over height and wind, and spatially smocthed.

c. USE OF 3DOI RESULTS IN FOUR-DIMENSIONAL SCHEME

Using the above approximaticons, we can now use the results

from the three-dimensional analysis program in  the T o —

dimensicnal scheme. Note that we use the current best estimate

# as "guess" for the 3D0I., rather than the background field
im

# s+ s0  the actual three-dimensicnal analysis produced will not

bm
be an optimal combination of background and observations. Fovr

each time-slice m the 3D0I program gives us the contributicn to

the cheervaticon penalty J . the analysis incremerts (a and the
fm im '
normalized analysis error variance a . Using these we get:
m

= dy (i O e i) dy (17
im m m im




The first derivative of this is:

100

which with cur approximations is given by:

* =1
L "y ) = G & {199
1 i m i
Similar approximations  give an  expression for  the second
derivatbive:
* et
L. Al v ) o] [:J { & - I. )] _-i T {=2i)
fm o} i ] m

This is still impracticable for computaticn for large cperatlonal
models; we have to make & further approximation as to the effect
of operating on the normalized error matrisx by the linearized
forecast model G. We will make the gross approximation that this
can be modelled as a simple spatial smoothing similar  to  that

used in cbtaining an estimate of a from the normalized analysis

errar variances. We dencte this by § . Soc finally we get:
m

~
o
)
—

L. Ry ) = .5 (& - 19 ]
tm i {1 M

These eupressions can be substituted into a Newton iteration to

find the minimum of L{v), ocuwr four-dimensiconal analysis problem.

(Strictly: because we have ignored second derivatives of G in
n
our expression for L 77y we are using a Bauss—Newton algorithm).
m
If v is an approximate minimum, & better estimate v is given
i 1+l

by s

Yo



For ocwr  bhasic variable w the matrix B conveniently cancels.

givangs

N il
= - # ~i
W L \T‘% (& - LY} & L ¥ -C(Z G & di ) + w —w 3
144 i Zi- T M I i [} i
me== =
{23)

4. ADJOINT MODEL &

We have already assumed that the analysis we require can  be

expressed in terms  of

balanced. slowly VAT Y LTI modes.
Furthermore . ivi the arguments used to justify the cammutability

of B and G we have implicitly assumed that these nodes are

novmal.  and  the same for all the forecast timesteps M . Each
complex normal mode of M has asscciated with gt am coamplex
frequency W—il. so that mmultiplication of a state by ™ is
equivalent to muitiplication of each of 1its madesm by
*
exp({iw+lidt). Multiplication by the adjoint M 1is  thus
equivalent to multiplying each mode by exp((—i@+1)dt)? This can

be thought of as rurming energy conserving parts of the mescles 1
backwards. while retaining diffusion and damping terms. The

nonlinear model M can easily be modified to do this for its
im
dynamical terms, and for simple physical parameterizations such

as diffusicon and fricticn. We dencte this modified model by H .
* nim
Multiplication by the adjocint of the linearized model. Mg o can
m
thus be approximated by:

172




M m m i 1 m i ] VUL 1

Here k ie a small scaling factor cho so as  to improve  the
approsimaticn  we are meé ks i i using & perturbation to a

nenlinear medel instead of the Linearizad model. Theoretical ly

it showld be imfimitesimal. but in pract i ce becaunse of numerical

truncaticon errors in the computation af Ho a small finite value

# (8]
1is  used. This multiplication by M gives weighted increments
] *
valid at time T . Further multiplications by ™M etc. ares
M=l m—1 *
required to give the equivalent of multiplication by &G 3
m
weighted increments valid at the initial time of w. However »

because we are approximating a linear adjoint model s it 1s valid

to combine these further multiplications with those necessary Tor

the weighted increments from time T . and so ocn, so that all

the adjoint model integrations B can be implemented by a single
* m * * #

series of integraticns of M s «on0 M M AR |

] i1} m—1 1

5. INITIALIZATION

We have based many of the preceding approximations on  the
assumpticon that both the background and the estimates te  the
"hest" analysis should be balanced. The 3D0I program. although
it attempts to maintain a linear gecstrophic balance ta the
increments. does not necessarily ensure full balance. Neil ther
will cur approximated adjoint integraticn, nor the descent
algorithm for finding the state which minimizes L{v). Ik as
necessary therefore to include in the procedure a step which
explicitly ensures balance, either by nonlinear noarmal-mode

initialization. or some equivalent means.

1€



I an ideal optimal analysis scheme our prior Ercowledge that

the atmosphere is balanced should be wsed in the aria byl s This
Can he done linearly. through  the elgernmodes of B ey

monlinearlys  through  an additicnal penalty in the variational

minimizations for instance adding a factor proporticonal to the

mean square change during the first time-step of the forecast to
the pernalty functicrn J. This wouwld then lead to an  additiconal

term containing the adjoint of the forecast model in the
iterative analysis. However since we do not have the adjoint of
the model cperator, we canneot include such a nonlinear penalty.
Instead., hetwesn iterations. we initialize the new estimate w
1

using an existing nenlinear normal-mede initialization program.

This method of combining initialization with 3DOI in an iterative

analysis 1% a generalizaticn  of e uwnified analysis—
initialization techrnigue of Williamson and Daley (1983). Their

technigque did net include the background field except to start
the Tirset iteraticon., so that iterated indefinitely it tends to
the balanced field which Tits closest to the observations,
independent of the initial background. Ouwr new scheme does
include the background, so that in the degenerate case of a
single time-pericd. it will tend to the balanced field which fits
closest the cobservaticons and the backgrounds. with the relative

weight for each determined by the 3DOI.

19



&. ORGANIZATION OF THE ITERATIVE FOUR-DIMENMSTONAL

ARALYS TS

TION

The preceding equations and approximaticons lead to a procedure

fer  the iterative search for an approximate minimum to  Jlw) as
Ffollows:

1 Initialize the current best estimate w . to ensure balance.
i
2 Foarecast G (w ) to abtain the estimates at each time-—
im 1 im
peviod m=1 s

Y

Clear accumulators for the weighted increments, and welghts.

Loop back through the time-pericds m=N,1.-1

i Run  the 3D0OI program wsing AL QLESS. Calculate the
im

chservational penalty L (v ). the analysis incremant dx .

fm 1 m

and esmocth the normalized analysis error variance to gilve

&
i
2 Weight the analysis increment by the inverse of the
=1
normalized error variance., to give a 3
m m
3 Add this to the accumulated weighted increments.
ik
4 fAdd (& - 1) to the accumulated sum of welghts. Smocth
m

this with a spatial filter to model the effect of pre— and

pest-multiplying by the adjocint model matrix.

5 Add the accumulated weighted increments to 3+ initialize,
and integrate using the dynamically backwar;mmodel H to
get a field valid at time T . s

& BSimilarly initialize and bggtcast ¥ » and subtract fraom

im
the results of 5. to get accumulated weighted increments

valid at time T 5
m—1




. ”

4 Add  the forcing towards  the backgrownd. oy too Lhe
acocunuwlated weighted increments valid at time T .
1

S Add the weight (I) given to the background te the accumulated

sum of welghts

b Divide the accumulated weilghted increments by the accumulated

aum of welghts. and add to w  to give a new estimate.
1

3. FIRST ITERATION

T s

It seems natwal to start the i1teration procedure

<
[e=d
0

cutlined from the backgrournd valuse w . However, in order to save
W]
time. 1t is desivable to reduce the number of iterations required

by starting from the best avallable estimate. I¥ the rnominal

time T of the first time-pericd of observations is the initial
1
time at which w 1s valid. thern x is identical to w and &
i 1l i
better astarting estimate can be obtained by & conventiconal 3JD0OI

of the time-pericd 1 data, wsing the background w  as guess. The

t
30071 used in this way finds the W which minimizes

\

J olw )+T {w 1. or equivalently minimizes L (v J+L (v ). Hence
g e R | A | i i Bl
we have the relaticonship:

Using this enables us during the first iteration to omit the
calculation of these terms. That is, steps 3.1, 3.28. 3.3, for
the first time-pericd of observations, and step 4, which would
cancel with them., can be cmitted. The normalized analysis errar
a iz still needed, but this is available froem the 3D0OI done to
m;ke W Thus by performing a zeroth iteraticn which consists

1
sclely of the 3D0OI. we get a better guess for the first iteration

B




tionmal costy since we can omit that 3DOT from

at  ne omet ocompt

the ire

C. ALTERNATIVE Db

O of  the 3DOI programs and the approdimate  adjoint

Lo abpouat the

movcte Loy nE given uws  the following informa

cleay L veat 1 vees s

components of iy ) and tF

Lo (v ) i by adding the Lo (v ) Ffrom each 3D0OT.
1 a1
alicoer By lorein {19887

Lo {v ) Te urmkvoown . However
that this showld remain small for a few iterations
with v as conbrol variable.

L. Pl ) i3 ¢ ovERT approximately from the adjoint moacte: 1
integraticm.

L Tl 3 ismogiver by owomwo.
i ¢ i B
Vo) 1 approximated by the diagonal matvrix  of the
accumulated sum of weights. multiplied by B.
0 a5 ) is the identity I, multiplied by B.
I i
The Mewton descent algorithm is optimal if the  penaliy
functicon is near quadratics and if the Hessian is accurately
ki . We have some gross approximations in cowr estimation  of
L **y and the forecast model is nonlinear, making the penalty
.f'
function non-guadratic. The simplest modification toe the methaod
is the additicn of a step—length s, which has to be determined so
as to ensure that the method is converging.
=
v s e s R e Do L G (24)
141 1 1 i

This "damped" Newton method is globally convergent even for

e




non-quadratic penalty functions (Gill et al 1981). Tdeally the

step-length shouwld be chosen. using an  iterative search. Lo

@each main  iteraticon.

ensure that the pernalty function decreas
In  the example given in the next secticn, we have used this
mathody,  but with a fixed value for s initially chosen in
prelimivary tests to be 0.5,

imaticon to L7 as  worthless.

It we were to acpard oo

-
&
i

and instead used the identity matrix I as Hessians then the above
algorithm would become the method of steepest descent. which 15
Encwre o converge slowly. fvr dmprovement on this., which uses
infarmation about L and L7 remembered from previcus ilteratlions.
is  the method of conjugate gradients (Mavon and Legler 1987).
This method is related to limited-memory quasi-dMewton methods
(Gil1l et &l 1981). which take cwr approximaticn to LT as a Tirst
estimate of the Hessiana ard refine 1t in subsequent lterations
using differences between L7 at different lterations in a finite-
difference approximation to a second derivative.

7o EAFERIMENTAL TEST

a. DETAILS OF METHOD

Gs discussed in the introductions one objective of this work
was to use operaticnal datasets and programs as much as pessible.
in order to test the four—dimensicnal ideas in & practical
envircnment. The scheme which we chese to adapt was the Regional
Analysis Forecast System (RAFS) of the National Metecroclogical
Center (NMC), as cperaticnal during March 1987. This consists of

an optimal interpoclation (0I) analysis. nonlinear normal-made




initialization (NNMIY. and Nested-Grid Model (NEM) forecast. The

bracizgr e field for the analysis comes from a  &-hour forecast
from the aglobal data-assimilaticon system; it is interpolated i cm
a rhomboidal 40 spectral representaticn to the 180#460 longl tude-—
latitude. 16 sigma-level grid used for the hemiépheric analysis.

{ e 7 o Y

G oare given by DiMego (1987). It is an 0OI

Dataills of the analvs
scheme, multivariate in geopotential helght. and wind components.
Humidity is analyzed univariately. Height., wind. and humidity
data are used to calculated analysis increments at the forecast
model s sigma levels, but on a longitude-latitude analysis grid.
The height increments are converted to eguivalent temperature and
surface pressure increments. and the increments are added to the
background, which has been interpolated to the same grid. The
background error variances used in the analysis are estimated 1in
a simple fashicn from the data distributicons at  the previous
analysis in  the glebal data assimilation scheme, using 1its
estimated analvsis errors. They thus vary significantly between
data-sparss and data-dense areas. The height error correlation
ie modelled as a function of separaticon in horizental distance
and pressure. Wind ervor correlations are calculated to  be
gecstrophically consistent with this model. These estimated
error variances and correlations define cuwr  background error
covariance mabrix H. The programs which perform this analysis
are referred to collectively as the 3DOI.

The analysis is converted to & rhomboidal-80 spectral
representaticn, and initialized in & hemispheric nonlinear
normal-mode initialization (Sela 1980). The initialized field is

interpolated horizontally to the nested polar sterecgraphic grids
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of  the NGM, which have rescluticns varving from 3s645km for the

to 91.5%km for the grid covering MMorth

Remlspheric cutermost

[ATHT=2 i -

N
o
Q

To  wse the 3D0I in cwr scheme., it was modified elightly

pravidey i converient fForma the chservabtion penalty J {3
i 1m
o and the normalized analysis  error
im
VAT 1Lance & . The chservational penalty included deviations from

the analysis incorement c

m
the guess of  &ll helght and wind datas  normalized by the

chservational ervor variance assigrned to them in the 0 scheme.
Data which were rejected by the guality control scheme, which is
part of the 3DOI. were assumed to give a constant contribution to
the penalty. equal to that of data o the borderline of
rejection.

The basic control variable w was taken to be the vector of

the analysis variables on the latitude—longitude—sigma grid. T
crder  toe do o a forecast from  this wusing the NGM, 1t was
interpalated horizontally to the model s grid points. via the
gspectral representation used for initialization. Threse programs

noet used operationally complete cur i1terative scheme:-—

1di=ea bhackcast meecte 1 macies by U E MV L all physical

o~

parameterizaticons except the diffusive filter and dry
adiabatic adjustment from the NEGM.

(2) a bi-linear horizaental interpolation from the NGM grids to
the analysis gridy

(3) & new program to process the fields, increments. and errors.
ana implement the descent algorithm.

Since owr scheme assumes "balance" in its derivatior. and




rporation of the NMMIT sach A heraticr,

forces "balance" by 1n¢
an additicnal step was included to ensure that the bac bground was

balanced accovding to the same oriberion. This was achieved by

interpalating  the background on the analysis grid, as abtailned
from the global data-assimilation system. via the spectral
initializations, to the NGM grid, and then immediately back to the
analysis grid,

The cbhservaticons used in ouwr experiments were also taken fyrom

thie aperaticonal RAFS, which runs every 1@ hows. They were thus
partiticned into sets nominally valid at the main synoptic hours
O0E and 122, including asynoptic chservations from up to 3 hours
before and about 2 houwrs after these times.

the constituent 3D0I. initializaticon. and forecasts. The cost per
iteration was between one and twe  times  the cost of a
conventional forward analysis—forecast cycle assimilation of the
same data.

b. EXFERIMENTS PERFORMED

A series of experiments were performed to test the scheme, and
ites sensitivity to changes in some of  1ts components. Thase
presented here used the observaticns for 002 and 122 on 27th

February 1987. They are listed in table 1.
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Table 1.  espeviments paerformed
& basic scheme: iterative four-dimensional analysis.

B as Ay but only using Tl observaticons. Equivalent to
itevation of 3DOT ard MMMI &t T .
1
C as B, iteraticon of 3DOI and NMMI at T .
2
D as Ay bub only using T observations.

=

E as O, with persistence replacing backward NGM in adjoint model.
Froas Ay without NNMT.

G "pericdic spin-up"s 3DOICT ) - NNMI - forecast — 3DOIIT ).
1 e
H as A. then NNMI - forecast - 3DOIT J.

oo

I as A, without NNMI of final analysis.

Experiment A was the basic scheme, with a steplength chosen
cn  the basis of an earlier experiment to be 0.5. This was un

For four iterations. The steplength was then halved to C.25, and

a further fouwr ilteraticons performed.

Experiments H arnd O were three~-dimensicnal analyses
imcorporating iteratively & nonlinear ricormal —mode halance
relaticnship. as discussed in section 3. The background For

experiment O was interpoclated from the global data-assimilation
systemn background valid at the second time: 1822 27th February
1987, The first iteration of experiment B or C was almast
identical to the current (March 1987) coperational regional
analysis system. Further iteraticons should improve the nonlinear
balance, while maintaining the fit to the cbhbservations.

Each iteration of experiment B actually performed a forecast
to T » and measured the fit to the data, to calculate the

&
cheervational pernalty furmcticon. Thus  experiment B can be

-



as identical to & except that the observaticons at the T
o

1
were given evo welight. Esperiment D was the other extreme from
thissy the observations at T were given zero weight. It can be

1

thought of as attempting to find the field valid at 7T whilchia
1

when forecasts best fits the cbservations at T . subject tao

&

constraints on balance and it to the background at T . Firf ber
1

L itterations  of experiment D 1t was found that the iteration

was not converging., so the steplength & was halved to 0.25.

Experiments E and F were identical to A except that one
aspect of the scheme was replaced by a simple dummy version.
Thus  experiment E used persistence instead of the backcast model
in the adjoint calculaticon, and F omitted all nonlinear novrmal-
mode i1nittializations.

Experiments G H and I were actually by-products of
experiment A They are included in the forecast results,
presented in section @ below, o provide comparisons simulating
possible alternmative practical schemes. Experiment 6 tested a
scheme {(called the "pericdic spin-up")s which is curvrently being
investigated as a compromise  between having a completely
independent data-assimilation cycle for the regiconal model. and
the cperaticnal system which performs each 3D0I with a background
interpolated from the lower rescluticon global model. The UK
Meteorological Office (Bell 1984), and the US Navy (Rarker,
persornal cemmuiication) have implemented such schemes with
success. Because the basic experiment A had a "zercth" iteration
using enly T 5 the analysis produced while calculating the 3DOI
increments :or iteration 1 T was the product of: 3DOI (T ) -

2 1

norilinear  normal-mede  initialization - forecast - 3D0OI (T

e
e



This T analysis, from the first iteration of experiment (. 1

=
i

thus  the "periodic spio-up? avalysis of experiment . [t s the
closest analog in this work of an analysis from & conventional

data assimilaticon scheme which performs an indefinitely repeated

analysis—forecast ovole. The similar analysis. from the elghth
itteration of  experiment . was  called experiment  H. This

experiment can be thought of as using cowr fouwr-dimensional scheme
to provide an improved backgrourd . consistent with cohserved
tendencles. to  a conventional three—-dimensiconal analysis of the
data at the final time. Experiment I tested whether the balance
achieved by the iterative scheme was sufficiently good to permit
the omissicnm of the nonlinear vormal-mode initialization of the
final analvsis from A before the forecast described in section d

below.

c. FIT TO OBSERVATIONS

A necessary property of & good analysis is that it should fit
the observations used, within a tolerance governed by the
spected cbhservational evror. It cwr formalism this property is
measured by the cbservational penalty J . The wind cbservational
penalties fTor experiments A-F (see tabie 1) are plotted in Fig.l
as a function of iteration. The penalty plotted is that of the
current best estimate at the beginning of the iteraticn; for
iteration 0 it is that of the background field. The penalty
function was evaluated during each iteration. so that for the

latest estimate at the end of the last iteration is not shown.

The behavicor of the geopotential height cbservaticnal penalties

e



was similar to  that of the wind ebservations; unfortunately

because of a coding error noet all the values are avallable for
plotting.

I¥f ocur analysis were the true field, then, because of the
definiticn of the cheservaticonal ervors. the mean cobservational
penalty per datum should be N /2, where Mooie the rnumber of data.

Y ¥

It is easy to show for the 0I equations that this is  an  upper
limity an analysis which has available less than the perfect
chservation set necessary to analyze the true field, should fit
the cbservaticons used in the analysis more closely than the true
field would., This result only holds if the statistical estimates
of observaticnal ervor variances used in the calculation of J

-;.'
are correct. The chservaticnal penalties are plotted in Fig.l

scaled by 2/N . = the values should be between zeroc and one.

Y

This 1s clear1§ not true. I an effort to obtain & cleose fit to
the data by the analysis. the cbhbservaticonal ervors specified to
the 3DOI proegram have been reduced below the theoretically
correct wvalues. and the resulting cbservaticnal penalties are
higher than expected. However for ouwr purposes this i1s not
importants since the values are approximately corvect. arnd we are
more interested in the relative reduction in penalty than the
actual value.

The zercth iteration of experiments A B and E were identicalg
the observations for T were used to update the (initialized)
background field. Fig.ia shows at iteration O, the fit of these
cbservations to the backgrounds and at iteration 1. their fit to

the resulting initialized analysis. The effect of the NNMI can

be seen by comparing these with the values for experiment Fj

gl




without & balance constraint a closer fit to the observations 1s

srvations at T . At

e

possible. Fig.lb shows the fits of the ob

iteration 1 we can compare the values for experiments A B and E,

for a forecast from the iteraticon O analysis. with  that for
experiment Fs.  which comitted initializatiarn. The HNNMIs  which

degraded the fit to the T data. slightly improved that to the T
1 =4

data. Fit to data which have beern used in the analysis is oftern.,

as in this case, a poor measure of the likely accuracy of a

forecast from the analysis. We can also compare with experiment

D iteration 1y a farecast from the initialized background. As we

would  expect. the T chservations do improve the subsequent
1
forecast. Experiment © only used T i its iteration O wvalue
<3
| .l

measures the fit of the appropriate six—howr forecast from  the
alobal data assimilation cycles, and its iteraticon 1 value that of
a 300 analysis at T .

o
Let ws now consider the improvements in fit  gained by

itterating. We can see from both experiments A and D in  fig.ib

that the scheme is managing to find a state at T whichs  when

forecast, better fits the observaticons at T . H;nce in & bhasic
&

way the i1teration i1s working. although the reduction in

steplength at iteration 9 of A and iteration 3 of D was necessary
for thish Some initializaticon is necessary. as evidenced by
experiment F. Our approximate adjcint of the model integration
was alsc beneficial, as compared to simple persistence used in
experiment E. This is particularly true for the wind data

penalties shown in fig.ls, which reflect smaller scales than the

geopotential height penalties (not shown). However the success




ie  only partialy;  the four-dimensiconal analyses were not as good

as the 3D0I of experiment C at fitting the data at T . There was

ol
T demconstirable benefit at T firom the use of bihe R
1 e
chservaltionsy experiment D fields at T did not fFit the

1
chservations (which it never used) any better than did the

bachkgrouwnd. The improvement in fit to the T observations. seen
=
in experiment A fig.lb. was achieved at the expense of the fit to
the observations at T {(fig.la)., so that the total observation
1
penalty (not  shown) for experiment & stayed almost constant.
That for experiment E slightly increased. We can at present only
speculate on the improvement in these results which might be
achieved by a better approximation to the adjoeint of the forecast

model .

d. FIT TO BACEGROUND

Our  priov knowledge about the true state w can be expressed

b
by w «» the most likely state. and (for a Gaussian system) by H.
b
the ervror covariance matrix of w » defining which modes are more
b
likely to be in errar. We have w  from a forecast from the

&
aglobal data assimilation system, but we do not have & explicit

definition of B. Instead we have an estimate of the prediction

errcor variance., the diagonal of By and & correlation model used

in the 3DOI which implicitly defines the rest of R. Thus we

cannot easily calculate the background penalty function. We can

however calculate the mean—square deviation from w « normalized
b

at each gridpcint by the background error variance; this is

pletted ini fig..- The correlation model used in the 3DO0I  is

based on assuming smeothness and approximate linear balance in

38



the background ermrovres. We can get a measuwre of balance from the
changes  macde cduwring the NMMT . These are shown in Fig.3. @ e

normalized at  each gridpoint by the background error  variance.
Since the background is made to be balanced in these experiments
by applying the NMMI to it imbalance in the analysis impliles an
imbralance An bthe deviaticons from ow o fg for fig.l, the values
b

pletted are for the estimate at the begirming of the itevaticon.
The NNMI ie applied as the first step in each iteration; fig.3
shows the ochanges made dwring this MNMI. Far i1teration zero
fig.3 shows the changes made during the NNMMI of the background.
These changes were largely due to itmbhalances introduced when
changing the crography in the background representation, SIMCE &
forecast field from the glebal data assimilation system (which
has its cwr NNMI) should otherwise be reasonably balanced.

Loren (1988) showed how  the transformaticon to  control
variable v. from the model variables w, means that during the
first few iteraticons of a descent algorithm the background
penalty should remain small. This is partly borne cut by fig.2
and fig.3. however by iteraticon 9 of experiment A and iteration 3
of experiment D values have got quite large. This deviation from
our pricr  assumpticons about the atmosphere was alsco visible in
the corresponding plotted fields. There was a very sharp trough
in a strong upper westerly flow at SON off the west coast of
Canadas with asscciated maxima and minima in vorticity and
vertical motion. This pattern looked very "unmetecrclogical',
indeed without the halving of descent steplength te 0.285 in

experiments A and D the NGM forecast failed in the next

iteraticon. With the halved steplength. most of the extremes were
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removed  ain the subseqgquent Lterations. The positicn of  the
ancmalouws Featuwre was such that 1t was probably asscciated with
advecticony by the strong upper flows of 3DOI increments which at
T were caused by coastal observatiovs. The appirosimate adjolnt
&
model used in this work would advect these back along the flow to
the cceanic pesiticn at T« where there were few other data. Our
1

neglect of model advection in  the corresponding  approximate
ad joint forecast of the ervor covariances meant  that  the
ivcrements would then be gilven inappropriate weights. Exvperiment
Es. which did not use the approximate adjoeint. instead using a
persistence approximation consistent with that used for the error
variances. had no such feature. Note however that despite this
shortocomlrg . the net effect of the approximate adjoint was
positive.

Euperiment F had no NRNMI:  the small cheanges plotted in fig.3

were caused by the spectral grid transformations. Without its

controlling effect, "unmetecrclogical" featwres such as  that

discussed above grew each iterations adversely affecting the fit

-t

to cbhbservations (fig.1l) and the fit to the background (fig.2

e, FORECAST RESULTS

The wltimate test of any analysis scheme for MWAF must be the
accuracy of the subsequent forecasts. The RAFS system was
develaoped for short range forecasts for the USAH. Our analyses
have therefore been tested by ruwming the NGM for 48 hours. F e
all except experiments F  and I rnovil inear nermal -mode

initialization was performed cn the analyses before integrating
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the forecast model. The forecasts were verlified against
available obeservaticns from the 8%0mb ., SO0mbs E2E0mEs and 100mb
levels. From  a standard set of 110 staticons in Morth Amer 1Ca.
Fesults, averaged for these levels. are plotted in fig.4. In
keeping with operaticnal nomenclature. the nominal time of the

latest observaticns available to the analysis (owr Ty is called
oo

O hours. Curves are labeled with the experiment and cycle

vimk e . Ty keeping with cur momenclature on earlier figures. the

cycle number refers to the estimate at the begirming of the
cycle. Thus curve @1 is for a forecast from the cutput field

from the rercth iteraticn of ocur basic experiment. which was the

input  field for iteraticn 1. Apart from an extra NMMMI  of the

background fields this 1s equivalent to the operational REFS

analysis valid at T (-12 hours). Curve A% is from the basic
1

experiment after 8 iteraticons of the four—dimensional analysis

scheme. This analvsis has used the O hours chservations, and

hence verifies better against them. The improvement is
maintained throughout the forecast. Curve D9 is from a similar

four—-dimensicnal analysis only using the O hours cobservations.
This forecast ie almost as  skilful at later times as A9,
indicating that the =128 hours observations are in this case
adding little skill to the forecasts except at the earliest time.
(It should be remembered that the four-dimensicnal analysis is
defined by a forecast from the field at the initial time., so
these forecast experiments run from —-12 hours.)

We saw in fig.lb that neither of these experiments achieved as
good a fit to the time T (O howrs) wind chservations as could be

&
achieved by a simple 3D0I. This is borne ocut by curves Cl1 Gi and

B
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HE  in fig.ab. These were all forecasts from 3D0I analyses at O
howrs, wsing varicus backgrounds. ©C1 used the initialized &-hour

forecast from the global data assimilation systemy it owas thus

equivalenrnt, 12 hours laters to A1, Bl wused the NGM forecast
valid at O howrs from Al. HE used the field valid at O hours
from A The better wind verificaticon scores are maintalned

throughout  the forecast; by this criterion the fouwr-dimensional
analvses were not as good as the "traditiconal"  three-dimensicnal
COTTERE

Arcther comparison that can be made in fig.4 is between the
"traditicnal” 3DOI followed by NNMI.  and an iteratively balanced
three—-dimensiconal analysis as described in secticon 5. Experiment
B iterated the 3D0I and NNMI using the background from the global
data assimilaticon systems and the cbservations, valid at T (~12
Fowrs) . Experiment C did the same for T (D hours). Scorés fay
the forecast after fouwr lteraticons of B ai@ shown as BS. this can
be compared with Al. the forecast from the 3DOI analysis of the
zevoth  ilteration of experiment &. Scores after the zeroth and
the Tirst iteration of experiment C can similarly be compared.
Differences are marginal. and contradictory for the twoe cases;
there is ne indication that the iterative analysis is better.

It appears from fig.4 that the best forecasts were from

experiment C. The distinguishing featuwre of this experiment was

its use of the six-hour forecast background from the glebal data

assimilation system wvalid at T (O hours). This has had the
e

benefit of the observations valid at -& hours. Anather

difference was the glcebal forecast medel. A direct measuwre of
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the quality of this background is shown in Fig.lbs as the fit to

the observations at iteration 0 of experiment . This can be

compared with that of experiment B in  the same flguires.

Experiment B only used the T observaticons, so  the T fits
1 i

measuwre the accuracy of the resulting 12-hour NGEM forecasg. The
global forecast is better for heights but slightly worse for
wind. Note that Fig.l uses all cbservations in the hemlispheric
RAFS domain, while fig.4 cnly uses North American radicsondes.

Finally in this section., we can mention that the scoves for
the forecast from experiment I were very little different from
those for experiment A, At ~-12 hours. the time of the
chservations most directly used in the analysis. the fit to the
heights of forecast 19 was 3 meters better than that of forecast
AT . The fit of the winds was 0.2 meters/sec better. At cther
times the scores were indistinguishable, so I9 is not plotted in
fig.d.

8. EFFECT OF AFFROXIMATIONS

In this sgsection we discuss in  turn  the effect wof the

approximations made in deriving & practicable method., as
demorstrated in the results of the previous section’s
experimental test. One type of approximaticon is the use of

cperaticonal programs  (3DOI., NMMI., and NGM) &s i1f they are
perfect. Ancther type 1is in the evaluation of the penalty

functions its gradient. and their use in a descent algovrithm.
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We assume that the analysis increments given by  the 3D0I
praogram  are truly an  optimal weighting of observations and
backaround. We  saw iv section 7a that the obsevvatiornal error
variances used are far from the thecoretically correct values. On
the other hand the normal ized mean sguare deviations  from  the
background (fig.2) are between zero and one. indicating that the
background ervors varlances are probably more nearly  corvect.
Since the relative welght given to  the observations and
background depends on the ratic of the assumed error variances.
it follows  that the 23DO0I gives too much welght to the
chbeervations. This might partly explain why there i1s little
difference between the scores of forecasts from the analyses A9
Gi D? HB Cl and C2 in fig.4a. These were all 3DOI analyses using
the same data. the only difference was in the background fields
used for each.

b. RNRMI and NGM

The nonlinear normal-mode initialization is included as  a
strang constraint in cwr scheme for two reasons:

(1) because of the observation that the atmosphere i1s usually
slowly varying. NNMI is an approximate way of including this
extra knowledge into owr schemey, which would otherwise allow
rapidly varying sclutions.

(2) because the approximations in ocwr handling of the forecast
model’s adjoint can only be justified for "balanced" slow

modes .
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The latter effect is demonstrated in fig.l. Experiment F.

without R R clacl mot converge to it the observations. Thie
former effect is shown in Fig.S. Forecast FS had a large scale
height oscillation of an amplitude not seen i reality. Figssa

shews  the mean verification against Nerth American radiosonde
a250mb heights for forecasts from the experiments related to NHNMI.
There was a large scale upper trough covering north America  on
27th  February 1987. The NNMI filled this slightly., as can be
seen by the difference belween the -182 howrs  mean  ervors  of
forecast F1 and Al and of forecasts 19 and A9. {The latter
difference is probably smaller because the MNMT was used while
making the experiment I analysis, 1t was only cmitted before the
final forecast). The subsequent forecasts tended to deepen the
trough again. This seems to indicate that the balance achieved by
the NNMI was not that reqguired by the NGM forecast model . &
similar behavicr of & similar NMC NNMI scheme 1n large—scale
troughs was noted by Hollingsworth et al ({1985) . Note that the
-182  hours mean ercor in experiment D was larger than that of A,
because D was only trying to fit the O hours cbservations.

The oscillations in forecast FS5 in fig.5 were in the external
mode; they were as large in the 850mb height {noct  shownd. In
contrast the large change between —12 hours and © hours in
forecasts from experiments A D and I were mostly in the 850-250mb
thickness. Forecasts initialized at O hours (C1 C2 G2 G1 and H8,
net shown on fig.5) showed & similar decrease in 250mb height in
their first 12 hours. However in these forecasts, most of the
change cccurred in the 830mb height. It is unclear how much of

the bias errvor in 850mb height was due to NNMIL,  and how much to

s



the NGM  forecast model. 1t is possible - that differences in

calibration between satellite derived height ocbservations over

vl @also contributed. There

the cceans and radicsondes over the
is evidence however that part of the bias is due to the NGM. ALl
the forecasts. irncluding the uninitialized ones, showed a steady
coaling of the model®s lowest layers, about 10 during the first

P4 houwrs  at  85%0mb. Fuwrther experiments would be requived to

unravel the causes of these blases. It 1s clear however that
they mabke it difficult to achieve a close fit to both the -—12

howrs and O houwrs observations.

Ao e failing oof R particularly o f adiabatic
implementations like that used heree. is the underprediction of
rainfall in the subsequent shovrt-pericod forecast. It was hoped
that by moving the NMMI to —12 houwrss instead of O hours as  in
the cwrrent operational system., this "spin-up" problem would be
alleviated. However although there were differences between the
rainfall forecasts af. for instances A9 and Gls there was not a

clear signal that one was better for the single case studied.

c. Feralty functions., derivatives, and descent algorithm

We discussed in section éc the approximaticons made in deriving
expressions for the penalty function and its daerivatives.
Fractically, our objective is not to set up an algorithm for
finding the exact minimum of the total penalty functicons but just
to perform a few iteraticons which decrease it from that given by
cenventional 3D0I analysis/forecast cycles. The total penalty

reeds  to be used in a practical scheme at least as a check that



it is decreasing. The simplest approximation to the Gauss—Newton

descent algorithm did noet converges: 1t was necessary to modify it

by including & step-length. Scome form of total penalty, formed as

a weighted sum of the partial penalties shown in fig.l fig.2 and
] 8] f

10«3y weo Lol probably be a sufficiently good measure of
"improvement" in the anmalysis, for detecting convergence. 1t

woeuld  have been possible with such a sum to detect the lack of
convergence - which eventually forced the halving of the step-—
length in experiment A iteraticon 9 and experiment D 1teration 3.
Note that. in contradiction to the result from Lorenc (1988). the
backgrouwnd pernalty is important for this. The lLorenc (1988)
result that the background penalty always remains small is  no
longer true in the presence of ocwr other approdimations.

Neither experiment A nor experiment D achieved as close a fit

to the observations as was achieved in the similar idealized
experiments  of Lorenc  (1988). This was of cowrse to be

expecteds; the earller experiments were of "identical twin" type.
with model generated obhservations. Thus there were no model
errores analogouws to those discussed in the last sub-section.  The
exact adjoint used in the ildealized experiments enabled changes
te be made to the advecting wind in response  to tendency
informaticon i com =T advected tracer. The linearized
approximation to an adjoint used in the present work was probable
noet  accurate encugh to get this effecty which needs & better
adjoint for the dynamical part of the model. It would need a
large effort to code the accurate adjoint of the full forecast
model, including 1ts physical parameterizations (without which

its forecasts are significantly degraded). Such an effort is

41
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T

used in this scheme.

probably prematures research on wesing obhservations such as cloud
amounts and deduced diabatic heating rates an three—dimensional
analysis schemes e still  in pte anfancy. gu even if the
forecast ad joiant i improveds any impruvement Lo the descent
algeorithm used in this wor ke should pake into account that the
calculated gradients of the total penalty function are only
approximate.

We discussed in section Fdan "unmeteuralogical“ features
apparently causaed by inconsistent approximations i our adjoints
of the forecast and the ervor COVAarilances. Our approximation to
the latter 1s exactly analogous to that used in the operational
NMC scheme Tor estimating packground ervor covariancess something
which should he done using & Ealman—Bucy filter. The crude
amootihing which replaced this in our ad joint scheme Was
completely untuneds probably considerable improvements are
pessible even to this. If the operational scheme were %o - bhe

improveds for instance by';mplementing a simple advection of

variances by the mean flows then presuhably jte adjoint could be




8. CONCLUSTONS

We have shown that a four-dimensional analysise of the full
cperaticnal  observational database can be made. by itterating
modifications to the operaticnal analysis and forecast codes  and
an  approximate adjoint model. Computer rescurces required are
enly an order of magnitude greater than those for the operaticonal
achemea . Thies is much less than the theoretical veguirements of
same other proposed algorithms. Tt means that the technique 1s

practicable now for research experiments, such as producing  a
dynamically consistent four-dimensional analysis from a special
set of cbservations. It should become cperationally practicable
by the next generaticn of computers (as long as the reguirements
of the forecast model do not grow  te match  the available
compuiter i),

The derivation of the scheme emphasizes that 1t can  be

regarded as an extension of

current three—-dimensional analysis
methccls . It should be possible to carry over the results of past
arnd continuing efforts to develop theseys by using the three-
dimensiconal analysis code as part of the four—dimensiconal scheme.
Experiments with the scheme highlighted deficiencies in the
current operational scheme . in the observaticnal error variances
assumed, in  the "balance" given by the nonlinear normal-mode
initialization. and in the systematic errors of the forecast
model .

The preliminary experiments described in this paper indicate
that further work is necessary on improving several aspects of

the scheme, particularly the descent algorithm and the adjoint

e



cofCoovET L ances ., Forecasts from the analyses did not

Foreo
. verify gquite as well as those from the operaticnal scheme., ToT

the one bl e,

The scheme has the potential to wse & more complete  time—
coverage of observations. It would be interesting to test this
by  analyzing data from special observational efforts such as the
GALE experiment.
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e AFFENDIX  Fenalty functicn and derivatives

The "best" analysis can be cbhbtained by an iterative search for

the minimum of:

iy ) = dy COSRN) T d Yy fE AR N Bl Sl S e

=5 L) + Livienat.) (a1)

| o A
where L. and L are notations feor the individual components of L.
it w] :
Te manipulate the four-dimensioral distribution of

cbservations using the three-dimensional analysis program 3DOI.

we partiticon them into N time-slices, indicated by subscript m:




The fouwr-dimensicnal Field x. [55%

itial conditions w., 18 similarly partitic

im T i

For simplicity we do noet interpolate in time. but assume that all

chservations in time-slice m are valid at T . Hence FE bhecomes a
i T
space only interpolation at each time T
ff

\_,
~
I
st
U
~—

Y = b (x

4

im Mmoo Lm

It there is one correlaticon  between  observational avicd
representativeness errors in different time-slices, then O and
can be partiticned inte submatvrices which can  be inver ted
separately. and the cbservaticnal penalty L. can be partitioned

1
into time-slices:

The partiticned total penalty is:
fl

Ly ¥ = e T R (A7)

A similar partiticning can be done for the vector of partial

first derivatives of the penalty functicon:

G5

v



i fmo i B

and for the matrix of partial second derivatives:
I

L*"(y ) = L. Mg ) & Ik ¥hdse ) (A9
i m 1 [} i
=

We assume locally valid linearizations K and G exist i

By Adx ) o= K (y ) + K dx (A10)
i im m vun o im m
G (w A+dw ) =G (w2 + G dw {A11)
mim i vimo i m
Then we get:
£ ¥ -3
L. "{y 13 = B G [ (g +F ) dy (Alaz)

| tm i m m m m im

| Note that G and K are both in general functions of v .

m it i

Neglecting this dependence in compariscon with that of dy »

im

gives: :
0 o ~1 : , e
e e o KD R ) e D BB e e i

m m m m

The partial derivatives of L



REFERENCES

Bell .R.8.

CouwrtiersF.. and

Talagirand 0.

Dqu&"gcl :\G.J‘-

GhilaMao
CohmeS.E.s
Tavantzis.J.
Bube:k.y and
lsaacson. E.
Gill.P.E..»
Murvray.W.. and
Wieight Mok,
HollingsworthaA. s
Lorenc«A.C.
Tractom.M.5. 4
Arpe.k., Cats.G.s
UppalasS.. and
Kallberg.F.

HoffmarnmR.N.

1987

1987

1982

1985

1986

Soc .
Sl .

"“The Metecorclogical Office fine-mesh data

assimilaticon  scheme." Mebeor. MMacy o 15

161—-177.
"Wariaticnal assimilaticon of metecrological

cbhservations with the adjoint vorticity

equations. — Fart II. Numericsal resulits

Guart. J. R. Metecr. SoC..

to appear November 1987.

"Thie Maticonral Metecrological Center
Regiconal Analysis System" Mon. Wea. Fev ..

"Applications of estimation theory to numerical

weather predicticn." Dynamical metecrclogy:

Data assimilaticon methods. eds.

GhilaM.s and EallensE. New York.

Springer-Verlag. 139-dda

"Fractical cptimizaticon® Academic Fress.

London. 83-154.

"The response cf numerical weather

prediction systems to FGGE level IIb data.

Fart I: Analyses" GQuart. J. R. Meteor.

111, 1-66.

"A four dimensicnal analysis exactly

satisfying equations of motion." Mon. Wea.

a4'7

Bengtesorisl..




l.ewisysJ. Mo and

Blaom.5.C«

Lewis J.M. and

Devber o J.0.

Larenc«A.C.

Larenc.A.C.

Navanas I .M.« and

Legler.D.M.

Talagrand.O.. and

Courtier.F.

WilliamscoraD. .

and Daley .

1278

1985

1286

1988

1987

1987

1983

"Iricorporation of time continuity into

subsynoptic analysis by using dynamical g

censtraints." Telluss 30. 4946-516 .

"The use of adjeint equations to solve a

variaticonal adjustment problem with

advective constraints." Igiiﬂi’ 376G

309-3282

"Gralysis methods for vnumerical weather

prediction.” Quart. J. Roy. Metecor. Scc..

1182, 1177-1194

"Optimal norlinear  objective analysis"

Guart. J. R. Meteor. Scc.. 114,

to appear January 19288.

"Conjugate-gradient methods for large scale

minimizaticon in metecrclagy" Mon. Wea.

Fewv . e

"Variaticnal assimilation of metecrclogical £
>

chservations with the adjoint vorticity

equation ~ Fart I. Theory." Guart. J. Roy.

Meteor. Scc.y 113

i

to appear November 1987.

" unified analysis—initialization technique."

Mon. Wea. Reves 111. 1517-1536
s T B O R

4.8

aw P -



. e = A |
.
Fig:.e
®
;
Eige3
Fig.4
o L

LEGENDS

FOR FIGUKES

Ohservational penalties for wind observaticnss for the
analysis fields valid at times T and T » plotted against
1 i
iteration for the experiments listed in Table 1. The
penalty is scaled by 2/N . where N is the number of data
¥ ¥
included, and  is  thus the mean square deviation of the
fields from the observations, normalized by the estimated
abservaticonal errar variance s as used in the 3DOI. Values

plotted are for the fields at the begivning of  each

iteration. See table 1 for details of each experiment.

Mean square deviation from the background field, for the T

i
analysis flelds, plotted against iteration  for the
experiments listed 1in table 1. The deviations are

normalized by the estimate background ervor variance, as
need in the 3D0I. and averaged for the northerv hemisphere.
Values plotted are for the fields at the beginning of each

iteration. See table 1 for detaillse of each experiment.
As fig.2 for the mean sguare change during the NNMI.

Root mean square forecast verification statistics averaged
for 850, S500, 250 and 100mb. against radicsondes over Narth
America. Curves are labeled with the experiment letter. as

given in table 1. and the iteraticn number.

A fig.4 for the mean 250mb height difference of

cbhservations minus forecast.
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Fig.l Observational penalties for wind observations, for the

oy
analysis fields valid at times Tl and T2, plotted against

iteration for the experiments listed in Table 1. The
penalty is scaled by 2/Ny, where Ny is the number of data
included, and is thus the mean square deviation of the
fields from the observations, normalized by the estimated
observational error variance, as used in the 3DOI. Values
plotted are for the fields at the beginnihg of each

iteration. See table 1 for details of each experiment.
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ITERATION

Mean square deviation from the background field, for the T1
analysis fields, plotted against iteration for the
experiments listed in table 1. The deviations are normalized
by the estimate background error variance, as used in the
3DOI, and averaged for the northern . hemisphere. Values
plotted are for the fields at the beginning of each
iteration. See table 1 for details of each experiment.
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for 850, 500, 250 and 100mb, against radiosondes over
North America. Curves are labeled with the experiment
letter, as given in table 1, and the iteration number.
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Fig.5 As fig.4 for the mean 250mb height difference of

observations minus forecast.
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