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STABILITY AND PHASE SPEED ERRORS

’
OF SOME FINITE DIFFERENCE SCHEMES

1e INTRODUCT ION

A theoretical analysis has been made of the stability criteria and the.

phase speed errors of certain finite difference schemes as applied to the one-
dimensional linearised shallow water equations on both unstaggered and staggered

grids. The corresponding results for the advection equation and the gravity wave

equations are also derived.

The schemes considered are the Leapfrog scheme (both explicit and implicit)

and the Lax-Wendroff scheme.

The results are displayed in graphical form, thus providing an easy comparison

of the schemes on the different grids.

2. EQUATTIONS AND GRIDS

The equations considered are :

Case (A) - the single advection equation

de + Uy = 0
-
Case (G) - the coupled gravity wave equations
L
‘ft + ;: L P T 0
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Case (SW) - the shallow water equations
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The grids considered are shown in fig.(1) in case (A) and fig.(2) in cases (G)

2

-’

and (SW). Grids will be referred to according to whether they are staggered or

unsteggered in space and time, e.g. SS U'r means "staggered in space, unstaggered

in time",

The time levels are denoted

v, v*is v |

T-,]

7y

e | for the leap frog scheme, and

for the Lax-Wendroff schene,

3. FINITE FOURIER SERIES, STABILITY CRITERION AND PHASE SPEEDS

The error analysis will be done using the method of finite fourier series.

Assume that variables can be expanded as

where t= 71t Lo J';,,_ ;
the wavelength), w =z |w] e y88%
and el = e/n-

dloy ) = = du(t) <

finite difference equation,

The quantity n J.?C

an =

zﬂ/m

.'\' " 5 J)‘
T ~ 0" rt
= |w] de
™ is the wave number ( 2Tf/n. is

is the (complex) amplification factor

is the phase speed of the wave solution of the

is restricted to the interval O Lo W ok

corresponds to an 4% grid length wave.

From the expression for the amplification factor (w), the stability criterion

is obtained immediately from the condition

f N @

€, R

"
pair of equations

Re (w) and

648t
wit

<o (6;#')

M(Ga‘t)_

lwl ¢ 1 and the phase speed

is obtained by solving for &L  the

3 |

Jm(w) are the real and imaginary parts of W respectively.

Care must be taken to solve both of the above equations so as to obtain the correct

phase.
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The graphs which follow display a-gainst n ;Jc the ratio of the phase speed
of the finite difference wave to the phase speed of the exact wave solution of the

differential equation which is UV, ¢ y - Uste in cases (4), (G), (SW) respectively.

» Graphs of |w]| against ndx  are also included. The exact solution of the
differential equation has |w| = | so [w| & | indicates damping and ] > |
amplification.

Le FINITE DIFFERENCE SCHEMES

For the simple equation 2 0‘(1/*) = Fx, :(—)
?

the finite difference representations are :=

(1)(a) Leapfrog (explicit)

i
M
<

2’:}}; (04114 . ’1"“)

(1)(v) Leapfrog (implicit)

: (a(,,., - oly-,) = ;."(F-rﬂ + Fr~l)

254
(2) Lax-Wendroff
L] | 4 P =
P (dven = oy) Fy
liseeia ) e

The amplification factor is obtained directly in the Lax-Wendroff case and
by solving a quadratic equation in the leapfrog case,

The advection equation and, on grids which are unstaggered in space, the
gravity wave equations and the shallow water equations all give rise to the same
~expression for w (with a wave speed of U, ¢, U+tc respectively). In the cases
(G) and (SW) there are & pair of equations to solve so there are twice as many roots as

in case (A) - the extra roots being obtained by replacing < Wy e
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‘ Leo1(a) LEAPFROG (EXPLICIT)

In case (SW) one readily obtains the expression for the amplification
Go B N E ’I—'>\1' : 4.1

computational mode)

factor

( + for the physicel mode, = for the

where A is given by :-

it (U-("c.) W('r\{%)

Us U gy, B
B N %[u o Fa ) zc,c;“(enrx)_')
Us S+ PN %‘(zu+2c)4;n(.fné‘)c)
Ss S5t X = A-‘E—:—:f[zu o (Pndx) c«k.(uc"u)]
Thus fu} =1 g Wl
and [w] > 1 o Y2 ¢

The computational mode and the physical mode have the same values of |w] and

have phases O and Op related by O, = M = Op ., It is often remarked in the

literature that the computational mode moves with the same speed as the physical mode

but in the opposite direction end with a change of sign of the amplitude every time -step.

S c 2?0 » then it is also

If the condition >\‘\' < |
~C o S0 if the U+c wave is stable then the U —¢

is satisfied with

satisfied with € replaced by

wave is also stable, .

Graphs 1, 2, 3, L show plots of

C' i { “-'(X)
Ute nl (U+e) £
dac

against 1 dx for various values of the parameter o  where = (Ve C)J-,a.:i. Por.
X

graphs 1, 2 and o = ‘Jé:t for graphs 3, L. g
o< ; i
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‘The value of M"(X) is obtained by solving the simultaneous equations 3.4,

. and is not necessarily the same as the "principal value" of the inverse trigonometric

# function.
For the cases 53 U+ and Ss S-r the graphs depend on the quantity U/c and
two values are chosen as being of special interest - U/e = /3 (e.g. U =100ms~' |
| ¢ =300ms™' ) and U/e = 2 (e.ge. V =tooms~' , ¢ =50ms~' ). (In
the 10 = level model, the external and second internal gravity wave speeds are about
_ 300ms™' and 50ms”' respectively.)
For the cases Ug U+ and Ugs S+ , however, the graphs are independent of
U/e and it turns out that these same graphs describe also the cases (A) and
(G) provided the ordinate and the parameter o are redefined to contain only U or ¢
respectively.
In fact there are only two distinct graphs for the four possible cases (G) and
these coincide with the two cases (A) viz., Graph 1 describes case (A) U-,-, cases (G)
UsUr and SsSr and case (SW) Usuy Graph 2 describes case (A) Sy , cases (G)
SS Ur and U, S+ and case (SW) UeSr .
The continuous lines represent the physical modes which are stable for all wdx, The
o dashed lines represent the physical modes which become unstable for some an(Only the stable

portions are shown) The dotted lines represent the éorresponding computational modes,
* 4,1 (b) LEAPFROG ( IMPLICIT)

For this scheme only cases (A) and (G) have been considered. In these cases

one readily finds that

-
. :
[ +ix
where \ is given in case (A) by
e S Ug o (n )
; and in case (G) vy
i N _ et
: ' N = €8% hnwii)
3 e : I (
v
- 5501- % o 3 N 1‘£ .o»t:u(éui)l)

dx




Thus (w] = | always. : .
Thox;e is a computational mode which, like the physical mode, is unconditionally
stable and the phases G, and &p are related by &O¢ = T +0p , b
The computational mode can be interpreted as moving with the same speed and
in the same direction as the physical mode but with a change of sigm of the amplitude
every time step.

Graphs 5 and 6 show plots of

m _ ( M"(k)
c - ndx < ﬁ
&x¢
- ¢dt
for various values of the parameter A = > « (This is for case (G);
for case (A) replace ¢ by U ). The continuous lines represent the physical

modes and the dotted lines the computational modes.

L.2 LAX-WENDROFF

Case (A) Us gives

- = {—:\.X“.‘l‘%t

where b o ) at om (nda) '
dx
so lw) 2| always and the scheme is unconditionally unstable. It is true generally

that the Lax-Wendroff scheme is unstable if the grid is not staggered in time,

Case (A) S.,.‘case (6) Vg S+ end case (sw) Usg Sr give

5
e L2l A Aaltele) b e Al s B G

80 . 1 “~ s 4
(it =z 4 (1=t st
and the scheme is stable if % ]
Graph 7 shows ([w] end graph 8 shows C'/(u-;- c) « The dashed lines
represent modes which are unstable for some (or all) h;i « Both the stable and unstable 3

portions of such curves are shown.
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Case (G) S¢S+ gives

Wz | = Ak s (nin)ea(dndx) = [ snlnb)]”

X
- €  ia
where A I

= it = [,4,;.‘(“&«),,;“({“:;«)]‘{:— [,Lm(enfu)]‘J

and the scheme is stable if o € | e« For A?I the scheme becomes unstable

at long wavelengths. The results of this case are given in graphs 9 and 10.

Case (S¥) 55 S+ @gives
‘ 1
w = | = AXes(ind) = X

where \ 2 it [2(_} .O"M(;fnfﬂ) - C-O"‘M("r“)]
p.&
L A\ h
50 IW,"' - ] - A ,ow‘(;‘né')t) . 6>\
p |
and the scheme is stable provided A = € ax £
| 53¢ U/(. “+ )
% ¢ o Ulc + 1 then instability sets in at the long waves. Graphs 11
and 12 show the results for the two cases U/(_ = '/3 and U/c = 2,

5e REMARKS

Leapfrog (explicit)

The computational mode is stable or unstable for the same values of
nda as is the physical mode. In general the computational mode (when steble)
moves much faster than the physical mode. For long waves the speed of the computatiornal

mode becomes infinite.

Instebility sets in at nd T /2 at o=  in the case
of graph 1 and at ndx =TT at 2l in the case of graph 2, Note that
graph 2 is identical to graph 1 if truncated at ni = /2 st mbx As
doubled and & is halved. Thus staggering effectively removes completely the 2 to 4

grid length waves,

In the cases of graphs 3 and 4, instability sets in at nd =T at

& = I/ ( ‘%f-' = " ) and d = zu'/‘ U%‘{: = '/t) respectively.

However, in both cases instability has already set in at longer wavelengths ( nda between

/2 and T ) for smaller values of ol .
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| Considering the shallow water equations,’2 grid length waves are more accurately

represented on tfxe 55 Ur grid in the case u/c - '/3 than on the 55 Sr grid.
However, the converse is true in the case U/C = 2 « The 2 grid length waves are °'
stationary on the U: Ur grid, and most accurately represented on the Ug Sr grid.

Eor short wavelengths (e.g. 2 to 4 grid length waves in the case of graph 1 )
the choice as to which mode should be called the "physical"™ mode and which the "computational”
mode is not altogether clear. In this report the convention is that a + sign in equation
L.1 represents a physical mode and a - sign a computational modes In the case of o = |

in graph 1 the dotted line for e &n fx & T is an exact solution, so this should

be called the physical mode. However, for o« < | the choice is not so obvious.

Leapfrosz  (implicit)

The implicit case is always worse than the explicit case. Indeed
the best implicit case (smell &% ) is the same as the worst explicit case (small % ),
Increasing Jt seriously reduces the accuracy of the phase speeds. Compare this
result with the explicit case where increasing dX (within the limit of stability)
increases the accuracy of the phase speeds.

Note again that graph 6 is identical to graph 5 truncated at ndi= T/

with mda doubled and o/  halved.

Lax~Wendroff '
On the Ug S+ grid all wavelengths become unstable simultaneously

(at & =1 in graph 7 ) whereas on the 55 5-,— grid instability sets in at large
|

Vic + |

this result with that of the Leapfrog scheme where instability sets in for wavelengths

wavelengths (at o = | in greph 9 and at o < in graph 11 )« Compare
between 2 and 4 grid lengthse
The 2 grid length waves are stationary in all cases on the 55 S+ erid,

and in the cases L ¢ Y on the UsS+ grid,

In all the explicit cases considered, the phase speed accurecy improves rapidly
as the limiting value of o for stabiiity is approached., Moreover in certain cases

this limiting value of o gives the exact solution to the differential equation.
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‘This is because in this limit the finite diff‘erenc.e scheme becomes equivalent in these
cases to the method of characteristics. It .is thus crucial to use the longest time step
compatible with linear computational stability.

. Furthermore, considering for example Graph 3a, a dramatic improvement in the
accuracy of the phase speeds of all waves with wavelengths greater than about 3 grid
lengths, can be achieved by using the unstable value ol = 0-4%8 + This "unstable"
scheme will be computationaly stable provided the unstable wavelengths are completely
eliminated at each time step (e.g. by Fourier analysis).

These remarks are valuable when dealing with the linearised equations
(where U and ¢ are constants), However, in the 10-level model U can vary from
© ms~' to as much as 100 ms~' s and ¢ has 10 distinct values ranging from S ms”
to 300 ms"(and each of these values is slightly varied in itself). Choice of a
timestep to give the best accuracy for a fast gravity (or advection) wave will result
in poor accuracy for a slow wave. As far as the gravity waves are concerned it would
be much better to use a larger timestep for the slow waves and a smaller timestep for the
fast waves thus keeping the best value of & for all waves.
For small values of ¢ , the phase speed ¢! is almost independent of o and
v

for example in the case of the Leapfrog scheme (both explicit and implicit) on a Us U grid

.the curves tend to the curve ? = v (7 f)()/,., da .
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Grids used for the advection equations,
Time levels ave denoted [ ] for the Leapfrog scheme, and ( )

. for the Lax—Wendrqff scheme,
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Grids used for the gravity wave and shallow water equations.
Time levels are denoted [ ] for the Leapfrog scheme, and ( )

for the Lax-Wendroff scheme.
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§ NOTES ON GRAPHS

/
The following graphs display as ordina*te the phase speed ¢ (normalised to
unity flor long wavelengths) for the Leapfrog and Lax-Wendroff schemes and the amplification

factor [wl for the Lax-Wendroff scheme, The abscissa is n.iﬁc

All curves are labelled by the value of the parameter Jl , defined below

cach grapﬁ.
The continuous lines represent physicel modes which are stable.

The dashed lines represent physical modes which are unstable for some (or all) rtJBC.

In the case of the Leapfrog scheme, only the stable portions of such curves are shown.

In the case of the Lax=Viendroff scheme both the stable and unstable portions are shovn.

The dotted lines represent computational modes,
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Graph 3b LEAPFROG (EXPLICIT) PHASE SPEED
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Graph 12a LAX-WENDROFF PHASE SPEED
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Graph 11b LAX-WENDROFF AMPLIFICATION FACTOR
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