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Introduction

Numerical riodelling of large &cale atmospheric flow is very
successful. Useful forecasts of the flow pattern are obtained out to
% days in nearly every case and to 5 days in about half the cases.
The problems occur in converting these forecasts into useful statements
about actual weather. In order to do this the detailed vertical
structure of the atmosphere must be accurately predicted so that different

air masses can be clearly identified.

A large scale weather map, such as those published in the
newspapers, appears smooth. The dynamical theory of vertically averaged
atmospheric motion shows that the behaviour is essentially the same as
two dimensional incompressible flow. That system of equations, given
smooth initial data, has smooth solutions indefinitely (Kato, 1965) . A
correct numerical solution can be obtained by any stable consistent finite
difference or Galerkin scheme. The most effective way of obtaining
nonlinear stability in this case is to use the conservative schemes of
Arakawa (1966), or a Galerkin method. The concept of smooth solutions
extends to three dimensional flow provided that the scale remains large
and the stratification strong. However, detailed observations of the

vertical structure of the atmosphere indicate that the solutions are far



from smooth. The structure is often like a series of layers of air

with markedly different properties and sharp interfaces between them

(Danielson, 1959). These interfaces support waves and turbulence. »
The amount of moisture and dust in the different layers is usually

very different, leading to marked changes in weather when different

layers reach the surface.

A system of equations whose scaling allows for the presence
of discontinuities has been developed (Hoskins, 1982) and the existence
of solutions for piecewise constant initial data shown (Cullen and Purser,
1984)., There is a need to solve the complete equations of atmospheric
motion in a way which will generate these piecewise constant solutions
and model the waves and turbulence on the interfaces. As in other branches
of fluid dynamics when discontinuities develop, it is essential to choose
the correct conservation law form of the equations if numerical solutions
are not to converge to unphysical solutionse. It is also necessary to g

refine the solution procedure to help it to capture the discontinuities.

In this paper this is illustrated for three situations. In
forecasting atmospheric fronts, a convergence to the correct solution can
be obtained by absorbing certain acceleration terms into the turbulence
model. In the case of flow over large scale mountains, the difficulty
is to confine the influence of the mountains to a shallow layer above its
top when the stratification is strong. In hemispheric scale forecasting,
absorption of extra terms into the turbulence model can lend to a
substantial reduction in error through eliminating spurious solutions.

However, some useful detail is lost at the same time.
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Governing equations

2

Primitive equations

The normal form of equations used in atmospheric modelling
are the equations of compressible gas flow with the hydrostatic
approximation. For present purposes we also make the Boussinesq
approximation and treat the effect of the Earth's rotation as constant
in space. The resulting system of equations, as used by Gent and

McWilliams (1983), is also appropriate for the ocean:
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The vertical coordinate 3 is a function of pressure, and the lower
boundary condition is simplified so that it is applied at a constant
pressure surface near the ground, rather than the Earth's surface.
4’ represents the height of a constant pressure surface, e is the
potential temperature and %‘ the Coriolis parameter. The rest of
the notation is standard. The behaviour of this system has been
analysed by Norbury and Cullen (1985). Standard methods (Courant
and Hilbert (1962), section VI. 3) show that it is a symmetric

hyperbolic system with five real characteristic directions; three
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parallel to particle paths corresponding to three advected quantities,
and two parallel to the } axise Thus it is natural to look for
quantities conserved or varying in a simple way along trajectories,

and for discontinuities propagating along thems

2.2 The geostrophic momentum approximation
A scale analysis appropriate to large-scale atmospheric flow

sugpests that the velocities in (2.2.2) to (2.1.6) can be approximated
by their geostrophic values.

uy = - Yy (2.2.1)

Vy = %) e (2.2.2)
In accordance with the prescription of Lighthill (1961), this
approximation is only made in the advected quantities, not in the
trajectories themselves. This allows uniform validity of the
approximation for large times. Hoskins (1982) shows that the resulting
system is still valid in the presence of discontinuities provided the

scale parallel to the discontinuity is large. Therefore we replace

(%‘_:. ) %‘i) in (2.2.2) and (2.1.2) by ( T I)va )

2.3 Lagrangian conservation form
Equations (2.2.2) to (2.2.6) subject to the geostrophic momentum

approxination can be written in the following Lagrangian form :

%LL‘ S ‘ (2.3.1)

%L: = "5"3 (2.3.2)
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where (My,8) = V(§+34 (=+3)) (2.3.5)

and T is the specific volume. The natural boundary condition is

that no fluid crosses the boundary of the integration domain. The
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work of Hoskins shows that this system of equations can generate a
discontinuity in a finite time from smooth initial data. After this
time we assume that the Lagrangian form remains valid while the
Eulerian form does not. The correctness of this can only be tested

by actual experiment.

2.4 Implications for finite difference solutions

If it is assumed that (2.3.1) to (2.3.5) hold for almost all the
fluid volume, then a finite difference solution of the original equations
(201.1) to (2.1.6) must be made consistent with these conservation laws.
The requirement of conservation of quantities along trajectories cannot
only be met in an Eulerian scheme by upwinding, however this violates the
requirement that the volume of fluid with a particular value of a
conserved quantity is also conserved. The latter requirement cannot
be met exactly in a conventional scheme. The best practical procedure
is to use a quadratic conservative scheme (Arakawa (1966)) and to use
an artificial viscosity which acts as little as possible on the vertical

component of the vorticity, essentially the geostrophic part of the flow.

3. Results
3.1 Fronts
Fig. 1 shows a solution of (2.3.1) to (2.3.5) obtained by
representing the initial data as piecewise constant, in the manner of
Glimm (1965) for hyperbolic conservation laws, integrating the
ordinary differential equations for each segment, and fitting the
results together in the way described by Cullen and Purser (1984).
This mefhod is like a moving finite element method except that the

volumes rather than the shapes of elements are specified.



Ciee

—

Figo. 1 Cross section of a front obtained by a Lagrangian method,

contours of potential temperature.

Figo 2 Cross section of a front obtained by a finite difference method using

a 200 x 20 grid, contours of potential temperature. :




Fig. 2 shows a solution of the Eulerian equations {21410 kb

(2.1.6) obtained by adding artificial viscosity of the form

DL.;:%) + kV'a (3.1.1)

to equation (2.1.1), an equivalent term to equation (2.1.2) and

KV"Q to equation (2.1.3). This has the effect of enforcing the
geostrophic momentum approximation on the scale of the discontinuity
and allows a value of K to be used which is 100 times smaller than
that required if the extra acceleration term is not included in the
viscosity. The solution does not capture the change in slope with
height of the front very well. As the resolution is increased to
200 x 4O, there is very slow convergence towards the solution shown

in Fige 1. The adaptive method has a clear advantage here.

3.2 Mountain flow

Fig. 3 shows a cross section of the flow over the Alps predicted
: by a limited area forecast model which uses eguations (2:1.1) to
(2.1.6) and also includes the effect of moisture. The wind component
across the Alps is about 15 ms-1. A large standing wave is generated,

also transient waves.

This structure is only observed in the atmosphere on much
smaller horizontal scales. On the scale of the Alps, the constraint
of the Earth's rotation makes the flow tend to go round, rather than
over the mountain. Even when flow crosses the mountain, observations

of clouds suggest that the rapid flow is confined to a thin layer

near the ridge creste.
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Fig. 4 shows a two dimensional finite difference solution of the equations
using a viscosity of the form (3.1.1). This suppresses the waves, but the”

disturbance due to the mountain extends up to the top of the atmosphere.

U RT T : &3200.
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A solution using an adaptive Lagrangian method being presented by

S. Chynoweth (poster presentation) prevents this extensive disturbance

vhich may play a part in generating the spurious waves in the forecast

model.

%«3 Short range forecasts

Figs. 5 and 6 show 24 hour surface pressure forecasts made using

the U.K. operational hemispheric model, in the first case using (2.1.1)
to (2.1.6) with artificial viscous terms added, and in the second case

with acceleration terms absorbed into the viscosity as in equation £3:1.13.

The verifying analysis is shown in Fig. 7.
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Fige 5

Solid lines-surface pressure (hPa), pecked lines-temperature at 850 hPa.

24 hour forecast using primitive equation model, 192 x 48 x 15 grid.




24k hour forecast using model as Fig. 5 with artificial viscosity (3.1.1)

Fig. 6

PMSL

Surface pressuré analysis for 12%, 13 July 1982.

Fig: 7




The forecast with the acceleration absorbed into the artificial viscosity

is much smoother, despite a 10-fold reduction in the coefficient. This

forecast is more accurate on most of the pressure systems except a
deepening depression near the North Pole and another in the Pacific.
Some strength has been lost in these. The improvement reflects the
removal of much spurious noise, though it has been achieved at the cost
of losing some correct detail from the forecast shown in Fige5. The

L2 error over the region 7OOW to 20°E, 300 to 70°N has been reduced from

3.2 to 2.4 hPa.

L4, Conclusions

This brief review has shown that numerical procedures for solving
the governing equations of atmospheric motion may need careful design to
ensure that spurious solutions are not obtained. Turbulence models may
have to be designed using knowledge of the structure of approximate systems
of equations as well as the complete system. Adaptive methods can achieve

far greater accuracy in situations where they are practicable.
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