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Abstract

The first GCM climate change projections to include dynamic vegetation and an interactive
carbon cycle produced a very significant amplification of global warming over the 21st century (Cox
et al (2000)). Under the IS92a “business as usual” emissions scenario CO;y concentrations reached

about 980ppmv by 2100, which is about 280ppmv higher than when these feedbacks were ignored.
The major contribution to the increased CO2 arose from reductions in soil carbon because global
warming is assumed to accelerate soil respiration. However, there was also a lesser contribution
from an alarming loss of the Amazon rainforest. This paper describes the phenomenon of Amazon
forest dieback under elevated CO2 in the Hadley Centre climate-carbon cycle model.

1 Introduction

About half of the current anthropogenic emissions of carbon dioxide are being absorbed by the
ocean and by land ecosystems (Schimel et al (1996)). The processes involved are known to be
sensitive to climate. Temperature affects the solubility of carbon dioxide in sea-water and the
rate of terrestrial and oceanic biological processes. Vegetation also responds directly to elevated
CO; through increased photosynthesis and reduced transpiration (Sellers et al (1996), Field et
al (1995)), and may also change its structure and distribution in response to any associated
climate change (Betts et al (1997)). The biosphere therefore has great potential to produce
a feedback on the climate change due to anthropogenic CO; emissions. However, simulations
carried out with General Circulation Models (GCMs) have generally neglected the coupling
between the climate and the biosphere. Instead, vegetation distributions have been static and
atmospheric concentrations of CO; have been prescribed based on results from simple carbon
cycle models, which neglect the effects of climate change.

Recently some groups have begun to include representations of the carbon cycle within
GCMs (Friedlingstein et al (2001),Cox et al (2001)). The first climate change projection to
include both an interactive carbon cycle and dynamic vegetation was carried out at the Hadley
Centre, and this showed a significant acceleration of COj increase and climate change arising
from the additional feedback loops (Cox et al (2000)). Under the IS92a “business as usual”
emission scenario the Hadley Centre coupled-climate carbon cycle model produced a CO, con-
centration of about 980 ppmv by 2100, compared to about 700 ppmv when climate affects on
the carbon cycle were excluded This resulted in an amplification of global warming from about

4K to about 5.5K.



Table 1 sumimarises the change in carbon stores from 1860-2100 with and without carbon
cycle feedbacks (“online” and “offline” experiments respectively). In the offline case 1000 GtC
of the integrated emissions are absorbed by the land (633 GtC) and oceans (367 GtC). However,
once climate affects on the carbon cycle are included land storage decreases by about 98 GtC
over the 1860-2100 period. The net change in land carbon storage of 731 GtC is only slightly
offset by increased oceanic uptake of 128 GtC because of higher CO3 . As, a result the fully
coupled “online” run has 731-128 = 603 GtC more atmospheric carbon by 2100, which is
equivalent to about 280 ppmv (see figure 1(a)).

Figure 1 shows the reason for this acceleration of climate change. In the absence of climate
change (dashed lines) the land takes up carbon as a result of CO, -fertilisation of growth,
saturating at a global land carbon sink of about 5.5 GtC/yr. The additional terrestrial carbon
is stored in both vegetation and soils (respective increases of about 223 GtC and 410 GtC
from 1860 to 2100). However, once climate-carbon cycle feedbacks are included (continuous
lines in figure 1) the historical land carbon sink is strongly suppressed, and ultimately flips
to be a global land carbon source from the middle of the 21st century (after the atmospheric
COj; concentration passes about twice its pre-industrial value). The negative impacts of climate
change are most evident in the soil carbon store which releases about 150 GtC by 2100, rather
than storing 410 GtC.

This response of soil carbon to climate change is consistent with the assumption that soil
respiration rate (per unit soil carbon) increases significantly with temperature (Raich and
Schlesinger (1992)). The Hadley Centre Dynamic Global Vegetation Model, “TRIFFID” (Cox
(2001)), assumes the respiration rate to double with every 10K increase in temperature (i.e.
q10 = 2), and this inevitably results in the land becoming an overall carbon source at high CO; ,
provided a few simple conditions are met (Cox et al (2001)). Doubts have been raised about
the assumed response of soil decomposition to warming (e.g. Giardina and Ryan (2000)), but
interannual CO, variability suggests that ¢;0 = 2 is a reasonable assumption at least out to the
decadal timescale (Jones and Cox (2001)). Further work is needed to constrain the longer-term
soil carbon-climate feedbacks but this is not the primary subject of this paper (see for example
Jones et al (in pressb) on this issue).

Figure 1(c) shows that climate change also has a negative impact on carbon storage in
vegetation, resulting in a reduction of global biomass from the middle of the 21st century
onwards. As a consequence the fully coupled run accumulates only about 55 GtC of vegetation
carbon from 1860 to 2100, rather than about 223 GtC when climate affects on the carbon
cycle are excluded. The reduction in vegetation carbon is dominated by South America which
loses about 73 GtC of biomass over the 1860-2100 period (see lowest row of table 1). Cox
et al (2000) describe this as due to climate-driven “dieback” of the rainforest, resulting from
regional drying in Amazonia. Such a loss of rainforest would have catastrophic impacts on the
biodiversity and “ecosystem services” of Amazonia, similar to those anticipated under the most
extreme scenarios of direct human deforestation (Nepstad et al (1999)). It is therefore vital
that we estimate the risk of climate-driven Amazon forest dieback, and identify any relevant
thresholds in the climate-carbon cycle system.

This paper serves as an overview of collaborative work which has been carried out to analyse
aspects of the Hadley Centre’s climate-carbon cycle model response in Amazonia. Subsequent
papers 1n this LBA special issue will deal specifically with biophysical vegetation feedbacks
(Betts et al (2003)), improvements to the parametrization of land-atmosphere CO; fluxes (Har-
ris et al (2003)), and the impacts of these improvements plus errors in the GCM control climate
on the dieback phenomenon (Huntingford et al (2003)).

The next section describes the Hadley Centre climate-carbon cycle GCM, and section 3
compares its simulation of Amazon climate and vegetation to observations. The projections of
climate change are described in sections 4 and 5, the vegetation response is discussed in section
6 and the related biophysical feedbacks are summarised in section 7 (see Betts et al (2003) for



further details). Section 8 discusses outstanding questions, and suggests the additional research
required to address these.

2 Model Description

The climate-carbon cycle GCM used in this study (“HadCM3LC”) is identical to that used by
Cox et al (2000) and described in detail elsewhere (Cox et al (2001)). The GCM is based on the
third Hadley Centre coupled ocean-atmosphere model, HadCM3 Gordon et al (2000) , which we
have coupled to an ocean carbon cycle model (“HadOCC”) and a dynamic global vegetation
model (“TRIFFID”). The atmospheric physics and dynamics are identical to those used in
HadCM3, but the additional computational expense of including an interactive carbon cycle
made 1t necessary to reduce the ocean resolution to 2.5° x 3.75°. Flux-adjustments were used
in the ocean component to prevent the development of climate errors which might compromise
the simulation of the land and ocean carbon cycles.

a Ocean Carbon Cycle

HadOCC simulates the movements of carbon within the ocean system, including exchange of
carbon dioxide gas with the atmosphere, the circulation of dissolved inorganic carbon (known
as DIC or tCO;) within the ocean, and the cycling of carbon by the marine biota. The principle
components of the model are handled as tracers within the physical ocean model. They are:
(nitrogenous) nutrient, phytoplankton, zooplankton, detritus, tCO; and alkalinity.

The air-to-sea flux of carbon dioxide is calculated using standard parametrizations:

FASZIX’(CG—CO> (1)

where ¢, and ¢, are respectively the partial pressures of CO; in the atmosphere and ocean at a
given location. K parametrizes the effect of the wind speed on the gas transfer velocity, using
the formulation of Wanninkhof (1992). Winds are obtained from the atmospheric model. The
partial pressure of CO; in the surface waters is determined by solving equations representing
the sea water acid-base system. The expressions for the dissociation constants of carbonic
acid, hydrogen carbonate, boric acid and water and for the solubility of CO, in seawater are
taken from DOE (1994). Using the salinity dependent boron concentration of Peng (1987),
the acid base system is solved using the method of Bacastow and Keeling (1981) to yield the
concentration of carbonic acid and hence the partial pressure of CO;. The temperature and
salinity values used in these calculations are the local values from the ocean model.

The biological component of HadOCC is an explicit ecosystem model consisting of the
four components; nutrient (assumed to be nitrate), phytoplankton, zooplankton and (sinking)
detritus (Palmer and Totterdell (2001)). The complexity of the model was restricted to just
four compartments in order for it to be economical enough for use in long integrations. This
means that the behaviours of many different species and size-fractions are aggregated into a
single component for each of phytoplankton and zooplankton. The model calculates the flow
of nitrogen between the four components of the ecosystem at each grid box, and also computes
the associated transfers of carbon and alkalinity. The carbon flows have no direct effect on the
behaviour of the ecosystem as growth of phytoplankton is not limited by availability of carbon.

The phytoplankton population changes as a result of the balance between growth, which is
controlled by light level and the local concentration of nutrient, and mortality, which is mostly
as a result of grazing by zooplankton. Detritus, which is formed by zooplankton excretion
and by phyto- and zooplankton mortality, sinks at a fixed rate and slowly remineralises to
reform nutrient and dissolved inorganic carbon. Thus both nutrient and carbon are absorbed
by phytoplankton near the ocean surface, pass up the food chain to zooplankton, and are
eventually remineralised from detritus in the deeper ocean.



b Land Carbon Cycle

TRIFFID defines the state of the terrestrial biosphere in terms of the soil carbon, and the
structure and coverage of five plant functional types (Broadleaf tree, Needleleaf tree, Cy grass,
C,4 grass and shrub) within each model gridbox. The areal coverage, leaf area index and canopy
height of each type are updated based on a carbon balance approach, in which vegetation change
is driven by net carbon fluxes calculated within the “MOSES 2” land surface scheme (Essery
et al (2003)). MOSES 2 is a tiled version of the land surface scheme described by Cox et al
(1999), in which a separate surface flux and temperature is calculated for each of the land-cover
types present in a GCM gridbox. In its standard configuration, MOSES 2 recognises the five
TRIFFID vegetation types plus four non-vegetation land-cover types (bare soil, inland water,
urban areas and land ice). Carbon fluxes for each of the vegetation types are derived using
the coupled photosynthesis-stomatal conductance model developed by Cox et al (1998), which
utilises existing models of leaf- level photosynthesis in Cz and C, plants (Collatz et al (1991),
Collatz et al (1992)). Plant respiration is broken-down into a growth component, which is
proportional to the photosynthetic rate, and a maintenance component which is assumed to
increase exponentially with temperature (gio = 2). The resulting rates of photosynthesis and
plant respiration are dependent on both climate and atmospheric CO, concentration. Therefore,
with this carbon-balance approach, the response of vegetation to climate occurs via climate-
induced changes in the vegetation to atmosphere fluxes of carbon.

The land-atmosphere fluxes are calculated by MOSES 2 on every 30 minute GCM timestep
and time-averaged before being passed to TRIFFID every 10 days. TRIFFID allocates the
average net primary productivity over this coupling period into the growth of the existing
vegetation (leaf, root and wood biomass), and to the expansion of the vegetated area in each
gridbox. Leaf phenology (bud-burst and leaf drop) is updated on an intermediate timescale
of 1 day, using accumulated temperature-dependent leaf turnover rates. After each call to
TRIFFID the land surface parameters required by MOSES 2 (e.g. albedo, roughness length)
are updated based on the new vegetation state, so that changes in the biophysical properties of
the land surface, as well as changes in terrestrial carbon, feedback onto the atmosphere. The
land surface parameters are calculated as a function of the type, height and leaf area index of

the vegetation. Full details on TRIFFID are available in Cox (2001).

3 Simulation of the Pre-industrial Climate and Vegetation of Ama-
zonia

Before any climate projections could be carried out HadCM3LC needed to be brought to a “pre-
industrial” equilibrium state. A good approximation to equilibrium is particularly important
for the carbon cycle because land and ocean carbon sinks are only a small fraction of the gross
surface- atmosphere CO; exchanges, so even a relatively small model imbalance can swamp the
signal of net carbon uptake. The model spinup was carried out as a multistage process involving
a long ocean- only run (2000 model years), and coupled runs (150 model years in total) with
fixed CO; of 290 ppmv to derive the equilibrium vegetation state consistent with the model’s
pre-industrial climate (Cox et al (2001)). Once the long-term net land-atmosphere and ocean-
atmosphere carbon fluxes were close to zero the atmospheric CO; was let free to respond
to variability in the model’s global carbon cycle (assuming zero pre-industrial anthropogenic
CO; emissions). The coupled climate-carbon cycle model was then integrated for 100 years so
that its mean state and variability could be diagnosed.

Figures 2 and 3 compare the spatial and seasonal variations from this pre-industrial run to
climate and vegetation observations for current day Amazonia. This comparison is not as clean
as we would like because of the absence of accessible pre-industrial observations. However, it is



still a useful validation exercise since pre-industrial to present day changes are generally much
smaller than projected changes over the 21st century (see section 4).

The Hadley Centre atmospheric models have typically been amongst the more accurate
GCMs over Amazonia (see for example Gedney et al (2000)), largely because modelling this
region has been a long-standing priority at the Met Office (Lean and Rowntree (1993), Lean
and Rowntree (1997)). However, deficiencies in the simulation are still very apparent. Figure 2
shows maps of the annual mean rainfall, temperature and vegetation cover over South America.
The model correctly produces a rainfall maximum in the west, and minima in the east and
over the Andes. However, rainfall is generally underestimated especially along the north-east
coastline (a common problem in GCMs). The black boxes on the maps of figure 2 represent the
definition of Amazonia for the purposes of calculating area mean values (70°W - 50°W, 15°S
- 0°N). This region has been selected to maintain consistency with previous studies (Gedney
et al (2000)), but its definition is unlikely to affect the qualitative conclusions drawn in this
paper. The area mean rainfall over this box is underestimated in the model by about 20% (4.63
mm/day as opposed to 5.78 mm/day), which has implications for the timing of Amazon dieback
(Huntingford et al (2003)). Annual mean temperature is much more accurately captured with
patterns and magnitudes well reproduced (compare panels (b) and (e) of figure 2). The modelled
mean air temperature over the Amazon box (25.90°C) is remarkably close to the observational
estimate of 25.94°C (New et al (1999)).

Panels (¢) and (f) of figure 2 compare modelled and observed biome distributions over South
America. TRIFFID models the fractional area covered by each of its 5 plant functional types,
so these biomes are derived by post-processing using the rules summarised in table 2. Similar
processing of the IGBP land-cover map (previously converted to TRIFFID PFTs), yields panel
(¢). The model does a reasonable job of reproducing the locations of the grasslands, deserts
and semi-deserts of South America, and also correctly simulates tropical forests in the Amazon
box. However, trees are regularly over-predicted in the savanna regions. Only a fraction of
this error can be attributed to the neglect of direct human deforestation in the model. The
remaining error is most likely to be due to the absence of fire-disturbance processes in this
version of TRIFFID. A forest fire model is under-development to correct this deficiency, but
for the time-being it is worth noting that TRIFFID has a tendency to overestimate rather than
underestimate the robustness of tropical forests to climate variation.

Figure 3 compares the seasonal cycles in rainfall, and mean, maximum and minimum tem-
perature, to an observational dataset (New et al (1999)). The error in the annual mean rainfall
is seen to be largely due to an underestimate of wet season rainfall in northern hemisphere
winter (Dec-Feb) and spring (March- May). The minimum rainfall is well captured, although
the dry season appears a month late. However, the recovery from the dry season appears to be
well reproduced by the model.

Although the observed annual mean daily maximum and minimum temperatures (31.3 °C
and 20.7 °C respectively) are closely matched by the model (32.3 °C and 20.4 °C respectively),
this is in spite of the tendency of the model to overestimate seasonal temperature variation.
Mean, maximum and minimum temperatures all seem to differ too much between wet and dry
seasons, perhaps suggesting a deficiency in cloud cover. However, more definite conclusions on
this will need to await further analysis of both the model and the observational dataset (for
which significant interpolation of sparse available observations is likely to have been required).

Overall, this validation exercise has served to reinforce the view that HadCM3LC has
at least comparable performance in South America to most other coupled ocean-atmosphere
GCMs, even though these typically exclude the additional complexities of dynamic vegetation.
Nevretheless, the deficiencies outlined here will need to be borne in mind when assessing the
climate sensitivity of the model in subsequent sections.



4 Projection of 21st Century Climate Change in Amazonia

Figure 4 shows maps of the change in climate and land carbon (between 2000 and 2100) from
the GCM experiment reported by Cox et al (2000), which used the fully interactive carbon cycle
with IS92a COj emissions. Other greenhouse gas concentrations were prescribed as a function
of year based on offline atmospheric chemistry calculations. Sulphate aerosols were not included
in this experiment. Subsequent runs have shown that the cooling effects of anthropogenic and
volcanic aerosols act to improve the simulation of the historical CO, rise, and also slightly
delay the sink-to-source transition in the terrestrial carbon cycle (Jones et al (in pressa)).
However, these important climatic forcings do not qualitatively change the projected impacts
on the Amazon forest, so here we choose to analyse the original Cox et al (2000) avoiding the
additional complexities of the atmospheric sulphur cycle.

The global mean warming of about 5.5K by 2100 is consistent with an equilibrium climate
sensitivity to doubling CO, of about 3.2K, which is near the centre of the range quoted by the
IPCC (1.9-5.2K, IPCC (2001)). Figure 4(a) shows a significant land-sea temperature contrast
implying a greater potential for impacts on terrestrial ecosystems. The extra warming over
land is partly due to COj -induced stomatal closure which suppresses evaporative cooling at
high CO; (Cox et al (1999)), but there are also important contributions from cloud feedbacks
(Williams et al (2001)). As is usual in GCMs, there is a tendency for the warming to be greatest
in the high northern latitudes due to snow and sea-ice albedo feedbacks. However, the most
severe warming 1s actually seen in western Amazonia where temperatures are projected to rise
by more than 10K by 2100. This area of extreme temperatures is concident with the region
of maximum rainfall reduction (figure 4(b)), suffering a decrease of more than 3 mm day™'
between 2000 and 2100. There is a very significant tendency to warm and dry over most of the
northern half of South America.

Vegetation carbon increases in the forested regions of the northern hemisphere mostly as a
result of CO, -fertilisation of photosynthesis (figure 4(c)). Warming also leads to a longer snow-
free period and therefore an extended growing season in the boreal regions. Tropical ecosystemns
fair less well from the projected changes as the warming generally leads to temperatures which
are above the optimum for photosynthesis. Once again the most marked change in vegetation
carbon is in Amazonia, where biomass drops by more than 8 kg C m~™2. The red regions of
figure 4(c) roughly denote the area of “Amazon dieback”. Figure 4 shows that the loss of
soil carbon 1s much more widespread, with only the far northern tundra regions accumulating
soil carbon between 2000 and 2100. The tendency to lose soil carbon elsewhere is an inevitable
consequence of the assumption that decomposition rate continues to increases with temperature,
while photosynthesis saturates at high CO, (Jenkinson et al (1991), Cox et al (2001)).

Table 3 summarises the area mean changes over the Amazon box (as marked on figure 4)
and constrasts these to global mean changes. Amazonian temperature rises by more than 10K
over the 21st century, and rainfall drops by an alarming 64%. Together these changes lead to
a 78% loss in vegetation carbon and a 72% loss in soil carbon. By contrast, over the same
period the global mean temperature rises by about 4K and rainfall increases by 3%. Global
vegetation carbon increases by about 10 GtC despite the large losses in South America, but
global soil carbon decreases by about 155 GtC. The carbon loss in the Amazon basin of about
50 GtC accounts for 23ppmv of the total CO; increase of about 600ppmyv over the 21st century,
or about a third of the total terrestrial carbon reduction of 145 GtC.

Table 4 serves to separate the causes of these changes in land carbon, by comparing the fully
coupled “online” run to the “offline” run in which there were no climate effects on the carbon
cycle. The online and offline runs were previously shown in figure 1 as the continuous and
dashed lines respectively. In the absence of climate-carbon cycle feedbacks direct COg effects
lead the Amazon box to accumulate about 10 GtC each in vegetation and soil, which is a small
contribution to the global terrestrial carbon accumulation of about 464 GtC. The coupled online



run turns both these accumulations into the previously mentioned losses over the globe and the
Amazon box of 145 GtC and 50 GtC, due to the negative impacts of climate change on land
carbon storage. Climate-carbon cycle feedbacks therefore result in a net loss of about 610 GtC
over the 21st century from global vegetation and soils, of which the Amazon box accounts for
about 70 GtC or 11%. This is to be compared to a difference in atmospheric CO; at 2100 of
about 600 GtC between the online and offline runs (see table 1).

We conclude this section by recognising that Amazon dieback provides a small but significant
contribution to the climate-carbon cycle feedback reported by Cox et al (2000). Carbon losses
in the Amazon box account for about a tenth of the amplification of CO; by 2100 (comparing
online and offline runs), and about one third of the total terrestrial carbon losses projected for
the 21st century in the coupled (online) run. Vegetation and carbon losses in Amazonia are
assoclated with the areas of most extreme warming and drying within the model. In the next
section we discuss this pattern of climate change and its possible relationship to the El Nino

Southern Oscillation (ENSO).

5 Climate Change and ENSO

Model projections of 21st century climate differ most markedly at small scales, implying sig-
nificant uncertainty in regional climate change and its impacts. Nevertheless, some common
features do emerge from GCM patterns of climate change (IPCC (2001)). We have already
mentioned the amplification of high latitude warming by snow and sea-ice albedo feedbacks,
which is almost universally seen in GCM simulations. However, there are other regional details
which are agreed upon by significant subsets of GCMs, such as the tendency for mid-latitude
continents to dry in summer under global warming. The Third Assessment report of the IPCC
also states that “many models show a mean El Nino-like response in the tropical Pacific, with
the central and eastern equatorial Pacific sea surface temperatures projected to warm more
than the western Pacific and with a corresponding mean eastward shift of precipitation” (IPCC
(2001), section F.7, p73). Returning to figure 4 we see that this statement is broadly consistent
with the HadCM3LC climate-carbon cycle projection.

HadCM3LC produces a larger warming in the eastern equatorial Pacific than in the west
(see figure 4(a)). This pattern is common to all previous and current Hadley Centre models,
but appears strongest in 3rd generation models like HadCM3LC (Williams et al (2001)). Such
an east-west variation in Equatorial Pacific SST's i1s reminiscent of an El Nino state, in which
similar SST patterns give rise to rainfall reductions in northern Brazil. So a key question is;
could a long-term El Nino-like SST state give rise to rainfall reductions in Amazonia which
could threaten the existence of the Amazon rainforest?

Previous work has shown that HadCM3LC does a reasonable job in reproducing spatial and
temporal patterns of ENSO variability and their impacts on the global carbon cycle (Jones et
al (2001)). The parent HadCM3 model has been judged to be one of few GCMs in the Coupled
Model Intercomparison project (CMIP) which is able to simulate recognisable NINO3 frequency
spectra (AchutaRao and Sperber (2002),Collins (2001)). Comparison to HadCM3 suggests that
HadCM3LC, despite the lower oceananic horizontal resolution, has at least comparable ENSO
performance. NINO3 anomalies have a standard deviation of around 0.8K and have a broad
peak 1n the spectra at periods of 3-6 years, both features which are quantitatively similar to
that observed. In addition, and a likely consequence of the inclusion of the flux-correction term
in HadCM3LC which corrects some of the errors in the mean climate in the region, the pattern
of ENSO wvariability is more similar to the observed pattern than in the case of HadCMS3.
Deficiencies remain (for example an over correlation of land temperatures with NINO3 over
tropical land), but HadCM3LC seems to be one of the more appropriate GCMs for the study

of these links between El Nino and climate change.



This contention is broadly supported by figure 5 which compares the modelled and observed
relationships between Amazon rainfall and ENSO. Observed climate comes from the CRU
dataset (New et al (1999)) and observed SSTs are from HadISST (Rayner et al (In press)).
For both model and data SST indices are calculated over east Pacific NINO3 region: 150°W -
90°W, 5°S - 5°N, and over the west Pacific: 120°E - 180°E, 5°S - 5°N as December-February
(DJF) mean SST and the difference (east-west) is taken as a measure of both interannual and
longer term ENSO-like variability. The use of east-west SST gradient allows us to remove the
effect of any mean global warming which would be evident if we used, for example, the NINO3
index. The use of a SST gradient is more physically justifiable as it is directly related to the
position of mean atmospheric convection which drives the teleconnection from the ENSO region
to South America. Amazon rainfall is calculated as DJF (wet season) means over the region
marked in figure 4 (70°W - 50°W, 15°S - 0°N). Comparing panels (a) and (b) of figure 5 we see
that the observations and model have similar interannual variability in both Amazon rainfall
and NINO3 index.

The model correctly reproduces the negative correlation between the ENSO SST difference
and and Amazon rainfall on interannual time scales, matching the tendency for Amazon rainfall
to be reduced during El Nino events. Indeed, the model seems to have a slightly higher correla-
tion between the two variables although the observed estimate may by artificially low because
of possible errors in the observations. The key feature of figure 5(b) is that this correlation
1s maintained for longer timescale trends so that as the pattern of SSTs changes to a more
“El Nino-like” mean pattern (still with the interannual variability present) the Amazon rainfall
correspondingly reduces. The amplitude of the relation on interannual time scales is slightly
larger in the model for the period 1860-2000 (-0.74 (mm/day)/K) in comparison with the obser-
vations (-0.63 (mm/day)/K). For the period 2000-2100 the model relationship strengthens to
-2.03 (mm/day)/K, presumably because the SST anomaly is “applied” on a longer time scale
and the teleconnection in enhanced and because of the local rainfall-vegetation feedback in
the Amazon region. The detailed mechanism for this correlation is under investigation (using
the atmospheric component of the model forced with different SST patterns), but for the time
being we view figure 5 as providing circumstantial evidence for a link between El Nino-like
climate change and Amazon climate change in HadCM3LC. As such, it suggests that study of
the climate-carbon cycle system over natural ENSO cycles can provide invaluable insights into
the potential for Amazon dieback under global warming.

6 Vegetation Response to the Projected Climate Change

Figure 6 shows the evolution of Amazon land-cover from the fully coupled online simulation.
It should be noted here that this run (and all others reported in this paper) ignore both direct
anthropogenic deforestation and also natural fire disturbance. Nevertheless, as the Amazon
rainfall drops the broadleaf tree fraction is initially maintained at about 80% by direct CO, ef-
fects, but ultimately starts to reduce once the annual mean rainfall drops below a threshold of
about 3 mm day™' (see figure 7). The location of this threshold is likely to be model-specific,
but the monotonic decrease in rainfall will inevitably lead to forest dieback at some critical
COg, level provided rainfall reduces with CO as in this GCM.

The mechanism of broadleaf tree dieback is the reduction of net primary productivity (NPP)
below the levels necessary to maintain litter losses, which arise from both local processes (e.g.
leaf-fall) and Lotka-type intraspecies competition (Cox (2001)). NPP reduces due to both soil
moisture limitations on photosynthesis, and also increases in maintanence respiration costs
(Cox et al (1999)). This version of TRIFFID assumes that leaf dark respiration and plant
maintenance respiration increase exponentially with surface temperature, with a g9 of 2 (Cox
(2001)). The alternative assumption that respiration remains approximately proportional to



photosynthesis even at high temperatures, acts to prevent NPP becoming negative and can
delay forest dieback (Huntingford et al (2000)). However, once again such a modification can
only influence the critical point at which dieback begins, since reducing NPP (as a result of
moisture limitations) must ultimately make rainforest unsustainable.

When the forest fraction begins to drop (from about 2040 onwards) C, grasses initially
expand to occupy some of the vacant lands. However, the relentless warming and drying
make conditions unfavourable even for this plant functional type, and the Amazon box ends
as predominantly bare-soil (area fraction > 0.5) by 2100. As with the timing of dieback, the
details of this simulation of the land-cover change should be treated with caution since they
depend on known limitations and uncertainties in the TRIFFID vegetation model. For example,
even at mean annual temperatures of approaching 40°C we might expect a significant cover
of semi-desert CAM plants, but this is not possible in TRIFFID since such heat and drought
tolerant species are not recognised by the model. Despite these model deficiencies, it seems
clear that the HadCM3LC climate change in Amazonia would lead to rainforest loss (perhaps
via increased fire frequency), and therefore drastic land-cover change.

This assertion is backed-up by results from a comparison of dynamic global vegetation
models (DGVMs), in offline experiments driven by output from the HadCM2 GCM (Cramer
et al (2001)). An early offline version of TRIFFID (with simplfied surface energy balance and
hydrology calculations) was amongst the 6 DGVMs used in this study. HadCM2 also pro-
duced a drying under high CO; in NE Brazil but this was less widespread than in HadCM3
or HadCM3LC. Nevertheless the DGVM intercomparison study does provide some insight into
the dependence of the Amazon dieback on the vegetation model details, since it subjected all
DGVMs to the same climate change scenario. Figure 8 shows broadleaf tree biomass calcu-
lated over the Amazon box for simulations which excluded the direct effects of COy on plant
physiology. Each model was therefore subject to climate change impacts alone.

Although the detailed trajectories differ, there is a general tendency for Amazon forest
biomass to decrease through the 21st century as temperatures increase and rainfall drops (al-
though less rapidly than in HadCM3LC). The most marked change was seen in the individual-
based gap model “Hybrid” (dotted line), which produced significant Amazon dieback under
both HadCM2 and HadCMS3 scenarios even when direct CO, effects were included (Friend et
al (1997), White et al (1999)). The offline version of TRIFFID (continuous line in figure §)
projects a similar rate of carbon loss under climate change alone, but produced a stronger direct
CO; -effect which prevented such large-scale dieback under the HadCM2 scenario (Cramer et
al (2001)). It therefore seems that DGVMs show a qualitatively similar tendency to reduce
rainforest cover under a common scenario of warming and drying in Amazonia, but that the
extent and rate of this reduction is model dependent. Reducing the uncertainty associated
with vegetation model response to climate change will rely on making better use of field mea-
surements to constrain process reprenstations and internal model parameters (see for example

Harris et al (2003)).

7 Vegetation Feedbacks on the Climate Change

Changes in land-cover can influence climate through a number of feedback loops. We have
already discussed the potential for changes in land-carbon storage to feedback on climate by
modifying the rate of atmospheric CO; increase (section 4). However, land-cover also plays
a large part in determining the surface-to- atmosphere heat, moisture and momentum fluxes,
which in turn affect local energy balance (e.g. through changes in evaporative cooling and
cloud cover) and the atmospheric circulation. Increased CO; tends to cause stomatal closure
which acts to suppress transpiration and amplify surface warming (Cox et al (1999)), but
increased leaf area index may counteract the reduced moisture flux per leaf area (Betts et
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al (1997)). Modelling of the climatic impacts of Amazonian deforestation also indicate the
potential for removal of the rainforest to produce less rainfall through reductions in moisture
recycling and atmospheric moisture convergence (e.g. Lean and Rowntree (1997)). Therefore,
we might expect the climate change-driven deforestation in HadCM3LC to produce significant
biophysical and biogeographical feedbacks.

A full analysis of vegetation feedbacks is provided by Betts et al (2003). Here we briefly
discuss the impacts of forest dieback on the Amazon climate. In order to diagnose this two
further GCM experiments were carried out, both using prescribed 1592a CO; concentrations
to eliminate carbon cycle feedbacks. This scenario provides a trajectory of CO, which is very
similar to that produced in the offline HadCM3LC experiment (see figure 1(a)), rising to a
marginally higher concentration of 713ppmv by 2100. One of the GCM experiments used
fixed vegetation (equivalent to most existing GCM projections), while the other allowed for
vegetation changes via TRIFFID. Figure 9 compares the evolution of the mean temperature
and rainfall over the Amazon box from these two runs. In both cases the decadal mean screen-
level temperature rises to about 309K by the 2090s, with no discernible difference between
the two runs. By comparison the online run (which has much higher CO, by 2100) produced
a 2090s temperature about 2K higher (see figure 7(a)). The impacts of the dieback are more
obvious in the Amazon rainfall (figure 9(b)), with land-cover change producing an amplification
of the drying in the last two decades of the 21st century. Decadal variability makes it difficult
to estimate the magnitude of this effect with any certainty, but it appears to be up to 0.5 mm
day~! by the 2090s, which is similar to the additional rainfall reduction arising from the extra
CO; in the online run (see figure 7(b)).

Forest dieback 1s therefore acting to amplify the Amazon drying which causes it, and may
also be involved in the propogation of the drying pattern from east to west. However, vegetation
feedbacks are not the primary drivers for the drying, since this occurs even in the HadCM3LC
experiment which has prescribed CO, and fixed vegetation.

8 Discussion

The analysis presented in this paper provides a qualitative explanation of the Amazon dieback
phenomenon in the Hadley Centre climate carbon cycle model. However, we have only just
begun to relate the model to aspects of the real Earth system which would allow us to constrain
the projections for the future of the Amazon rainforest. In this section we list the key scientific
questions which need to be answered before the probability of climate-driven Amazon dieback
can be quantified. Where possible tentative answers to these questions are provided based on
the results presented in this paper.

(1) What is the mechanism of Amazon drying in the Hadley Centre’s climate-carbon cycle
model?
Our analysis suggests that the primary cause of Amazonian climate change is the El Nino-
like SST warming pattern which emerges in HadCM3LC as CO; increases. CO; -induced
stomatal closure also acts to warm and dry the Amazon basin, adding slightly to the
regional climate change (Betts et al (2003), Cox et al (1999)). The Amazon drying leads
ultimately to forest dieback which releases CO; to the atmosphere, contributing about
one tenth to the COy amplification by 2100, and further reducing rainfall over Amazonia
(by about 0.5 mm day™!) through changes in the properties of the land-surface. Further
analysis is required to quantify the contributions of the various physical and biological
feedbacks to the overall model response.

(ii) How realistic is the El Nino-like drying pattern in Amazonia as CO; increases?
All of the third generation of the Hadley Centre models tend to produce greater warming
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(i)

in the tropical eastern Pacific than the west (i.e. an El Nino-like mean SST pattern),
leading to reductions in rainfall along the northeast coast of South America. A number
of other GCMs produce a similar SST warming pattern (IPCC (2001)), but this is by no
means common to all models. Figure 10 shows a simple estimate of current uncertainty
in east-west SST gradient change and Amazon rainfall change in all models submitted
to phase 2 of the Coupled Model Intercomparison project (CMIP2 Covey et al (2003) -
http://www-pcmndi.llnl.gov/cmip). The models have been ranked according to the realism
of the interannual relationship betwen SST gradient and Amazon rainfall. HadCM3LC
is the model with the closest interannual relationship to that observed (the slope of the
relationship is slightly different from that shown in fig 5 as this is computed from the
HadCM3LC control, not years 1860-2000 of the transient run) but is also the model with
one of the strongest SST gradient change Amazon rainfall change. Also, while there are
other models which show enhanced warming in the east in comparison to the west, not
even all of that sub-set of models shows Amazon drying. Hence there is considerable work
to be done in both quantifying and understanding uncertainties in climate change in the
tropical Pacific region and associated teleconnections.

The mechanism for the El-Nino-like SST pattern in HadCM3LC appears to be related to
differential cloud feedbacks in the eastern and western Pacific, enhanced by coupled ocean-
atmosphere dynamics, as similar patterns are seen when the atmospheric component is
coupled to a thermodynamic slab ocean (Williams et al (2001)). The similarity of the
climate change pattern to an El Nino state offers some hope of validating some of the key
model sensitivities using data on interannual variability. A previous study has shown that
HadCM3LC can reproduce ENSO variability and the related global carbon cycle response
with reasonable accuracy (Jones et al (2001)), thus providing a constraint on a key internal
model parameter (Jones et al (in pressb)). A key area for future research should be in
relating interannual data and results from other models to allow some estimate of the
uncertainty bounds on the response of Amazon rainfall to an El Nino-type SST anomaly.

How realistic is the vegetation model response to the simulated Amazon drought? The
extent of the projected warming and drying of Amazonia (10K warming plus a 60+ %
rainfall reduction by 2100) inevitably makes the rainforest unsustainable. However, the
threshold for forest dieback is undoubtedly vegetation model dependent and therefore
uncertain. The TRIFFID assumption that plant maintenance respiration increases with
temperature makes the rainforest less robust to warming than it might be (Huntingford
et al (2000)), but the neglect of forest fire probably makes the modelled vegetation more
robust to drying than it is in reality. The HadCM3LC model also underestimates the
rainfall in present-day Amazonia by about 20%, such that any thresholds in rainfall are
likely to be passed earlier (and at lower CO, concentrations) than they might be in the
real Earth system (Huntingford et al (2003)). Nevertheless, the magnitude of the Amazon
climate change in HadCM3LC seems sure to lead to eventual loss of rainforest in all
vegetation models, as suggested by an offline intercomparison of DGVMs (Cramer et al

(2001)).

The increasing availability of CO, flux data offers the possibility of refining and validating
vegetation models to a new level, thereby providing more robust projections of the response
of the Amazon forest to an imposed climate change (Harris et al (2003)). In addition,
artificial droughting experiments and observational campaigns during El Nino events, can
provide valuable information on the response of real forest ecosystems to moisture stress.
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9 Conclusions

This paper has summarised the phenomenon of Amazon-dieback within climate change pro-
jections carried out with the Hadley Centre climate-carbon cycle GCM. In this model, high
CO; leads to an El-Nino-like SST warming pattern which suppresses rainfall across northern
Amazonia. Although CO,; -fertilisation of photosynthesis is able to maintain the rainforest
cover for the first half of the 21st century, the extreme warming and drying eventual lead to
abrupt reductions in the forest fraction. The loss of rainforest exacerbates the Amazon climate
change by releasing CO; to the atmosphere, and by changing the properties of the land-surface.

The modelled Amazon dieback phenomenon is therefore qualitatively understood, but we
are still a long way from being able to estimate the probability of such an ecological catastrophe
occurring in the real Earth system. Further progress on this issue will rely on analysing results
from a range of GCMs and vegetation models (e.g. as part of the Coupled Climate-Carbon
Cycle Model Intercomparison Project, “C*MIP”), each validated more thoroughly with the
latest observational data. This research is urgently required if we are to provide useful guidance
on potentially dangerous levels of CO; for the Amazon rainforest.
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“Offline” | “Online”
CO; emissions (GtC) 1883 1883
Atmospheric Change (GtC) 883 1486
Ocean Storage (GtC) +367 +495
Global Land Storage (GtC) +633 -98
S. American Soil Carbon Storage (GtC) +76 -55
S. American Vegetation Carbon Storage (GtC) +64 -73

Table 1: Change in carbon stores from 1860 to 2100 from the fully interactive climate-carbon cycle
projection (“Ounline” run), and a run in which there were no climate effects on the carbon cycle
(“Offline” run). Changes in South American soil and vegetation carbon are shown for comparison.

TRIFFID Area Fractions
Biome Type | Total Vegetation | Total Tree | Bare Soil
Forest > 0.5
Savanna > 0.5 >02,<05
Grassland > 0.5 <02
Semi-desert >0.2,<0.5
Desert > 0.8

Table 2: Rules used to convert TRIFFID vegetation fractions into Biome types as used in figure 2
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1990s 2090s
Globe | Amazonia | Globe | Amazonia
Screen Temperature(K) 288.0 301.4 292.1 310.6
Precipitation (mm day™") | 2.96 4.56 3.05 1.64
Vegetation Carbon (GtC) | 539.5 45.6 549.7 10.1
Soil Carbon (GtC) 1204.5 19.8 1049.2 5.5

Table 3: Mean climate and land carbon storage from the fully interactive climate-carbon cycle pro-
jection for the decades of the 1990s (left two columns) and the 2090s (right two columns). Values for
Amazonia are contrasted with global mean values (land plus ocean). For the purpose of this study

Amarzonia is defined as the longitude-latitude box 70°W - 50°W, 15°S - 0°N

“Offline” “Online”
Globe | Amazonia | Globe | Amazonia
A Screen Temperature(K) 0.3 0.9 4.1 9.2
A Precipitation (mm day~!) 0.0 -0.1 0.1 -2.9
A Vegetation Carbon (GtC) | 159.0 10.3 10.2 -35.6
A Soil Carbon (GtC) 304.9 10.3 -155.3 -14.3

Table 4: Change in mean climate and land carbon storage (2090s-1990s) from the fully interactive
climate-carbon cycle projection (“Online” run), and a run in which there were no climate effects on
the carbon cycle (“Offline” run). Values for Amazonia are contrasted with land mean values.
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Figure 1: Impact of climate-carbon cycle feedbacks on projections of (a) atmospheric COy concen-
tration, (b) global land carbon uptake, (c) global vegetation carbon and (d) global soil carbon. The
continuous line represents the fully coupled climate-carbon cycle run and the dashed line is from the

run without climate effects on the carbon cycle.
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Figure 4: Maps of changes in climate and land carbon storage over the 21st century from the fully
coupled climate-carbon cycle projections. (a) Screen Temperature, (b) Precipitation, (c¢) Vegetation
Carbon and (d) Soil Carbon. These maps were calculated as the differences between the means for the
2090s and the 1990s. In each map the box over South America represents the definition of Amazonia
for the purposes of this study (70°W - 50°W, 15°S - 0°N) , while the boxes over the Pacific shows the
NINO3 region (150°W - 90°W, 5°S - 5°N), and the western Equatorial Pacific region as used in figure
5 (120°E - 180°E, 5°S - 5°N)
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Figure 5: Comparison of modelled and observed relationship between ENSO and Amazon rainfall.
(a) Amazon rainfall (thin line, right hand axis) and an east Pacific minus west Pacific SST index
(thick line, left hand axis) against year from observational datasets, (b) Amazon rainfall and the same
SST gradient index against year from the climate-carbon cycle model, (¢) Amazon rainfall versus SST
gradient index, Observed (asterixes) and Modelled (diamonds). Linear relationships are indicated for
the model 1860-2000 period and 2000-2100 periods and for observations.
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Figure 6: Evolution of the vegetation cover in the Amazon box from the coupled climate-carbon cycle
simulation
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Figure 7: Evolution of climate and biomass over the Amazon box, from three separate HadCM3LC
simulations with dynamic vegetation. (a) Screen temperature, (b) precipitation, (c) vegetation carbon.
The continuous line represents the fully coupled climate-carbon cycle run, the dashed line is from the
run without climate effects on the carbon cycle, and the stars are from a run with prescribed 1S92a
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COj; concentrations. The related CO; scenarios are shown in figure 1.
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Figure 8: Impact of climate change alone on Amazon forest biomass in 6 different Dynamic Global
Vegetation Models. In this particular experiment each DGVM was driven by the same climate change
scenario from the HadCM2 GCM, but the direct effects of CO; on plant growth were excluded. Results
from an early offline version of TRIFFID are shown as the continuous line.
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Figure 9: Evolution of climate over the Amazon box, from 2 separate HadCM3LC simulations with
prescribed IS92a CO; concentrations. (a) Screen temperature, (b) precipitation. The stars are from
a run with dynamic vegetation and the diamonds are from a run with fixed vegetation.
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Figure 10: Century time scale trends in DJF mean east-west SST gradient versus DJF mean Amazon
rainfall (regions defined in fig. 5) from 20 model simulations submitted to the Coupled Model Inter-
comparison Project (CMIP2) in which COy is increased at the rate of 1% per year (compounded) plus
HadCM3LC. To make a more fair comparison, the HadCM3LC response is taken from years 2000-2080
of a simulation with 1S92a CO; and fixed vegetation (in the simulation with interactive vegetation the
rainfall reduction is approximately twice the value with fixed vegetation). The models are numbered
according to how well they reproduce the interrannual relationship between SST gradient and Amazon
rainfall which is indicated in the table to the right of the figure.
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