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Abstract

In this paper we evaluate the impact of targeting adaptive observations in a regional model during a one-
month long trial period. Targeting guidance is obtained by generating a Sensitive Area Prediction (SAP) from
different configurations of the Ensemble Transform Kalman Filter (ETKF). We evaluate the utility of each
ETKF configuration in terms of forecast error and overall skill score by running a series of Observation System
Experiments (OSE) and assimilating the routine and targeted observations. We include the evaluation of the
targeting guidance in the presence of tropical cyclones during the 2005 North Atlantic hurricane season.

1 Introduction

Targeted observations collectively obtained from mobile observation platforms have historically formed part of an
adaptive observing network. Such a network is designed to complement the routine observing network used by
Numerical Weather Prediction (NWP) models. Targeted observations may comprise additional radiosonde ascents,
Aircraft Meteorological Data Relay (AMDAR) aircraft observations, Automatic Shipboard Aerological Program
(ASAP) ships balloon ascents and additional observations from drifting buoys. Each observation is obtained from,
or targeted in, a previously defined targeting region. It is hypothesised that the assimilation of extra observations in
these regions will lead to a reduction in forecast error of NWP models within a pre-defined verification region. The
process of selecting targeting regions is termed Sensitive Area Prediction (SAP) and historically two competing
approaches have been proposed, singular vectors and ensemble-based methods.

The application of singular vectors for targeting observations is discussed in detail in Palmer et al. [16].
Singular vectors have been used to provide a method for estimating the growth of small perturbations in NWP
models over time. By associating them with the notion of predictability, studies have investigated the application
in the estimation of initial errors prior to the production of a forecast. The utility of singular vectors in generating
a SAP has been investigated in various observation system tests, the North Pacific Experiment (NORPEX) [10],
the Fronts and Atlantic Storm-Track EXperiment (FASTEX) [1] and the Atlantic THORPEX Regional Campaign
(ATReC) [11, 18].

An alternative to the singular vector approach is an ensemble-based method for selecting targeting regions,
proposed by Bishop et al. [3]. The ensemble transform technique seeks a deployment of adaptive observations that
minimise the expected prediction error associated with each possible deployment. An important assumption is that
the ensemble used in initialisation gives an accurate estimate of the distribution and range of possible prediction
errors associated with each targeted observation deployment. This approach has been used in conjunction with the
singular vector method during the NORPEX and FASTEX campaigns. Bishop et al. extend their technique further
by proposing the Ensemble Transform Kalman Filter (ETKF) [2]. The ETKF approach attempts to estimate the
reduction in forecast error associated with the deployment of targeted observations using a set of ensemble member
perturbations weighted by a transform matrix. By computing the transform matrix in a lower dimensional space,
the deployment of observations that maximise the reduction in forecast error can be identified. The ETKF technique
was successfully applied during the 2003 Atlantic THORPEX Regional Campaign (ATReC).

Comparisons between the two different approaches for generating SAPs have been attempted [13, 5, 12], though
in reality when used in field campaigns adaptive networks are designed on the basis of predictions from all competing
methods. This paper builds on the previous work [15] undertaken at the UK Met Office (UKMO) using the ETKF
during the 2003 ATReC. It aims to investigate the different configurations of the ETKF. Similar analysis of different
ETKF configurations has been undertaken by Petersen et al. [17] although this work differs in that rather than
statistically evaluating the quality of the SAP we quantify the impact in terms of forecast error using a regional
NWP model. In this way, the utility of different ETKF configurations and resulting SAPs are presented during a
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Figure 1: The targeting time-line used in the ETKF

one month-long trial period. This paper is organised as follows, Section 2 presents a brief overview of observation
targeting and the formulation of the ETKF, Section 3 describes the experimental set-up. Sections 4 and 5 describe
experiments undertaken to evaluate the effect of varying ensemble size and lead time together with a summary
of results obtained. Targeting case studies in the presence of tropical cyclones are presented in Section 6 and a
discussion of the how the ensemble affects the ETKF is given in Section 7. Conclusions from all experiments are
presented in Section 8.

2 Observation targeting and the ETKF

In this section we introduce the observation targeting problem and give a brief overview of the discrete Kalman
Filter. Using this, we describe how the Kalman Filter is used in the ETKF and can be applied to observation
targeting. Throughout this section we follow the notation used in Ide et al. [8].

2.1 The observation targeting problem

Observation targeting is initiated by the design of an optimal adaptive observing network at some initial time
(t;), that complements a routine network for deployment at targeting time (¢4), subsequently assimilated into an
NWP model. With this resulting analysis, forecasts are produced with the aim of reducing the forecast error at
verification time (¢,) within a predefined verification region. The difference between ¢; and ¢4 is referred to as the
lead time (L), and that between tg4 and t, the optimisation time (O;). The targeting time-line is shown in Figure
1. Accurate identification of the targeting area is critical in specifying the optimal adaptive observing network.

2.2 The discrete Kalman Filter

The Kalman Filter [9] has been successfully applied to various problems in many aspects of control theory. In its
simplest form, it is a recursive data processing algorithm, built on Bayesian foundations, attempting to infer the
variables of state from all available data. The Kalman filter estimates a process using a form of feedback control
used in classic predictor-corrector algorithms:

Predict Estimate the process state x at a time step ¢; using time update equations and obtain an a priori estimate
of state x (#;) and covariance P! (¢;) for use in the next time step. This is achieved by projecting forward the
current state analysis x* and error covariances analysis P? in the presence of a process noise estimate Q by

() = X () 1)
Pi(t;) = P*(t;io1) +Q(tio1)

Correct Obtain feedback in the form of measurement y¢, contaminated with process noise R; at time step ¢;.
This is incorporated using a weighted innovation K;, into the a priori estimate to obtain an improved a



posteriori estimate of state x* (¢;) and covariance P? (¢;). H relates the state to the measurement y? at time

step t;.
K, = Pi(t)HT [P (t)H + R
x*(ti) = X (t:) + K (y¢ — Hix" (1)) (2)
P (t;) = (I - K;H;) P* (t;)

We make the following assumptions on the tuning of individual parameters. Using equation 2 we can derive a more
complete definition of the a posteriori estimate of the covariance P? (¢;) by substituting in K;

P2 (tz) = (I — K,Hz) PIC (tz)
(1 — P! () HY [P (t;) HT + R,] Hi) P’ (1) (3)

?

= Pi(t;) — P (t;,) HT [H;P' (t;) HT + R;] 'y, Pt (t;)

and apply this to NWP by assuming:

xf (t | HY) is a forecast estimate of the state of the atmosphere at time ¢ conditional upon the gth sequence of
observations available up to some time t;.

Pf(t] HY) is the associated forecast error covariance estimate at time ¢ conditional upon the gth sequence of
observations available up to some time t;.

We define HY as an operator that assimilates observations at initialisation time ¢; associated with the gth feasible
sequence of observations. Substituting these terms into Equation 3, we use the Kalman Filter to obtain an estimate
of the analysis covariance matrix P? (ti+m | HY +m) at any time ¢;y,, using the forecast error covariance matrix

Pf (tier | H?—&-m—l) as
P> (t;) = P!(t;) - P (t;) HY [H,P' (¢,) HY + R, H,P (1)
p= (tz+m | quer) Pf (tH-TTL ‘ H;'Ierfl)
~Pf (ti+m | H§+m_1) Hﬁm {HngmPf (ti+m ‘ Hg+m—1) Hli]Im + Rg+m
Hg—&-mPf (tier ‘ Hg—&-m—l)

}71 (4)

2.3 Applications to observation targeting

The deployment of additional targeted observations is made with the aim of identifying an optimal deployment
that will minimise the error covariance matrix P2 (¢, | HY) at verification time ¢, in a verification region. The
gth considered deployment from @ total additional deployments that minimises P? (tv | HY +m) can be identified
by evaluating Equation 4 repeatedly. There is though, a huge cost in running a Kalman Filter for an operational
NWP system with a routine observing network let alone utilising an additional one. In their derivation, Bishop

et al. identify significant computational expense in computing the inversion of the residual covariance matrix
-1
[H;?Pf (t; |HE ) HIT + Rg} for two reasons

1. The matrix is very large of size p X p where p ~ O (10°) observations

2. The matrix is ill-conditioned, that is, application of an eigenvalue transformation will result in the largest
eigenvalue being many orders of magnitude larger than the smallest.

2.4 Using an ETKF to approximate the Kalman Filter

There are three novel elements to the solution proposed by Bishop et al. to address these problems delivering a
solution that is tractable.

1. AN ENSEMBLE OF FORECASTS. By making use of an ensemble n = {1...N} of forecasts valid from ini-
tialisation time ¢;, to deployment time t; and out to verification time t,, the outer product of differences
(or perturbations xf (¢ | Hi;,,)) of each nth forecast from the ensemble mean can be used to approximate
the error covariance matrix Pf (¢ | H;|,,) at times {t;,t4,%,}. This approach avoids the need to propagate
covariance error matrices forward in time necessary for running the Kalman Filter.



2. ORTHONORMAL TRANSFORMATIONS. Transformation of the perturbations and attaching variances to each of
the direction vectors allows the ensembles to be used to describe error covariances within a vector subspace of
perturbations. This subspace is significantly smaller making the computation possible. Each transformation
can be computed and applied to the perturbations to give an estimate of the forecast error covariance obtained
by different deployments of observations.

3. SERIAL PROCESSING THEORY. Further reductions in computation expense are obtained by appropriate use of
serial processing theory. This is achieved by first estimating the effect of the routine observation network on
the estimated error covariance before considering the effect of each feasible deployment of adaptive networks.
This assumes that adaptive observation errors are uncorrelated with the routine observation errors.

In the next section we discuss how the error covariances for the routine and adaptive observing networks can be
estimated and used to estimate a signal covariance. Minimisation of this will result in the identification of the
optimal adaptive network.

2.5 Error covariances associated with the routine observing network

Weighting ensemble perturbations with an orthonormal transform allows the specification of error covariances at
any time. For example the first-guess analysis error covariance matrix P? (¢;41 | H;) can be written as the outer
product of perturbations weighted by Tq

P2 (tip1 | Hy) = x' (t; | H;) ToTgx (t; | Hy)" (5)

where Ty is equal to the identity matrix I at time ¢;,;7 but at any future time ¢;,,,, the N x N transformation
matrix T;y,,—1 is generally not equal to the identity matrix. Accurate specification of the transformation matrix
is vital in estimating the forecast error covariance matrix. Bishop et al. show that if an eigenvalue decomposition
is undertaken yielding eigenvectors E? and eigenvalues \? for the gth deployment, the residual covariance matrix
in Equation 4 can be written

—1
H P (b | B ) HEL,, + 177) = B (X7 4 17%9) BT (6)

This is the basis upon which the transformation matrix T", capturing the impact of the routine observing network,

is calculated. Actual implementation differs in that eigenvectors E?¢ are scaled by % such that

TT‘:ET()\T_i_IFXF)_% (7)

To calculate T", an eigenvalue decomposition is undertaken using the ensemble perturbations interpolated to the
locations of the routine observing network and a linearised observation operator H” such that

T (i | HE)T DR (H) X (tig | H) T = 1 (8)

Dgl lists the inverse of the best available estimates of analyses error variance, a measure of the process error,
at time t;. Current ETKF implementation uses values that relate NCEP analyses’ fit to radiosonde observation
taken from Majumdar et al. [14]. Further analysis is required to determine if these values approximate Met Office
analyses’ fit. The analysis error covariance matrix P? (¢;,, | HY) associated with the routine observation network
can now be written using Equations 5 and 7 as

P2 (tiem | HY) = xf (¢ | H) T T xf (¢ | H))T (9)

2.6 Error covariances associated with the adaptive observational network

Equation 4 can be re-written in terms of a signal covariance matrix S (¢;4,, | HY) defined as the estimated outer
product of signal realisations that would be produced by the gth deployment of supplementary and routine obser-
vation network if calculated using the error covariances of the ETKF

p (ti+m | Hg) =Pf (ti-i-m ‘ HZ) -8 (ti-i-m | H?) (10)

This assumes that the targeted and routine analysis error covariances are both specified and uncorrelated with each
other. The signal covariance in Equation 10 is equal to the reduction due to the gth adaptive deployment. The



signal covariance matrix can be expressed in a similar way to the analysis error covariance matrix in Equation 9
by utilising the ensemble of perturbations and serial processing theory

S (tim | H) = x (tiem | H)) VIVIX (10 | H)' (11)

Bishop et al. give a derivation for the N x N transformation matrix V¢ that captures the impact of the deployment
of the gth adaptive network in the presence of the routine observation network (captured in T") as

1

VI = TUE X (X4 1) T (12)

where E? and \? are the eigenvectors and eigenvalues of the matrix product associated the matrix product specified
in a similar way in Equation 8 such that

T (b | H) R (HY) X (1 | H)) T = 1 (13)

Ensemble perturbations are interpolated to the location of a test radiosonde simulating the deployment of an
adaptive observation using a linearised observation operator H?. RY holds the pre-defined radiosonde observational
error covariance matriz taken as specified in Majumdar et al. [14].

2.7 Summary maps

A summary map is a sensitive area prediction generated by the ETKF synthesising the signal covariance matrix
for a large number of different hypothetical adaptive networks in the presence of the routine observation network.
We seek the impact of the routine and adaptive observing network on the analysis error covariance at verification
time ¢,, localised using our localisation operator L, within the verification region. This can be specified using the
ensemble of perturbations and Equation 11 as

Lo[S (t | H9)) = Ly [x' (1 | H)] VIVITL, [ (1, | )" (14)

To obtain an overview of all the information associated with the eigenvectors of S (¢t | H?) Majumdar et al. [14]
propose calculating the signal variance at each point expressed in terms of a total perturbation energy as

o =05 <u’2 Fo? 4 ;f’TQ) (15)

averaged over 850-, 500- and 200 hPa levels. The variables (u’, v’, T’) represent the transformed wind component
and temperature perturbations given in the xf (¢, | H7) V¢ matrix, ¢, is the specific heat and T,— 300 K is the
reference temperature. An example summary map is shown in Figure 2 for targeting on 23 September 2005 12 UTC
as Hurricane Rita is about to make landfall on the southern coastline of the United States. The ETKF generated
SAP identifies that deployment of adaptive observations in an area centred 100°W by 30°N that is estimated to
make an impact on a forecast verifying on 24 September 2005 12 UTC in the verification area defined by the blue

box.

3 Experimental setup

The ETKF may be run with a number of different parameter settings and these are summarised in Table 1. By
varying one or more of the parameters for each ETKF configuration, a different SAP is generated at a given
deployment time t;. One approach to assess the impact of these different configurations is to generate associated
SAPs, then using these as guidance, deploy and assimilate the additional adaptive observations. This approach is
known as an Observation System Experiment (OSE). By repeating this for a month long period and calculating the
Root Mean Square (RMS) error for a basket of forecast fields at different forecast ranges, it is possible to obtain
a quantitative measure of the performance at each ETKF configuration. In this study, targeting guidance used in
all OSEs is derived from the ETKF initialised from the ECMWF ensemble [4]. The range of values considered for
each ETKF parameter is shown in the last column of Table 1.

A Met Office Local Area Model (LAM) [7] is used to evaluate different configurations of the ETKF. The LAM
domain definition is shown in Figure 3(a) together with the bottom left and top right points of the verification
area (V, = {35°N/98°W/45°N/85°W}) used to evaluate each configuration of the ETKF. The verification region



UKMO-SAP based on ECMWF-initialised ETKF signal (colour)
ECMWF control fc Z500 (red dashed contour), ECMWF control fc MSLP (black solid contour)
Valid time: 20050923, 12UT
Trajectory initialised from fc 20050922, 12 +24h (Lead time)
Targ. time: 20050923, 12UT / Verif. time: 20050924, 12UT (opt:24)

= 5 o

) ) R fe At 2 s | I
N2 S LB = | M6130

Figure 2: An example of a summary map showing the signal variance and the control forecast 500 hPa geopotential
height and mean sea level pressure. The blue square is the verification area.

Parameter H Description \ Range of values

The number of members comprising the ensemble used to initialise _

E, the ETKF. E, = {10, 20, 30,40, 50}
The lead time (in hours) or difference between ensemble initiali-

L, . . . Ly = {24,48}
sation ¢; and observation deployment time t4.

o The optimisation time (in hours), i.e. the difference between ob- Or = {24, 48}

¢ servation deployment time ¢4 and forecast verification time ¢,,. e ’
Va The vector of grid points comprising the verification area. Vo = {35°N/98°W /45° N /85°W }

Table 1: ETKF parameters

is chosen such that radiosondes are available for deployment upstream in any direction depending on the location
of the sensitive areas. The LAM resolution is based on a 17 km rotated grid with 38 model levels and uses a
3D-variational assimilation scheme. It has been modified to generate forecasts in the ranges 24-hour, 36-hour
and 48-hour at 00 UTC and 12 UTC of each trial day. At each 00/12 UTC cycle, each OSE is initialised from an
identical observation and assimilation background valid at that time. By doing this, the impact of each deployment
is apparent and not masked by background departures. Boundary conditions for the regional model are obtained
from the Met Office’s Global model. The OSE trial period spans 29 August 2005 12 UTC through to 1 October
2005 12 UTC and includes the four tropical cyclones identified in Table 2, though not all of them pass directly
through V,. Qualitative results for each these high impact events will be given later in this paper.

To construct the routine radiosonde network, stations are subjectively selected from the the existing North
American network and then thinned to approximate resolution of one station per 10° latitude/longitude box.
Additional adaptive observations may then be added by selecting from those remaining not labelled as routine
observing stations. No routine or adaptive observations are deployed within the verification area. Throughout the
trial period all aircraft observations have been removed to improve the radiosonde observation targeting signal.
The impact of aircraft observations has been shown to lead to a positive effect on the reduction of forecast error in
regional models [6]. Re-running these experiments with the inclusion of these observations may lead to a reduction
in any subsequently reported positive impact. Figure 3(a) shows the locations of surface stations that may be

] Tropical cyclone \ Landfall \ Date ‘

Hurricane Katrina | 30°N/89°W 29 August 2005 12 UTC

Hurricane Ophelia | 34°N/77°W | 14 September 2005 00 UTC
Hurricane Rita 30°N/93°W | 24 September 2005 12 UTC
Hurricane Otis 20°N/110°W | 30 September 2005 12 UTC

Table 2: Tropical cyclones occurring during the trial period



OSE (En) (L) (Or)
107207304050 2448 24 48
1031 || * * *
2023 * * *
3033 * * *
4037 * * *
5034 * | X *

Table 3: ETKF configuration of OSEs evaluating the effect of ensemble size. For each OSE, the resolution of the
ensemble used to initialise the ETKF is 2.5° x 2.5°.

considered for observation targeting.

For every 12-hour cycle during the trial period, each configuration of the ETKF is run. The ETKF signal
variance is interpolated to the locations of the targetable radiosonde stations. Radiosonde observations from the
top 10 ranked surface stations maximising the ETKF signal variance are automatically selected for assimilation
into the NWP model. Figure 3(b) shows an example SAP for targeting date t4= 29 August 2005 12 UTC together
with the ETKF signal variance and forecast Mean Sea Level Pressure (MSLP) and geopotential height at 500 hPa
(Z500). The 10 stations selected for targeting are shown in black together with the routine observing network in
red.

Each OSE in this study is identified using the standard naming convention F, O , where E,, is defined as the

Ly
size of the ensemble used to initialise the ETKF, L; is the lead time and O; is the optimisation time. For example,
OSE 5038 refers to an OSE using ETKF targeting guidance produced from a 50 member ensemble with a lead time
of 24 hours and an optimisation time of 48 hours.

The results presented in this study do not include the effect of varying V,, and it is assumed to be constant in
all OSEs. The following sections describe experiments and result summaries for the effect of varying ensemble size
and lead time.

4 The effect of varying ensemble size

This section presents the results obtained from running five different OSEs, each assimilating adaptive observations
deployed using a SAP created from the ETKF initialised with different sized ensembles. The configurations of the
ETKF used in each OSE is shown in Table 3. SAPs are generated for every 12 hour cycle throughout the trial
period on the basis of which targeted observation are deployed and assimilated as previously described.

4.1 Evaluation of OSE SAPs

To quantitatively evaluate the similarity of a SAP pair, two metrics proposed by Majumdar et al. [13] are examined,
the Modified Equitable Threat Score (METS) and a ranking of neighbouring regions.

Modified Equitable Threat Score (METS)

This is a test of similarity between SAPs generated from different configurations of the ETKF. METS is calculated
using Equation 16 by considering the highest X ranked grid points within a SAP pair. The number of common
points contained within each pair is defined by C' and F [C] gives the expected number of grid points that may
occur by chance.

C - E|[C]

METS = 2X —C— E[C]

(16)
E [C] is defined using a similar approach to Majumdar et al. [13] by considering on a leave-one-out basis the mean
value of C over each combination of independent paired configurations of similar comparison. For each OSE defined
in Table 3 , the expected value of E[C] is computed.

For each OSE, Table 4(a) shows the percentage of the 70 cases where the calculated METS score was greater
than zero for X = 50. From these results, the two largest ensembles used in OSEs 502} and 402} have 100% of cases
with a METS score greater than zero. This percentage drops considerably when comparing the largest and smallest
ensemble sizes (OSEs 1034 and 203}) with only 47% of cases having a METS score greater than zero. These results
indicate that larger ensemble pairs offer similar targeting guidance compared to smaller sensible pairs using this



USA-CAMM domain and verification region definition

candidate surface stations for observation targeting (black) and routine observing surface stations (red)
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UKMO-SAP based on ECMWF-initialised ETKF summary map (colour)
ECMWEF control fc Z500 (red dashed contour), ECMWF control fc MSLP (black solid contour)
Valid time: 20050829, 12UT
Trajectory initialised from fc 20050828, 12 +24h (Lead time)
Targ. time: 20050829, 12UT / Verif. time: 20050830, 12UT (opt:24)
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Figure 3: (a) LAM domain and verification area (V) definition (candidate surface stations for observation targeting
and routine surface network shown as black crosses and red circles respectively); (b) An example SAP (t4= 29
August 2005 12 UTC) showing the ETKF signal variance and forecast Mean Sea Level Pressure (MSLP) and
geopotential height at 500 hPa (Z500). Stations selected for targeting are shown as black crosses, routine observing
network shown as red dots.



[ [ 403 [ 0% [ 203 [103] [ [ 403L [ 5031 [ %031 [ 1031

503: | 100% | 88% | 74% | 47% 5031 | 94% | 91% | 7% | 57%
4023 94% | 4% | 52% 4033 9% | 87% | 64%
302 4% | 57% 3023 90% | 67%
2037 67% 2037 7%

(a) (b)

Table 4: Evaluation of the impact of ensemble sizes on a SAP. (a) Entries indicate OSE paired configurations
considered for calculating F [C]. Actual values are the percentage of the cases in which the METS score is greater
than zero for X=50. (b) Percentage of cases in which ranked correlation between any two sets of two targets are
deemed similar at the 99% significance level, for Y = 8 boxes of size 9 x 9 at Y — 2 degrees of freedom.

measure. Percentage of cases with a METS score greater than zero for other OSE pairings vary according to the
similarity in size of the ensemble used.

Ranking of neighbouring region

The second metric considered makes use of a box average of the ETKF signal variance used by each OSE. For each
SAP, Y grid boxes of size G x G are defined over the whole area. The average ETKF signal variance in each box
is calculated and a degree of similarity between any paired combination of OSEs is computed using the Spearman
rank correlation coefficient, p. In this study, a box size of G = 9 corresponding to a lower correlation between
adjacent regions at the expense of a smaller number of boxes is used.

Table 4(b) shows the percentage of ranked correlation of neighbouring regions that are deemed similar at the
99% significance level for each OSE defined in Table 3. In this test, the null hypothesis Hy= there is no correlation
between the ranking of corresponding SAPs. Of the 70 cases, 94% of the paired OSEs 5037, 403} and 97% of the
paired OSEs 4021, 3021 correlate at the 99% significance level. Paired comparisons on disparate sized ensembles,
for example 5037, 103} give the lowest percentage of cases correlating significantly.

4.2 Analysis of resulting forecast error

This section presents verification results from each OSE quantified in terms of mean forecast minus observation
RMS error for the optimisation time. RMS error is calculated by verifying forecasts against sonde and surface
observations within the verification area. Forecast fields used in the verification of each OSE are listed in Table 5.

Verification scores for each forecast field for the optimisation time (O; = 24) are shown in Figures 4(a)-(f).
These show the forecast error for each OSE together with an OSE labelled BASE containing a routine network
deployment only. Verification of geopotential height is shown in Figure 4(a) and it can be seen that at the lower
and upper levels there is little difference in the results from the different ensemble sizes. At mid-levels 500 hPa and
250 hPa, the larger ensemble OSE 5034 is marginally out-performing the smaller ensemble OSE 103} with other
configurations spread out between. The signal for temperature shown in Figure 4(b) is clearer with OSE 102}
giving a larger RMS error compared with OSE 502} at all levels. At the mid-level 500 hPa the larger ensemble
size, OSE 5031, has a reduced RMS error compared with the other OSEs. Results for vector winds shown in Figure
4(c) indicate little clear difference between each of the OSEs with the exception of the 250 hPa level where the
greatest variance in scores exists. The performance observed for OSE 503} is inferior than that for 103}in terms
of RMS error. Verification obtained for relative humidity shown in Figure 4(d) shows greater separation for the
OSE with the larger ensemble giving the best performance at all levels with the exception the 850 hPa level. A
similar pattern is apparent when verifying 24 hour surface forecast fields as shown in Figures 4(e)-(f). The OSEs
initialised with the larger ensembles perform better in terms of exhibiting a lower RMS error for M SLP though
this pattern is less obvious in W,y at T+24.

Broadly speaking, we observe improved performance in terms of a reduction in RMS forecast error for the
24 hour mid-level pressure forecast and surface fields considered here. This improvement is attributable to the
deployment of extra radiosonde observations in sensitive areas identified by the relevant ETKF configuration. By
using all 50 members of the ECMWF ensemble in OSE 5031, this permits the ETKF to sample the probability
distribution functions (pdf) associated with the nine control variables more broadly. This in turn therefore leads
to the generation of a more accurate estimate of the forecast error covariance at targeting and verification times.

10
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Field Pressure fields Surface fields
850 | 700 | 500 | 250 | 100
Z * * * * *
T * * * * *
w * * * * *
RH * * * * *
MSLP *
Wsurf *

Table 5: Forecast fields verified against observations in verification area. Geopotential height (7), temperature (T'),
vector winds (W), relative humidity (RH), mean sea level pressure (M SLP) and surface vector winds (W, ).
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OSE || (E4) (L) (O | (Er)
50 [ 24 48] 244825 [ 1.25
5031 || % | * * *
5055 || [ % * | %
5075 || * * *
4035 || & * * | *

Table 6: ETKF configuration of OSEs for evaluating the effect of lead time. Each OSE is identified using the

n gt , where FE,, is defined as the size of the ensemble used to initialise the ETKF, L; is the lead
t

time and O is the optimisation time defined in Figure 1. For each OSE, the resolution of the ensemble used to

initialise the ETKF is 2.5° x 2.5°.

nomenclature E

[ 150315035 | [ [503 [ 503 |

50%% | 70% 50%% | 60%

5015 54% 5078 50%
(a) (b)

Table 7: Evaluation of the impact of lead time on a SAP. (a) Entries indicate OSE paired configurations considered
for calculating F [C]. Actual values are the percentage of the cases in which the METS score is greater than zero
for X=>50. (b) Percentage of cases in which ranked correlation between any two sets of two targets are deemed
similar at the 99% significance level, for Y = 8 boxes of size 9 x 9 at Y — 2 degrees of freedom.

5 The effect of varying lead time

This section describes the results obtained from a series of OSEs deploying and assimilating adaptive observations in
SAPs created using the ETKF initialised with two different lead times (L; = {24, 48}) at two different optimisation
times (O; = {24,48}). Four separate OSEs are run using SAPs created from the four different configurations of
the ETKF shown in Table 6. In a similar way to the evaluation undertaken of ensemble size, SAPs are generated
for every 12-hour cycle throughout the trial period during which routine and targeted observation are assimilated.
In evaluating we only compare ETKF configurations with the same optimisation time (O;), that is, compare OSE
pairs 5037, 5024 and 5055, 5035.

5.1 Evaluation of OSE SAPs
Modified Equitable Threat Score (METS)

For each OSE considered in Table 6 , the expected value of E [C] is computed using Equation 16 described in
Section 4.1. The results are presented in Table 7(a). The percentage of METS scores greater than zero for OSE
pairs with the shorter optimisation time (O; = 24) is 70%. Using the longer optimisation time (O; = 48), the
percentage of METS score greater than zero falls to 54%. Compared with the SAP compassion’s derived from
differing ensemble sizes, these results show that increasing the lead time results in SAPs with greater differences.

Ranking of neighbouring region

To analyse the box average of ETKF signal variance from different ETKF configurations we compute p for G =9
as described in Section 4.1. Table 7(b) shows the percentage of ranked correlation of neighbouring regions that
are deemed similar at the 99% significance level for each OSE defined in Table 6. For the 70 cases, 60% of the
OSE pairs with the shorter optimisation time (5033, 5032) show a significant correlation compared to 50% with the
longer optimisation time (503%,5033). These results further support the impact that varying the lead time has on
paired SAP comparisons.

5.2 Analysis of resulting forecast error T+24

Plots of forecast error are presented in Figures 5(a)-(f). The scores for OSE BASE without additional radiosonde
deployments are shown as well for comparison. Little difference can be seen between forecast RMS error in Figure
5(a) for geopotential height. Differences are more apparent in Figure 5(b) for temperature at pressure levels 850

13



hPa and 250 hPa with a smaller RMS error apparent in OSE 503} compared to 5023. This reduction in RMS error
is less apparent for vector winds for the OSE with the larger lead time (50%3) exhibiting a smaller RMS error at
pressure levels 700 hPa and 250 hPa shown in Figure 5(c). By contrast, a marked reduction in RMS error can be
seen from plots of T+24 relative humidity in Figure 5(d) below 250 hPa for OSE 503;. Verification against surface
observations gives a marginal reduction in RMS error for forecast field W, and MSLP at T+24 for OSE 5031
compared to 5033.

The use of a shorter lead time leads to improved performance in terms of a reduction in RMS forecast error for
the 24 hour mid-level pressure forecast and surface fields considered here. In these experiments the full ECMWF
ensemble is used for each OSE. Therefore for each experiment, the pdf associated with the nine control variables
is sampled equally. Use of a shorter lead time and therefore more up-to-date NWP forecast fields, leads to a
more accurate estimate of the true pdf which is subsequently used to give an estimate of the future forecast error
covariance.

5.3 Analysis of resulting forecast error T-+48

Analysis of the verification for OSEs 503§ and 5035 with the larger optimisation time (O, = 48) against sonde and
surface observations are presented in Figures 6(a)-(f). The scores for OSE BASE without additional radiosonde
deployments are shown as well for comparison. For all forecast fields, there is little difference between the two
OSEs and clear differences sometimes harder to identify. For instance, little discernible difference in RMS error is
apparent in the verification of geopotential height at any level in Figure 6(a). There is a small reduction in RMS
error across all levels for the OSE with larger lead time (5033) compared with the smaller (5033) for temperature
as shown in Figure 6(b). This signal is also apparent to a lesser extent for verification of vector winds shown in
Figure 6(c). Verification of the OSEs against surface observations give contradicting results. Against forecast field
Wurs shown Figure 6(e) at T+48, OSE 503% shows a reduction if RMS error compared with the larger lead time
(503%) though this signal is not apparent for M SLP as shown in Figure 6(f) with both OSEs giving identical RMS
€ITor scores.

For the mid-level and surface 48 hour forecast fields considered here, results for the different lead times appear
mixed. With a longer forecast range and lead time, a total 96 hour ensemble range between ensemble initialisation
time (¢;) and verification time (¢,) is employed. The ETKF utilises a linearised observation operator (H?) for
the deployment of observations to interpolated ensemble perturbations at these times. It is unlikely that any
linear assumptions will hold at this ensemble range thereby explaining the mixed results obtained in this series of
experiments.
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T+24 Level Mean fc Height (metres): Sonde Obs

T+24 Level Mean fc Temperature (Kelvin): Sonde Obs
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Figure 5: Mean forecast-observation RMS error obtained in the verification of (a)-(d) T+24 geopoten-

tial height, temperature, wind vector and relative humidity against sonde observations at pressure levels
{850, 700, 500, 250, 100}hPa; (e)-(f) surface wind vector and MSLP against surface observations.
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T+48 Level Mean fc Height (metres): Sonde Obs

T+48 Level Mean fc Temperature (Kelvin): Sonde Obs
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Figure 6: Mean forecast-observation RMS error obtained in the verification of (a)-(d) T+48 geopoten-

tial height, temperature, wind vector and relative humidity against sonde observations at pressure levels
{850, 700, 500, 250, 100}hPa; (e)-(f) surface wind vector and MSLP against surface observations.
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Figure 7: Forecast trajectory probability (coloured contour), verification area (blue box), ECMWF ensemble
member trajectory (blue lines), ECMWEF operational trajectory (black line) and observed position (digits) for
hurricanes: (a) Ophelia on 15 September 2005 12 UTC; (b) Otis on 29 September 2005 12 UTC; (c¢) Katrina on 29
August 2005 12 UTC and (d) Rita on 24 September 2005 12 UTC.

6 Case studies

In this section we evaluate different ETKF configurations and present results of the impact of deploying targeted
observations with the aim of improving 24-hour forecast of tropical cyclones entering the pre-defined verification
region. In Section 7, we provide an analysis of these results and discuss them further. During this trial period
four tropical cyclones are active within the LAM domain. We discount hurricanes Ophelia and Otis whose forecast
trajectories are shown in Figures 7(a) and (b) and can be seen not to enter the verification region. In contrast, the
tracks of hurricanes Katrina and Rita (Figures 7(c) and (d)) do cross the verification region and are considered
further. For the Katrina and Rita cases, we present results from the verification of 1-day forecasts as each enter the
verification region. An independent analysis is used in the verification of each case. We consider the paired verifi-
cation of forecast M SLP resulting from the deployment of targeted observations from ETKF guidance initialised
from the smallest and largest ensembles 1033, 5033 and from two different lead times 5037, 50%2.

6.1 Hurricane Katrina case

Figure 8(a) shows the verification of T+24 MSLP for OSE pair 103},5031 (left and right respectively) for the
Katrina case. For this forecast field, the RMS error within the verification area is smaller in the 10-member
ensemble (103 = 0.548) compared with the 50-member ensemble (5037 = 0.583). A qualitative examination of
these plots though, reveals that a larger area just south-west of the central pressure at 87°W,35°N has a forecast
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MSLP between 4.6 and 6.4 Pa lower than the verifying analysis (shown in purple in Figure 8(a)) in OSE 103}
compared with OSE 503;. Figure 8(b) shows the RMS error for OSE pair 5037,5032 (left and right respectively).
The RMS error obtained using the longer lead time (5033 = 0.514) is approximately 12% smaller than that obtained
using a shorter lead time (503 = 0.583). In addition, a further qualitative evaluation of the forecast error highlights
that the forecast M SLP is between 4.6 and 6.4 Pa lower (shown in purple in Figure 8(b)) for a similar central area
associated with Katrina in OSE 5024 compared with OSE 5023.

6.2 Hurricane Rita case

Figure 9(a) shows the verification of T+24 M SLP for OSE pair 1033, 5033 (left and right respectively) for the Rita
case. The RMS error within the verification area is over 18% smaller in the 50-member ensemble (5033 = 1.313)
compared with the 10-member ensemble (103} = 1.612). Most of this reduction in RMS error is obtained in the
north-west of the verification region when Rita is approaching its southern boundary. A qualitative analysis of
this plot indicates that a larger annulus surrounding Rita’s centre at 98°W,33° N shown in red in Figure 9(a),
corresponding to an area with a forecast MSLP between 2.6 and 4.6 Pa lower than the verifying analysis exists
in OSE 103}. Figure 9(b) shows the RMS error for OSE pair 5037, 5034 (left and right respectively) . The RMS
error obtained from using the shorter lead time (503} = 1.313) is approximately 11% smaller than that using the
longer lead time (5073 = 1.481) and a further qualitative evaluation highlights that the larger annulus of incorrectly
forecast M SLP in OSE 5074.

7 Discussion

In Section 4.2 we presented mean verification results of experimentation investigating the effect of ensemble size on
ETKF targeting guidance. Results presented indicate that a deployment of targeted observations in areas identified
with ETKF guidance derived from a larger sized ensemble, leads to reduced forecast error. In contrast, the results
for the Katrina case presented in Section 6.1 indicate that this is not necessarily true for an individual high-impact
event using guidance with the same lead and optimisation times. Similarly results for the same case show that
using a longer lead time, and therefore a less up-to-date forecast to initialise the ETKF, may not necessarily result
in inferior targeting guidance in terms of RMS error. In this section we investigate the properties of the ensembles
used by the ETKF to estimate the analysis error covariance matrix from which targeting guidance for the Katrina
and Rita cases is derived.

Figures 10(a)-(d) show the time-series of T+424 forecast 500 hPa wind vector RMS error verified against sonde
observations within the verification area for the Rita and Katrina cases. Figures 10(a) and (b) show results for
the Katrina case verifying at 30 August 2005 12 UTC and Figures 10(c) and (d) show results for the Rita case
verifying at 26 September 2005 00 UTC . In each plot the black vertical dashed lines in this figure indicate the
period when the tropical cyclone enters and leaves the verification area. From the ensemble size experiments
previously undertaken, targeting guidance generated from the smallest ensemble lead to the largest OSE forecast
error. Results for the Katrina case in Figure 10(a) and the Rita case in Figure 10(c) show that OSE 103} and
2031 respectively, give the smallest forecast error at verification time. Similarly, although the targeting guidance
initialised with the shortest lead time used in 503] out-performs that with the longer lead time, OSE 5032 for the
Rita case, this is not true in the Katrina case. As all OSEs are initialised using an identical background and start
dump, and the observations used only differ in those that have been targeted, observed differences in verification
results are attributed to the configuration of the additionally deployed observations.

Figures 11(a)-(c) show the targeting guidance for improving T+24 forecasts used in OSEs 1033, 503} and 5073
respectively for the Katrina case. Figures 11(d)-(f) show the targeting guidance for improving T+24 forecasts used
in OSEs 2033, 503} and 5023 respectively for the Rita case. In the absence of a diagnostic tool to estimate individual
observation impact on short range forecast error, we seek to explain differences in forecast error by qualitatively
assessing the location of targeted observation with respect to the underlying 500 hPa flow. For the Katrina case,
the underlying mid-level flow is from an area north-west of the verification region. Accurate modelling of this
air mass (shown as a red dashed ellipse) as it engages with the remnants of Katrina (shown as a black dashed
ellipse) entering from the south might be one possible explanation for differences in forecast error observed. For
the best performing OSE 5033 shown in Figures 11(c), three observations have been targeted in this area together
with four in a region just ahead of Katrina to the south of the verification area. OSEs 503} and 103} have fewer
targeted observations deployed in an airmass (shown as a red dashed ellipse) upstream of the verification region
shown in Figures 11(b) and (a). Adopting a similar hypothesis that accurate modelling of the air mass upstream
of the verification region that engages with the remnants of Rita (shown as a black dashed ellipse), may also
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Figure 8: Verification of T+24 MSLP RMS forecast error against an independent all data run analysis for ex-
Hurricane Katrina verifying 30 August 2005 12 UTC for (a) OSE pair 1033, 502 (left and right respectively) and
(b) OSE pair 5023, 5024 (left and right respectively) . The verification region is shown as a blue box. In both plots,
the filled purple region identifies a region at 87°W, 35° N where the forecast M SLP is between 4.6 and 6.4 Pa too
low compared with the verifying analysis.
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Figure 9: Verification of T+24 MSLP RMS forecast error against an independent all data run analysis for ex-
Hurricane Rita verifying 25 September 2005 12 UTC for (a) OSE pair 1033, 503 (left and right respectively) and
(b) OSE pair 5023, 5024 (left and right respectively) . The verification region is shown as a blue box. In both plots,
the filled red region identifies a region at 98°W, 33° N where the forecast M SLP is between 2.6 and 4.6 Pa too low
compared with the verifying analysis.
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explain differences in forecast error for this case. In the worst performing OSE for the Rita case, 5034, no targeted
observations were deployed around Rita directly south of the verification region although the upstream air mass was
well sampled shown in Figure 11(f). By contrast, the second best performing OSE 503; deploys five observations
in the vicinity of Rita and five upstream although none are further west than 110°W of longitude shown in Figure
11(e). The observations deployed in the best performing OSE for the Rita case, OSE 203} are broadly similar but
an additional observation deployment just ahead of the remnants of Rita in the black delineated ellipse shown in
Figure 11(d). If we assume the mid-level flow is an important factor for the difference in impact seen in each OSE,
we go on to examine the information contained within each ensemble to understand the data underpinning each
set of targeting guidance generated. The ETKF uses the spread of perturbations from each ensemble member as
a basis for model uncertainty at targeting and verification time. This is subsequently used an an estimate of the
analysis error covariance matrix at the different times.

Figures 12(a)-(c) show the spread of ensemble member perturbations for forecast temperature at 500 hPa at
targeting time, when Katrina is forecast to be in an area centred at 27°N, 90°W for OSEs 103}, 503 and 503.
Figures 12(d)-(f) show the same information at verification time when Katrina is forecast to be centred in a similar
area. In Section 2.7 we described how targeting guidance is generated from ETKF signal variance. It is this spread
of ensemble member perturbations that the ETKF uses, in estimating the analysis error covariance matrix forming
the basis of the summary maps. It can be seen that the spread of perturbations at targeting and verification time
in Figures 12(c) and (f) are more localised at 27°N, 90°W in OSE 5032 compared with OSEs 103} and 503} in
Figures 12(a) and (d) and Figures 12(b) and (e) respectively. For this case, from these plots it can be seen that
the spatial structure of the spread of member perturbations is smaller when the ETKF utilises an ensemble with
a longer lead time in OSE 5073. This results in fewer observations being deployed in this area at verification time
leaving more available for deployment upstream of the verification region in the air mass (not shown on these plots)
that engages with Katrina. The Rita case by contrast highlights the effect of failing to capture the uncertainty
associated with this tropical cyclone. OSE 5033 is the poorest performing OSE for this case failing to deploy any
targeted observations south of the verification region as seen in Figure 11(f). The ensemble has failed to capture
any perturbation spread in this area at targeting time as shown in Figure 12(i) or within the verification region
at verification time in Figure 12(1). By contrast the marginally best performing OSE 2031 correctly captures a
localised spread of perturbations due south of the verification region at targeting time shown in Figure 12(g) and
yet still has the remnants of Rita in the verification region at verification time in Figure 12(j). OSE 5033 has a
similar spatial distribution of ensemble member perturbations spread at targeting time shown in Figure 12(h) and
at verification time in Figure 12(k). This explains the similar performance in terms of RMS error, seen in OSEs
2031 and 503] verifying on 26 September 2005 00 UTC shown in Figures 10(c) and (d).
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Figure 10: Time-series of mean forecast - observation RMS error for T+24 W500 verified against radiosonde
observations within the verification region. Katrina case verifying 30 August 2005 12 UTC (a) for different ensemble
sizes and (b) different lead times. Rita case verifying 26 September 2005 00 UTC (c) for different ensemble sizes
and (d) different lead times. Black dotted line indicates period that ex-Rita enters the verification region.
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Figure 11: Katrina case ETKF targeting guidance at 29 August 2005 00 UTC targeting guidance with a lead time
of 24 hours and optimisation time of 24 hours for (a) 103}, (b) 5033, (c) 50%4. Rita case ETKF targeting guidance
at 25 September 2005 00UTC targeting guidance with a lead time of 24 hours and optimisation time of 24 hours
for (d) 2024, (e) 5023 and (f) 5023. The 500 hPa mid-level flow area upstream of the verification region is shown
by a red dashed ellipse. Remnants of each tropical cyclone are delineated by a dashed black ellipse.
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Figure 12: Plots of the spread of ensemble member forecast perturbations at 500 hPa at targeting time for Katrina
case (a) 102, (b) 5031, (c) 5022 and at verification time for (d) 1033, (e) 5023, (f) 5022. Targeting time is 29 August
2005 12 UTC and verification time 30 August 2005 12 UTC. Plots of at targeting time for Rita case (g) 2033, (h)
5031, (i) 5073 and at verification time for (j) 2031, (k) 5031, (1) 503:. Targeting time is at 25 September 2005 00
UTC and verification time on 26 September 2005 00 UTC. Dashed box denotes verification region.

8 Conclusions

In this study we have generated SAPs for each 12-hour cycle for a month-long trial period using different configu-
rations of the ETKF. The utility of the targeting guidance from each configuration has been assessed by running a
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Figure 13: Visualisation of overall skill score obtained from each OSE.

series of OSEs. We have evaluated the performance of each OSE by examining a selection of forecast fields at the
appropriate forecast ranges. The performance of each OSE can also be further assessed in terms of an overall skill
score compiled from the complete set of forecast fields during the trial period verified against surface and sonde
observations at different forecast ranges. These skill scores are shown in Figure 13 with the best performing OSEs
lying to the right of the line and poorest performing OSEs to the left.

From our experimentation we have seen that larger ensembles of similar size have a larger percentage of cases
with METS scores greater than zero. This indicates that these configurations of the ETKF are more likely to contain
common grid points in their targeting guidance. This is in contrast to disparate sized ensemble configurations
that exhibit a smaller percentage of cases with a METS score greater than zero indicating that they have fewer
common targeting grid points. This pattern is also seen in the ranked correlation of boxed-average regions. Lower
percentage METS scores greater than zero and significant ranked correlations of boxed-average regions, indicate
that the targeted regions for the shorter optimisation time were more similar in these OSE pairs compared with
the larger optimisation time. Smaller forecast error is seen in the OSEs with the shorter lead time for T+24
MSLP and temperature at different pressure levels but for longer optimisation times, the converse is true with
the longer lead times giving the better performance. The overall skill scores shown in Figure 13 confirm this result
suggesting that better performance is obtained with a longer lead time for the shorter 24 hour optimisation time.
It is important to bear in mind though that the overall skill scores are calculated from the forecast error of all
candidate forecast ranges not simply that chosen as the optimisation time. There is no guarantee that targeting
observations will necessarily improve the forecast error at all forecast ranges, but the overall skill score does serve
as a cursory metric to rank the impact of each OSE.

Our analysis of two tropical cyclone cases studies has shown two important attributes of an ensemble used by
the ETKF in targeting high-impact weather. Firstly, with a finite number of targeting observations available, the
ability of an ensemble to generalise on the synoptic scale is vital. Larger ensembles possessing many more degrees of
freedom and ensembles with shorter lead times possessing more accurate NWP, appear suitable to model small scale
areas of uncertainty. In the case of Katrina, this was seen at the expense of failing to facilitate the deployment of a
share of the targetable observations that adequately capture the broad scale. Clearly human forecaster intervention
would prevent some of the localised deployment seen in this case. Secondly, whilst generalising, the ensemble must
be able to maintain a reasonable level of sensitivity to small scale features. It is unclear whether increasing the
resolution of the ensembles would improve this at the expense of generality, though there may be an optimal balance
obtainable by a multi-model ensemble of different sized ensembles initialised with different lead times.

One possible enhancement under consideration in the generation of SAPs, is the adoption of sequential ETKF.
In this approach error covariances associated with the adaptive network are re-evaluated after every individual
targeted observation deployment. An overhead would be incurred from the iterative generation of a new sensitivity
map for each targetable observations. This would be created in the presence of a routine network and the previously
deployed targeting observations. A perceived benefit of this approach is that it may lead to more optimal guidance
and avoid problems of targeting in one particular region. Conversely, it may be less easy to design a feasible flight
plan for dropsonde deployment from such guidance due to the larger spread of sensitive regions.
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