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‘1 o Introduction

Numericel weather prediction with the primitive equations is now a
routine procedure in meteorological offices and services in many countries,
and considerable effort has been and is being expended on developing
efficient time-stepping schemes to enable the computations to be performed
quickly enough to be useful within an operational environment. The most
commonly used schemes are explicit; these are non-iterative 'marching'
processes for obtaining the solution at each point in space at which
dependent variables are kept at a new time level in terms of known values
at earlier time-levels. Two of the most well known of these schemes are
the leap-frog, or centred schemes, and the Lax-Wendroff two-step scheme,
yith the horizontal grid staggered in both space and time as suggested by
Eliassen (1956) and used by Bushby and Timpson (1967). Explicit schemes
3 for the primitive equations are subject tc severe stability criteria which

restrict the time-step, T , that can be used. For the leap-frog scheme
we must have ; AR 2—‘/2 AX/( | C3' +|V,qu) for
stability, whilst for the Lax-Wendroff two-step scheme we require
T ( ?_-:‘.,/?- Ax/ ( Cq" o \/":;‘"_x)‘l‘z . Qa is the speed of
the external gravity wav;? in the model, V is the meteorological wind
end AX is the horizontal grid lemgth. Since Cg=%% 300 ms™
and V rarely exceeds 100&13-1 these criteria are dominated by thc speed
| of the gravity waves and allow a maximum time-step of about 3 minutes with
} AX = 100km. Earlier and more simplified models, for example Bushby
and Whitelam (1961), used & quasi-nondivergent approximation which elimin-
ates the gravity waves entirely from the system so that stability depends
enly on the wind spced, with a time-step restriction of the form
T & AX/(VR|Vlnx) . Robert et al (1972) developed a semi-
implicit method which is subject to the same stability criterion. Both
these methods involve the solution of three-dimensional Helmholtz equations

or equivalently systems of coupled two-dimensional Helmholtz equations,
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the number of two-dimensional equations being equal to the number of levels
at which the dependent variables are kept in the vertical.

Since it is the presence of gravity waves in the model that governs
the maximum allowable time-step a study was made of the solutions of a
simplified form of the primitive equations that only describe the motion
of pure gravity waves. This study led to the development of a semi-implicit
reformulation of the Bushby-Timpson (1967) 10-level model which requires
the solution of only two uncoupled Helmholtz equations.

In section 2. a brief description is given of the 10-level model.
Section 3 gives the equations for pure gravity waves in the 10-level model
and describes the properties of their solutions and also presents implicit
and explicit integration schemes for these equations. The semi-implicit
algorithm for the models primitive equations is described in section 4 and

a short discussion of the progress with the scheme is given in section 5.

The governing equations

The horizontal co-ordinates (X >Y ) are taken on a stereographic map
projection with the origin at the North Pole; the hydrostatic pressure
is the vertical co-ordinate. The vertical resolution is 100mb, the model
atmosphere being bounded by the 1000mb and 100mb surfaces. Horizontal
components of velocity w (= dx /e ) end V
(= d,\d / cL!:) are used to define the motion on the pressure
surfaces f> = 1000mb, 900mb,seeesee, 100mb the vertical velocity €O
(= dp/dt) being kept at the nine levels midway between these pressure
surfaces and at 1000mb, A diagram showing the arrangement of variables in
the vertical is given in Figure 1.

The eqn;atioqs of motion are
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for each of the ten pressure levels of the model, h is the height of the
pressure surface, of = wn / M 3 \/’F: V/MJ/M =m?% ]C the
coriolis parameter, yn ( — SQC"-(Tr/Af--—-(P/z )) 43 being the latitude)

is the map magnification factor and % the acceleration due to gravity.
The functions Fx and Fy represent the frictional and horizontal diffusion
terms.

The equation of continuity is used in the form

dut BV*) dw
+ + 3, = O (3)
% ( IX Y p
The integration of this equation with respect to pressure is discussed below.
The thermodynamic equation expressed in terms of 100mb layer thicknesses
i |
"\ s h is proportional to the mean temperature of that 100mb slab,

takes the form
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for each of the nine layers of the model, |\A - R [Cl’ 5 R
being the gas constant and CP the specific heat at constant pressure.
Fh represents the horizontal diffusion of heat and Qg\ is the
non-adiabatic heating and includes condensation and evaporation, heating

from the surface and heating due to sub-grid-scale convection,

The lower boundary contition W = d 2 [dt =V VH
at B = H s Where H is height of the topography, is approximately
satisfied by applying it at F = 1000mb; this gives the 1000mb height

tendency equation
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where l'\«o is the height of the 1000mb surface.
The remaining equation is the water balance equation which is used in the

form

__+/U-(u’* V* 3”“) s S = W-i—P:r (6)
bla op

for the seven moist layers of the model ( the model atmosphere is dry above
300mb) where ' is the mean humidity mixing ratio of the appropriate
100mb slab. FT represents the horizontal diffusion of water vapour
and W is the rate of humidity mixing ratio due to gain or loss due
to condensation and evaporetion, trensfer from the surface and transfer
due to sub-grid-scale convection. These equations are solved numerically
by the integration scheme described in section L. For the remainder of
this discussion we shall neglect the dissipative, topographic and non-
adiabatic effects and aiso drop the water balance equation (6). It is
also convenient to recast the governing equations into a vector form and

to this end we define the following ten-dimensional vectors
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where ( )" means transpose) k and \/p. are the horizontal
components of velocity in the pressure surface F = h x 100mb, hk

" is the height this surface and (Jp is the vertical velocity at
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‘ F = (h...l/z ) 100mb R =1, 2, sesese 9 whilst W 40 is the vertical
velocity at 1000mb. The 'vector' forms of equations (1), (2) and (4)

for a dry inviscid, frictionless adiabatic model are
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where Nx, Nr, and Nh contain the non-linear terms on the left hand sides

of equations (1), (2) and (&),

and f = diag (C)Q)--———)no) are 10 x 10 matrices

o Moo= - (34 LS8 W), R by

and r!o = =2 hie / 0 P. The vertically integrated form of
the continuity equation (3) is
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3
where AP = 100mb, D = diag (4,1,1,1,1,1,1,1,1,2). The elimination

of (A between (9) and (40) gives the vector 'height' equation
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An useful alternative form of this equation is

dh A N w6 (U Y Y=o
} ke +/§""(?x_+_3—‘d_>' (12)

where g — % /\—'_B___:

Pure gravity waves in the 10-level model

The equations governing the motion of small amplitude gravity waves

in the model described by equations (7), (8) and (412) are

du dh N i
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where we have assumed that /H =1, For the remainder of this section
we shall neglect the coriolis terms and assume that é = _i:?

a8 constant matrix, that is independent of X)‘a and E , corresponding
to the standerd ICAO values of the [1  ( B ety 2t iivea; 10)e

With these approximations the elimination of U and V. between equations

(13), (14) end (15) gives the following 'vector' wave equation for b_
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where V e 75;{1 = 9%1

This equation has normal or Fourier made solutions

A

.l.\ = .Y/.\.. EX?(L (O(X-i- [33 - 0"(:)) where the amplitude _Z

satisfies the equation
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ad L= 5’/("‘1"'}37')‘/1 is the phase speed of this normal mode and ;

js the identity matrix. For given o and /3 equation (17) is an
elgebreic eigenvalne problem with real positive eigenvalues 02 and
A

e
eigenfunctions _?_ . There are ten distinct solutions ( CO)\z ) Yh Ye

h = 1, 2, cecececey 10, where Co)k is the phase speed of the normal

mode with vertical structure R The suffix O indicates the

2
association between these eigenvalues Co)\'l and the ICAO matrix Go -

If we order the ‘Ce)lz such that Co) k2 Co)h-ﬁ-l then
A -~
( Co); ) l) corresponds to tl'le external mode and ( CO) R )23/3);1.1& |)
to the ht"\ internal mode., The ten wave-speeds for the ICAO standard

atmosphére are given in Table 1. A

The matrix E = ( 2 5 1"_‘ ey LE ) has the

ol
g
fim
]
D,

ty that aaetle s caT

oper = di esee
property 2 ag b Ll o 2%
ececosy Co)no ) and we can use this relation to decouple the system

of equations (13), (14) and (15) into ten subsystems each subsystem
describing the evolution of one of the models gravity waves. This decoup-
ling is achieved by a change of dependent variables and we define new

‘velocities' a and b and 'heights' _\__/ by the transformations
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On substituting for U, V¥ and h from (18) into equations (13),

(14) and (15) we get the ten scaler systems

Ay S
=80T % ‘O?

y
by +(3 h = o { h —1,2, cereeeyd0 (19)
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and we are quite at liberty to integrate each subsystem differently.
Explicit schemes such as the leap-frog scheme and the Lax-Wendroff scheme
for the equations in (19) are stable provided the time-step |, Z; between

time levels satisfies

T Saon/ (JaG B K S o i

In the fine mesh rectangle version of the {0-level model, with a 10Ckm
grid length, this amounts to a maximum time-step of three minutes with
Cc)g = 300 ms-1. Unconditionally stable implicit schemes can be

used for each subsystem necessitating the solution of ten Helmholtz equations,
but because C,o)3 S ms"‘l it is possible to treat two of the sub-
systems implicitly ( k = 1,2) and the remaining eight explicitly and

: still take a time-step of about 20 minutes. Robert et al's (1972) scheme
amounts to an implicit treatment of equations (43), (14) and (15) which

generates a three-dimensional Helmholtz equation,
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a) The integration scheme for (19)

New values of the dependent variebles at time level ( f)+ 1),
(b = te +(n+1)T ) where T is the time-step and to

the initial time, are obtained using the implicit scheme
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for the extermal and first internal modes, Iz =1, 2 and

the explicit schems
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for the remaining modes, k¥ = 3, 4, ecececsy, 10 The implicit
scheme (20) is unconditionally stable whilst the explicit scheme

(21) is stable provided

o g 4 muzm (bX/(JiCo)k)): AX /(ECC)S)Q
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Eliminating Q k and k in (20) gives
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If we define A lﬁz = ynH + Yl: then

~(E) STt o = fo

] R = 1,2, (22
od b i
where {k- Yh (S-;(-l-‘ + _D_’Z_)+Yh
/ K
Once ({/ ( kb =1,2) has been determined from (22) with
appropriate boundary conditions, we obtain Y;:H from
o U T A TCoh( N Dlm
= i=Te= Vo — ?’ ( ¥ “@ +(%-fk))
n

that is Yk is given by the explicit forward time-step of

the scheme in (21) plus a correction term and we can write

Lk '____;(_e_+ )4_(% £ e +(hf)e @

m N
where g_' = (1, 0, ooooooo ’ O)‘- and g—z = (O, 1, O, onoo,O)Tc

Multiplying this equation by E gives

boe ¥ 8 20 i

L N\ Y j
= b S(u-£)2 + (k-H)E (25)
The computations to produce _I)_“H are performed in the

following order

¥ .
(1) b_ is produced by a forward time-step
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. (ii) compute -F. and {\J_ 5 ‘Fk" ( h* + .'ln)
where 2; is the R th row of _E_‘ and “'I'z
can also be used ag an accurate first guess for

) lh,\ ’ h =1, 2, in the iterative procedure
used to solve the Helmholtz equations (22).
(iii) Solve (22) for W ana Y2

N+
(iv) Adjust h* according to (25) to give h_
n+i

Finally, it is easy to show that u and v are
given by
f‘ A ”n
U = W e b g z?_ﬁn_zﬁ)l ( 37’2-?&)11 sy
3/ OX oX K 3 DX v
and

W

U VL I i ; ? % .
o= % = %‘-‘% z ( A ) 23(22);; 55;) (27)

4e The semi-implicit algorithm

The model equations (7), (8) and (11) are integrated in two stages,
acéomplished by 'splitting' the time rate of change of the dependent
variables into two parts, a technique pioneered by Rgssian meteorologists
particularly Marchuk (see Marchuk et al (1968) )‘. The two stages of the
integration cycle that produces forecast values at time level (n+ 1),
(£ = 4o + (W +1)T ) where T is the time-step, from values at
time level Y\ are: =

(i) the advection stage

Here we integrate forward a single time-step, T , the

. equations
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where (B u /bt > N means the time rate of change of W  due
to the non-linear term N_é with similar interpretations for
Cg_\_/_/b b) N and @b /bt)d , using the two-step Lax-Wendroff
scheme used by Bushby and Timpson (1967) with the grid arrenge-
ments shown in Figures 2(a) and 2(b). Thus we obtain temporary

Awng OLL n+) A
values of U " s v " and E where U e

is given by

+![2 n N

QV\H: un + __E (?B>vx+'[2

o At/

ot
A ne A n+f
with similar expressions for _\_/__ and L o Simple
centred differencey/ ?:ed for space derivatives except at boundaries
where one-gsided differences are used;

(ii) the linear adjustment stage

A
An nef
Fie ’ ! and

nt)
.‘f\_\ are now used as initial conditions for a single

These temporary values

time-step, T , integration of the equations
du h Viggs
S -} e —— — =0
ot > (3 OX f
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using a variant of the scheme described in section 3 which allows
for explicit treatment of the coriolis terms and the difference
( _Cg_ - GZE ). The grid used for this stage is the one in Figure
2(a). Again simple centred differences are used for the space
derivatives. The split semi-implicit scheme is stable provided

the time-step -7~ satisfies the criteria.

T < JA__f/(]\/'mux) arising from the advection stageg

T <« J%/(ﬁCc)g,) i

arising from the linear (28)

ancl ‘.FCCFCO)O)O/ T < JA:;/(E(C,-CO)O adjustment stage

Se

where C; is the 'local' speed of the external gravity wave
corresponding to the variable matrix __E_ « The value of l\/, max
allowed for is 100 i 1 max(C,—Cc)l)%
30ms-1 if Cc,} is the ICAO value corresponding to the QD

: ) v
whilst L°)3’,\\; 55ms

for the ICAO atmosphere,

Discussion

The semi-implicit scheme described in section 4 has been modified to
include the moisture equation (6) and the effect of friction and diffusion,
topography, surface heating and condensation and evaporation of rain which
is forecast by the model. The incorporation and parameterisation of these
physical effects are summarised in Benwell et al (1971) for the explicit
version of the model. The fine mesh rectangle version of the 10-level
model with a 100km horizontel mesh lengthis integrated using the semi-
implicit scheme with a 12 minute time-step compared with a 2% minute time-
step used with Bushby and Timpson's explicit scheme, a factor of 4.8 increase
in the time-step. This gives an overall increase in efficiency of about
4.4, some extra work being needed to ;>repare the right hand sides of the

Helmholtz equations and to solve these equations. The quality of the fine
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mesh forecasts using the semi-implicit scheme with this increased time-step
has not depreciated, in fact on many occasions the semi-implicit scheme
gives better results, particularly for developing depressions, than the
explicit scheme. This may be due to the different horizontal grid arrange-
ments used by the two schemes resulting in a more accurate evaluation of
Bh_/ bx and a\l Ia% with the semi-implicit scheme.
The semi-implicit scheme has been used routinely to produce forecasts on
the 64 x 48 grid point (number of height points) fine mesh rectangle area
since March 13th 1973. The scheme has recently been coded for the 300km
coarse mesh octagon forecast area that covers most of the Northern hemis-

phere and has been successfully run on two winter cases.
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Figure 1. A schematic diagram showing the vertical arrangement of
the model's dependent variables.
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(a) 1Initially and after each complete cycle of
the two-step Lax-Wendroff scheme.

(b) At intermediate time, that is at the end
of the first step of the Lax-Wendroff scheme

Figure 2. Horizontal arrangement of data




: R Ce,h

. 1 302 me
2 115 m s::
3 55 m s
b 37 me
5 23 m 3-1
6 16 m 3-1
7 12 ma
8 9 m s-1
9 7 me™
10 5 me

Table 1, The ten phase speeds of the model's gravity
waves for an ICAO atmosphere




