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4 Experiments in integrating the vorticity advection equation by
a_Lagrangian method,

anom arwee v

. By J. S, Sawyer.

1; Introduction

The basic equation used in numerical forecasts of 500 mb. height with the
barotropic model is
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where '/ is a stream function such that 06 = e S, 1t Yy, and f is
the Coriolis parameter.

Numerical calculations based on the similar equation
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applied to fields of ?‘ represented by analytical functions have demonstrated
that the finite difference approximations comvonly used in rumerical forecasting
lead to signifiicant truncation errors particularly when the dimensions of the
circulation systems concerned are only a few grid lengths.

There is therefore some reason to seck methods of solution of equation (1)
which are less subject to truncation error. The present note reports the result
of some numerical studies of the properties of such an alternative integration
system., The investigations were carried out using equation (2) because some exact
solutions were known for specified analytical forms of '/ , but the method is
applicable by slight extension to equation (1). ’

Equation (2) may be rewritten
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representing the conservation of vorticity, ¥ ' , following the motion of the
fluid. The basis of the present method was to commence the time-integration with
a cloud of fluid elements, distributed over the area of integration and to attribute
to each the initial vorticity of the fluid at its initiel location. Subsequently
the position of each 'fluid element' was calculated from its displacement with the
velocity of the fluid and at suiteble intervals the field of the streams function

/' was reconstructed from the distribution of vorticity, " ¥ , &s given by
the fluid elements each retaining its initial vorticity. The new ¥’ field
provided a new wind field, further displacements of the f luid elements could be
calculated and the integration continued step by step.

Additional advantages of the technique are that the vorticity of the fluid is
automatically conserved and fictitious changes cannot be introduced by truncation
error (although the vorticity may be wrongly located). Moreover, the limitation
on the length of the time step in the integraion arising from the Courant, -
Friedrichs - Lewy stability criterion does not apply and longer time-steps are
possible than with the simple finite difference procedure.

The use of Lagrangian methods in soicing both barotropic and baroclinic
forecast equations has already been advocated by Wiin - Nielsen (1959). He
recommends twd procedures both of which diff'er from that discussed in the following
paragraphs. His first method considers the motion of a single set of fluid
elements only over a period during which they can be advected in a space-smoothed
stream field which can be considercd as unchanging over the period. At the end
of this period (say 12 hours in a practical case) & new set of fluid elements is
formed and followed. This method might lose some of the advantage of strict
vorticity conservation. Wiin-Nielsen's second method works strictly in Lagrangian
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coordinates and leads to more complicated calculations. These considerations
influenced the choice of method which has been studied below.

. Experimental integrations reported in the present note have 2ll been carried
out on stream functions represented by artificial analytical fields and the results
c red with those obtained by usual finite difference methods and with the known
correct solution.

2, The integration method in outline.

The following notation will be used:=-

(L, &7 components of velocity in ‘A and 4/ directions
Y stream function such that ’

e coordinates of rth fluid element at time t

Although the method is Lagrangian e fixed square grid is employed and the symbol
§¥” will be used to dencte the simple finite difference approximation to the
operator 'g?” . Thus

Vi o 1 i " 4
L NI soms 5 A e AL i i VK e 7 i
f d / e A} / AR PR K S 4 o

oy
“

/ 3 ’ . 1
where /1 is the grid length and W .34 etc. are the values of yp at an arrey
of points as illustrated in Fig.1.

Zr is defined as the finite difference approximation to the vorticity of the
rth fluid element at its initial position.

T is time interval between time steps.

The integration procedurc csn be divided into 8 steps which will be described
more fully below., The steps are as follows:-

1, Form a 1list of fluid elements and associated vorticity Zr calculated

from initial stream function .
/ / e
2. Calculate the advecting field of t{- and [~ from yV'
/ R
95 Interpolate /{ and [/’ to positions of the fluid elements.

L4, Calculate displacement of fluid elements and new positions.,af'ter one
time step.

Ha Revise the list of fluid elements to take account of those leaving or
entering the integration area.

6, Form the field of vorticity, Z, at grid points.

7. Calculate a new field of %’ from Z

8. Repeat from step 2.

In more detail the procedure adopted in individual steps was as below.

Step 1

The initial list of fluid elements contained one entry for each grid point
in the basic grid including boundary points. With each fluid element was
associated its initial vorticity which remained unaltered during the calculation,
This was calculated from the simple finite difference approximation
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SteE 2
Fifrtoft (1955) has demonstrated from equation (3) that
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where /° /71&  denotes differentiation following a fictitious motion determined by

a stream function \f//

Where i 17 / - ‘L_z,/' .7l. (;"'(_ \.‘.7- (_'/:

\f, - Y, ]

The field of lf// can be made smoother than that of 2// by suitable choice of a
and it then changes more slowly with time. These properties make 3¢/’more suitable
as an advecting field than %£” leeding to smaller truncation errors and the possi-
bility of longer time steps. VWiin-Nielsen (1959) recommends the use of a = /*/4
and this has been adopted in the present experiments. '

Step 2 therefore consisted of calculating the smoothed stream function
from the relation (with notation of Fig.1)

\
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Subsequently the advecting velocity components ({ and /7 were calculated at all )
grid points including boundary points. Simple 2-power finite differences were used X,
(one-sided differences being used when necessary at boundary points)

At interior points
/
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Step 5

After the initial time step the fluid elements are found, not at grid points,
but within the squares which form the mesh. Interpolation to the position
{7, 5) of the fluid element wes carried out by means of the formula,

; ( g £ ,
£o= (1=SPu=-7)f+ rF ? # % (J (=) F + rfi— -
o i : Sy 2 Yoh

i

Suffixes refer to positions in Fig.2 and 4} may represent either t{ or ‘. .

Step 4

j At each time step except the first the value of the coordinates of the fluid
| element for use at the next time step were calculated from the centred difference
relations

/ = SLai
[ S i
N \/ 2
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i ik
where >< and 7 are preliminary values for use at the next time step.
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The value of

was however also corrected to give a final value

S
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where
p / ’ ;
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At the first time step uncentred differences were uscd and in nlace of (8) the
relations were

. o
w
.

Step 5.

All fluid elements with new coordinates outside the houndary of the grid were
omitted from the list. The list was then brought up to its original length by
adding new fluid elements positioned et boundary points. For this nurpose priority
was given to boundary points distant more than one grid length from any element
already in the list.

For the purpose of testing the integration procedure two techniques were used =
one assumed that true boundary conditions were known and the other that boundary
values were fixed, In the former the new points were introduced with correct
vorticity values. In the latter the vorticity attributed to the new fluid element
was that initially present at the boundary point.

Step 6.

The field of vorticity at the grid points was reconstructed from the vorticity
values of the displaced fluid clements by shering the vorticity carried by the fluid
element between the grid points which formed the corners of the square in which it
lay. Thus in figure 2 a fluid element vorticity Z_ at point P would make a contri-
bution to the vorticity at grid points 0, 1, 5and 8 of (4= " ) (=5 ) Z_,
¥ (er=5 )Zr’ s Zr and ( 1—-*“§‘9 Zr respectively. '

Step f

The new field of {§/, was calculated from the field of vorticity from the
equation Y

(_ri’)

which was solved by the usual iterative Liebmann process. The values of W -1
were used as a f'irst guess to Y and over-relaxation by a factor of L/3 was
employed. The true boundary values of /- were used in most experiments but the
effect of fixed boundary value for %}. was also examined,

5y Some details of the computing pregramme,

In order to economise computer storage and transfers to and from the magnetic
store, all information in the list of fluid elements was stored as 10-bit numbers.
For each fluid element the information consisted of
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Values of X eand | were rounded off to the nearest 1/32.of e grid length., A/
is the number of the square in which the point lies and is convenient for locating
the appropriate values of functions at grid-points,

~

Calculations were carried out on MPTEOR for a 19 x 19'grid of points. They
to rom 1 to 2 minutes per time step depending upon the number of iterations
carried out in solving the Poisson equation in Step 7. This is discussed further
below.

L, Comparison with Fulerian finite difference integrations.

Inte:srations of the barotropic adveection equation (2) were cerried out by the
Lagrangian method on the analytical field of 'f/ given by

i .7
PV, [ = 7
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which represents a circular vortex superimposed upon & uniform current, By
adjustment of the constants a and b the size and the intensity of the vortex

relative to the stream could be varied. The vortex should move along the x-axis
without change of form if equation (2) is satisfied, In all calculetion the grid-
length /2 is taken as unity. If the grid-length is takeén to correspond to that

used currently in numerical forecasting (C.160 mm) then a = 4 gives a trough comparable
in dimension with a large 500 mb. trough, & = 2 represents a small system such as an
active depression and a = 1 a very small but not impossible -~ synoptic system.

The results of an integration in 8 steps with a = 4, b = 8 are illustrated in
Figure 3(a), and (b). Figure 3(c) zives the corresponding result using conventional
finite differcnce methods using 16-steps. The time-interval was chosen so that the
vortex should have moved four grid lengths to the rigant in the absence of truncation
error. (A minimum of 10 time steps are requircd by the Courant-Friedrichs-Lewy
stability criterion). Boundary values were assumed known throughout the integrations.

The errors of the Lagrangien integration are acceptably small - less than 3%
of the maximum changes., Moreover the errors grow very slowly with time; the first
uncentred time step introducing errors comparable with the final error (see Fig.k).

The errors of the integration carried out by the conventional two-point finite
differences are however substantially larger. Moreover the finite difference
integration systcmeticaelly under-estimates the displacement of the vortex, whereas
the Lagrangian integration fixes the centre of vortex within e small fraction of a
grid length.

Experiments have demonstrated that the errors of the usual finite difference
methods increcase ranridly as the size of the vortex is reduced. The accuracy of
the Legrangian integration method does not deteriorate in the same way. This is
strikingly demonstrated by the results of integrations in which the constants in
equation (13) ere chosen as a =1, b = 8. Tnitial field and results are shown in
Figs.5(a), (b) and (c). The conventional finite difference integration Fig.5(c)
has reduced the intensity of the vortex by half, moved it at 20% less than the true
speed and considerably distorted the shape. Although the Courant Friedrichs-Lewy
stebility criterion has been exceeded over a limited erea results cansot be improved
by shorter time-steps. None of these defects is present in the integration carried
out by the Lagrengian technique. The errors are only & little greater than with
the larger vortex a = 4 - the maximum error is less than 7% of the maximum change.

A substantial improvement over the conventional finite difference procedure
is also found for a = 2,

If 5-point differences are used in the Eulerien procedure errors may be
reduced for the larger vortices (a = 4) and results are then better than by the
Legrengion method. However for the smaller vortices (a = 2) end (a = 1) the
improvement possible by means of the 5-point formulae is slight end the Lagrangian
technique gives substantielly.better results.

5. Effect of chenge in length of time step.

e meraa

The integration illustrated in Fig.3 (a = 4 b = 8) has been carried out in
16, 8, 4 and 2 time steps.
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Tﬁé errors of the final &i’ -fields were as follows:-

’ Teble I - Frrors of Legrangian integration for varying length of

time step,
Number of time steps 16 8 b 2
Largest error (without regard to sign) 0+ 021 0:017 0+ 036 0+079
Mean of L larges errors (without 0+ 020 0016 0:019 0079

rcgard to sign)

o

.- - e .

As the time step was lengthcned there was a systematic tendency to "fill" the
vortex but no significent errvor in position.

These results suggest that results of acceptable accuracy can be obtained up
to a time step of one quarter of the total intcgration period in this case, During
such a time step the vortex moves one srid-length and some individual fluid elements
move more than two grid lengths. A corresponding time step in a practical baro-
tropic forccest would be 4 to 6 hours.
A

6. Higher order finite-differences

Experiments were conducted to determine whether the results of the Lagrangian
integrations would be improved if higher order finite differences were used at Step
2 to calculate ;4; and if non-linear intcrpoletion were used in step 3.  However,
neither of these changes produced eny improvement in the result of the integration.

T Effects of smoothing at_Step 2.

In order to determine the desirebility of including space-smoothing of the
field at step 2, integrations have becn carried out both with the original field
t./  as the advecting stream function end with the space~smoothed field yﬂ’ .
Very little difference in the results occurs for e = 4, but for smaller vortex digew °
meter especially for a = 1, the smoothing leads to substantial improvements. The
size of errors with end without smoothing is compared in Table II. (8 time steps
were used in the integretion). :

Teble IT - Comperison of errors with and without space-smoothing of
the _ field

(a) without smoothing (b) with smoothing.

I s G L8 A o AR AN B AT D | B L S ST Gt B AN SEAN T BRIt 4« SR A Uy S W s e el

3 A 2 1
(&) | (®) () | (®) | (&) ,
Largest error (without regard to sign) | 0017 | 0°017 |0°111 | 0+127 | 0+109 ' 0030

Mean of 4 lergest errors (without - ; : ; ; :
regand to -sian) 0016 O 016 0°063 | 0:039 | 0081 ; 0-027

LA

hcmrss o cntns i - ks O A - - — B L ey

8, Number of iterations required to solve the Poisson equction.

Experiments showed thot some 60 to 80 iterations were need to solve the Poisson
equation (12) with ndequcte accurecy, ond in order to achieve this the iteration
procedure was continued until both of the following criteria Wﬁfe eriteric were

setisfied
—

(i) Largest change in computed vclue of 94’ 52: -
(ii) Algebreic sum of ?D@LL - Z, over cll grid points lies between -2~
and +2° 2 ; :

The volue of 4 at the previous time step was used as an initiel guess from
which to start iterations.

As o lorge port of the computing time was teken in solving the Poisson
equation the possibility of reducing the number of iterctions was examined.
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During the latter part of the convergence it was noted that the remaining error
consist:d of more or less uniform errars over much of the field, Gradients of yy
were not affected by large errors. It was therefore thought that the number of
*iterations could be reduced at intermedicte time steps because the resulting y/
fields were used only to evaluate grodients of yQ . This proved to be the case.

Two series of integrations were corried out; one using 10 iterations at all
time steps except the last, the other using 20 iterations ot ¢ll intermediate time
steps. In both cases itercation was continued et the final time step until both
criteric (i) and (ii) above were satisfied.

The integrations in which 20 iterations were made did not show any consistently
greater errors than those in which iterations were continued to 60 or more in order
to satisfy criteria (i) and (ii). Similerly the results of computations for the
smaller vortices (a = 2 and & = 1) were not worsened when iterations were reduced to
10, but the computations for the larger vortex (a = 4) showed o systemetic tendency
to displece the vortex to the left of its true peth. This crises because iteration
sterts from !/-., which,regerded as o field of ¥ , has positive errors shead of
the vortex and negative errors behind. If iteration is not carried to completion |
an error field will remain which produces an excessive gradient of ;. in the
X~ direction. This will introduce o fictitious component of the vortex motion to
the left of its true track.

These experiments indicate that iterations mey be reduced to about 15 per time
step. They might be reduced further if systemctic errors could be eliminated from
the "initial guess" used to start iterations. One practical method would be to
extrapolate from (/( .z ond \./"/,.-, .

9.  Boundery conditions.

One integreation was carried out by the Lagrangion procedure in which the
boundary values of ' and 2 were held constent throughout the integration,
This is similar to the procedure which would have to be adopted in the practical
forecasting problem in which no informetion was used outside the grid area. The
results are shown in Fig.6. together with the results of 2 similer integration using
the usual finite difference procedure and constant on boundary of both 19 x 19
and 17 x 17 grids., The Lagrangian integration was carried out in 4 time steps and
the Eulerien in 16. The initial field of ¢/ wes that shown in Fig.3(a) and the
vortex should have been displaced four grid lengths to the right without change of
form,

Both integrations show large systematic errors of the same general character.
These crise from the erroneous boundery conditions assumed, The errors arc some-
whet greater in the Bulerian method beceause it is necessary to apply the assumption
of no chenge at the first inner row of the grid as well as the boundary. The
former is nearer to the vortex and errors are necessarily larger on it. = The error
field in the Lagrangian results is also smoother and shows no sign of the computa-
tional irregulerity apnearing near the right-hand boundary in the Eulerian results.

It can be deduced from the foregoing results that erroneous boundary conditions
will introduce no more error into integrations by the Lagrangian method than into
those by the more conventional Fulerian technique.

10. Other variants of the Lagrangian technigues.

Two other veriants of the Lagrengian technique were explored but without
advantage.

Firstly, the number of 'fluid elements' employed os a basis for the integration
wes quadrupled, Although some minor errors remained in the programme in respect of
the treatment of the boundaries, it was clear that no advantage, was geined when the
number of 'fluid elements' was increcsed, but computation time was meterially
greater,

Second, using the denser field of 'fluid elements' (four times as many as grid
points) an elternative procedure was used to determine the vorticity at grid points
in 'Step 6' from the vorticity of the 'fluid elements', In this procedure the
vorticity ot the grid point, O, was taken to be the average vorticity of all 'fluid
elements' found within the shaded square in Fig.3.
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This procedure proved unsatisfactory because the 'weight' given to the vorticity of
eny 'fluid element' depended on the number of other 'fluid elements' in the seme
square, As 2 result the total vorticity attributed to the whole fluid fluctuated
~irregularly with consequent irrcgular veriations of the stream function.

1" .Discussion and recormendations.

The Lagrangian technique of integretion of the vorticity advection equation
which has been explored in the present peper has two important advantages over the
Bulerien finite differcnce proccdure generally employed hitherto in numericel fore-
casting. These are

(2) The Lograngien method treats with adequate eccuracy disturbances of
the flow with dimensions of only e few grid lengths. (The Bulerian system
introduces very substantial errors in rcspect of these systems).

(b) The length of the time-step mey be considerably grestier in the

Legrangian system than in the Furlerian technique. The Lagrangian integration
procedure is not subject to computetional instability of the Courant-Friedrichs-Lewy
type and satisfactory results are achieved when disturbances of the flow move as
much as one grid length in a single time step.

There are also (¢) indications that boundary effects moy be somewhat less
troublesome in the Legrangian technique.

As epplied to numerical forecasts with the barotropic model. it may reasonably
be expected that grid-lengths may be increased to 200 nm or 250 nm and time steps to
6 hrs. with an accuracy as good or better than current Eulerian techniques. The
technique is particulerly suited to hemispheric forecasts for extended periods.

The computation time for each time step is somewhat greater for the Lagrangian
technique than for the Eulerien but this is more than compensated by the reduced
number of time steps. An overall reduction of integretion time by 30 to 50% might
reasonably be achieved,

Further improvement of the Lagrangian technique might be obtained by

. (a) repeating the first time step so es to reduce the errors introduced by
the first uncentred differences,

(b) extrapolating the (-~ fiecld linearly to provide a first guess for
iterative solution of the Poisson equation at 'Step 1'. Thereby the number
of iterations might be reduced and the overell process 'speeded up'.

The next step would apnear to be the rewriting of the computation programme
to earry out barotropic forecests on the stenderd 20 x 24 grid for comparison with
the Eulerian results, The programme should contein facilities for testing the
rcfinements (2) and (b) ebove. Experiments in applying the Lagrengien technique
to hemispherical forecasts would also be desirable.

26th July, 1960.
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Fig.5 (b) Final field of ¥ and error field (Lagrangran Method) a=1 b=8 (Btime steps)
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Fig.6 (b) Final ¥ field —Eulerian integration with fixed boundary values a=4 b=8 (16 time steps)




