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The Meteorological Office Large-Eddy Simulation Model

S.H.Derbyshire, A.R.Brown and A.P.Lock

21%* October 1994

Abstract

The new version of the Meteorological Office large-eddy simulation model is described.
This represents a complete recoding of P.J.Mason’s original model, with many more options
and many structural changes. New options include a deep anelastic (as opposed to in-
compressible Boussinesq) equation set, arbitrarily many scalar variables and detailed cloud
microphysics. The subgrid model can be controlled fairly easily and stochastic backscatter
may be invoked. There is a choice of advection schemes. The model can be run in 1-D, 2-D
or 3-D mode.

A quick-look summary of the main equations and code-structure is available separately.

1 Introduction

Large-eddy simulation (LES) of turbulence has been applied in the Meteorological Office to nu-
merous boundary layer problems with considerable success, as described e.g. by Mason and
Callen (1986), Mason and Thomson (1987), Mason (1989), Mason and Derbyshire (1990),
MacVean (1993).

With the advent of the CRAY-YMP in 1990, it was decided to produce a new 3-D vector
code based on the structure of the IBM code but using vertical rather than horizontal slices.
There is also an option, rarely invoked, to keep slices not currently being used (the ‘packed’
slices) as 32-bit rather than 64-bit fields in order to save memory. At the same time, it was
decided to enhance the scientific flexibility of the model. The basic equations are changed
from incompressible Boussinesq to ‘deep anelastic’, thus removing a restriction to the lower
troposphere. A strictly incompressible Boussinesq system is easily recovered, if desired.

The present Meteorological Office large-eddy model (LEM) is based on a complete recoding
and extension of P.J.Mason’s original model, against which it has been checked. The present
version was first written by S.H.Derbyshire, with contributions from A.R.Brown, M.E.B.Gray,
G.J.Shutts and H.A.Swann. This was later revised and somewhat restructured by M.K.MacVean
to produce a version compatible with the Cray Update facility, with efficient switching of storage
allocation for the various options. As far as possible the code uses standard FORTRAN and
avoids special or non-portable calls.

The LEM has undergone rapid development over the past few years, and this note only
attempts to document the basic version. However this basic version has reached a relatively
steady state with version 1.4, and various studies based on this version have been submitted for
publication and/or conducted with external collaborators. Sources of further information will
be indicated as appropriate.

In §2 we describe the LES philosophy; in §3 the main analytical equations are given; in
§4 software aspects and model structure are discussed; finally the Annex considers numerical
methods.




2 What is a large-eddy model?

Whether because LES is younger than numerical weather prediction, or because turbulence is
such a vexed topic theoretically, ‘philosophical’ issues cannot be entirely avoided. For instance,
some try to evaluate the ‘Smagorinsky subgrid constant’, while others dispute that it is a constant
in any useful sense. Recent ideas about stochastic backscatter have important conceptual and
qualitative implications. Mason (1994) provides the best reference to our approach to these
and other issues, and even the ‘pragmatic’ reader is recommended to study that review paper
before proceeding. Other approaches and applications to engineering flows may be found in
preprints for the 1st ERCOFTAC conference on Direct and Large-Eddy Simulation, Guildford
1994 (A.R.Brown, N.Wood and S.H.Derbyshire have copies).

Meteorologists sometimes ask ‘what is a large-eddy model?’, compared to say a forecast
model. It is not possible to define a LEM in terms of a specific complete equation set, any more
than one can so define a climate model. Most of the equations, especially the ‘physics’, can be
varied. Large-eddy simulation is, by definition, a technique specifically applied to turbulence.
Essentially, it attempts to resolve explicitly the larger scale turbulent motions or eddies (which
contain most of the turbulent energy and are responsible for most of the turbulent transport)
leaving only small scale eddies (which are mainly responsible for the dissipation of kinetic energy)
to be parametrised (for which a simple mixing-length closure should be sufficient). This definition
of a large-eddy simulation is dependent on the model resolution and so perhaps it is useful to
regard a ‘Large-Eddy Model’ as a code incorporating LES but possibly run sometimes in non-
turbulent mode (ie. not completely resolving the energy containing eddies, see §2.1). The
following broadly defines a LEM in the sense used in the Meteorological Office:

(i) Aims:

A LEM is a process research model which aims to represents a limited number of processes,
including high Reynolds-number turbulence, as well as possible. By this means, and in conjunc-
tion with research-quality observations, we seek to improve our description of such processes, so
that their parametrization can be improved in models which need to describe a wider range of
processes in (necessarily) less detail. As with the physics, the geometry is normally kept to the
minimum complexity required to study a particular problem. The word simulation, as opposed
to forecast or simple computation, implies that we are really interested in ensemble properties,
rather than following the exact time-evolution of single realizations, which in a ‘chaotic’ system
is essentially impossible.

(ii) Approzimations:
LES approximations in the subgrid model are geared to represent the 3-D isotropic inertial
subrange, but also (especially in more recent work) to handle the marginally resolved case, e.g.
near a rigid surface.

(iii) Software:
Finally we may regard the Meteorological Office LEM as a code which has proved itself successful
in boundary layer applications, and is therefore a candidate for wider research use. Extensions
should be judged on their merits rather than from any rigid definition of a LEM. However careful
step-by-step validation of processes and numerical schemes is an essential criterion. Derbyshire
and Kershaw (1993) discuss and illustrate some applications.

2.1 Filtering

The basis of LES is most simply described from the Navier-Stokes equations (although in me-

teorology we normally incorporate extensions for buoyancy, rotation and possibly moutnre
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anelastic effects, see §3.1). Consider the Navier-Stokes equations

Du
5 T —VP + Y Vu (1)

where the pressure p is determined by the incompressibility constraint
Yai=4 (2)

together with appropriate boundary conditions. Here u is the flow velocity, D /Dt = 8/8t 4+ u.V
the material derivative (rate-of-change following the flow) and vy the molecular viscosity.

At high Reynolds numbers Re, i.e. at small v, turbulent solutions to Navier-Stokes equa-
tions typically develop structure on very small (sub-millimetre) scales and thus cannot be ac-
curately discretized except with an ultra-fine grid. In other words ‘Direct Simulation’ at true
atmospheric Reynolds numbers is virtually impossible. Even if, through enormous advances in
supercomputing, this eventually became feasible (say in 50 years), such massive computation
would be of doubtful value because we cannot specify surface boundary conditions in such detail
anyway.

LES tackles this problem by filtering the fundamental equations. All forms of the technique
rest on a decomposition of the velocity-field (and analogously of scalar fields) as

u=u, +u, (3)

where by definition
u, = F(u) (4)

is the ‘resolved’ field for some (usually implicit) filtering operator F, which ‘removes the smallest
scales’. Strictly we should refer to u,s as the ‘subfilter’ (rather than ‘subgrid’) flow, because the
filter is not necessarily related to the grid (except that it cannot be finer than the grid).

There is considerable arbitrariness in the precise filter operation. The constraints are (1)
that the filtered (i.e. resolved) fields be sufficiently smooth for numerical accuracy (ii) that we
can parametrize u,s in an acceptable manner. Furthermore, although some LES workers state
that they use a specific (Gaussian/volume-average/other) filter, it is almost impossible to fix
the filter in advance because the effective filter depends on parametrization (see Mason 1994).
We take the view that the purpose of subgrid parametrization is to minimize the dependence of
overall results on the filter scale, i.e. to obtain as nearly as possible the same results at moderate
resolution as at high resolution.

Assuming that the operator F is linear and spatially homogeneous (these assumptions may
not hold exactly, but in practice are the least of our worries), expansion of the Navier-Stokes
equations gives

Du,
7 =V - f(Vp) (5)
where the second-rank tensor 7 is given by
T = —F(u,u,p + u,pu, + ugpu,y) (6)

(using for compactness the ‘dyadic’ convention where the tensor ab is defined to have ijth
component a;b;)

and




It will be noticed that (5) contains no term F (Vmo1V?u), and the reason is simply that this
is negligibly small at high Re, because of the filter. The energy lost from resolved motions is
transferred in the first instance to the subfilter scales, and not directly dissipated by molecular
viscosity. In other words, to a very good approximation molecular viscosity acts only on the
subfilter scales.

The third term on the R.H.S. of (6) resembles a conventional Reynolds-stress term. There
has been a tendency to neglect the first two terms; indeed they are negligible if a scale separation
exists between u, and u,;. However, in general this is not so, and the only case where they
exactly vanish is when the filter represents a sharp spectral cutoff (actually this includes the
case when F simply represents the ensemble mean). Leonard (1974) has analyzed the role and
parametrization of these terms, in addition to more conventional parametrizations of the third
term. However the ‘Leonard terms’ have been controversial in practice and hard to separate
from parametrization issues. Most of the debate on the Leonard terms has been superseded by
more recent parametrization issues, and we attempt to parametrize 7 directly without particular
regard to the differences from a Reynolds-stress term, as discussed in Mason (1994). Brown et
al. (1994) give further comments on what we can, and cannot, expect from LES.

In terms of standard spectral descriptions of turbulence, the basic LES assumption is that we
do not need to resolve the whole of the inertial subrange in order to simulate correctly the fluxes
and variances which are concentrated in the larger ‘energy-containing’ scales. In addressing
atmospheric (high- Re) problems, the advantage over Direct Simulation (at necessarily lower Re)
is particularly clear where the turbulence length-scale is restricted, e.g. by stable stratification.

2.2 Subgrid terms

Despite the strong arguments for distinguishing conceptually between filters and numerical grids
(hence our notation ,s above), the word ‘subgrid’ is almost universally used for convenience.
Henceforth we shall conform to that terminology, but remembering that the effective filter scale
is not simply the grid, but essentially part of the subgrid model. The subscript , for ‘resolved’
is dropped from this point.

The subgrid model is the procedure which computes (estimates for) the subgrid stress 7;; (as
defined above) and subgrid scalar fluxes, hy; for scalars ¢,. In LES, it is common to use a rela-
tively simple subgrid model, preferring to devote computational resources to explicit resolution
of turbulence. The hope is that in a well-resolved simulation, the results should be relatively
insensitive both to the actual resolution and to the details of the subgrid parametrization. See
Mason (1994) for a fuller discussion and some examples of sensitivity tests.

The present model uses a first-order closure (in fact a variant of the Smagorinsky-Lilly
model), with eddy-viscosity v and eddy-diffusivity vp computed pointwise as detailed in §3.2.2,
from the resolved strain-rate, resolved scalar gradients and certain prescribed length scales. It
is the ‘local and instantaneous’ (essentially local equilibrium) assumptions which makes it a
first-order closure.

In spite of the above arguments for simplicity of the subgrid model, the introduction of
‘stochastic backscatter’, whilst remaining broadly within the Smagorinsky-Lilly framework, has
recently been shown to improve simulations of both neutral and stable boundary layers. This
means that certain random terms are added to allow for the fact that, even after filtering, subgrid
fluxes of momentum and scalars are not fully determined by the resolved fields. Beneficial effects
have been shown on boundary layer structure, especially in marginally resolved regions close to
a rigid surface (see Mason 1994, Brown et al. 1994). See §3.2.3 for details concerning the
implementation of backscatter in the present code.




3 Analytical formulation

The analytical formulation is broadly similar to the previous papers already cited, but with fur-
ther options. In particular quasi-Boussinesq (‘anelastic’) rather than incompressible Boussinesq
approximations (see Annex B for derivation and discussion of energetics) may be used. The
subgrid model (§3.2) has a slightly revised stability dependence, and stochastic backscatter may
be used (§3.2.3). Moist thermodynamics and cloud physics options will be described in §3.8 and
§3.9. A quick-look summary of the main equations and code structure is available separately.

3.1 Basic equations

Let p be pressure, §, virtual potential temperature, u the flow velocity, 7 the subgrid stress, ()
the Earth’s angular velocity relative to a local Cartesian coordinate system (z, y, z right-handed,
with z vertical) and g ~ 9.81ms~? the downward gravitational acceleration (assumed constant).
We shall define certain reference profiles (functions of z only) via subscript ,, and primes denote
perturbations from these reference profiles (e.g. p’ = p — p,). These reference profiles and other
variables will be discussed further below. We define also a buoyancy perturbation

B g%/o, (8)

where 6, is the perturbation in virtual potential temperature (see below).

The momentum equation, using Einstein’s summation convention of summation over any
index repeated once (in a product or similar expression), is then

Du; 0 ~107;
o Ring ;9;_(}"/ ps) +83B' + p; 1aT; = 264550k (9)

(where &;j; is the alternating pseudotensor) subject to the mass-flux divergence constraint

2 (pa) =0 (10)

In the incompressible Boussinesq case (10) is the incompressibility constraint; in the anelastic
case it means that compression/expansion purely reflects vertical motion with respect to the
basic-state pressure field. As usual,

0 0
Pt ()

All the velocities mentioned explicitly here are ‘resolved’; we have now dropped the subscript ,
which we used briefly in §2. Subgrid motions enter purely through the parametrizations of 7;;
and hn','.

The equation for a conserved scalar g, moving with the flow, but mixing through small-scale
turbulence, is

Dgn _ _0Ohni

fa Dt Oz; (12)




where hy,; is the subgrid scalar flux of ¢,. Equation (12) applies in particular to the total
water mixing ratio variable (‘Q’) and to the temperature-like variable handled in the code using
the “TH’ routines, unless further cloud physics (condensation, precipitation) are invoked. Details
of the thermodynamic variables are given in §3.8.

Virtual potential temperature is used purely as a measure of buoyancy, and defined in general
by

8, = T,/(p/p,)*/° = p/[Rp(p/p,) "/ (13)

where p, is a constant reference pressure for converting 7' to 6 (normally 1000hPa), and R,
¢p are respectively the gas constant and constant-pressure heat capacity, both for dry air. If

" calculating buoyancy directly from density, this must be performed at the reference pressure p,:

this is part of the anelastic approximation (see Annex B). That is why it is more convenient to
express buoyancy in terms of variables like 6, which remove the pressure-dependence.

In the model, p is not carried as a variable and so 6, is calculated from

6, =6+ 0,((Ry — 1)r7 — Ryrp, — TR) (14)

where R, is the ratio of the molecular weights of dry air and water vapour (taken to be
1.608) and r7, vz, and rg are the total water, liquid water and rain mixing ratios respectively.

NB at time of writing p, in the standard version 1.4 was set to the surface reference pressure.
Many users will prefer a fixed reference pressure; code updates written by H. Swann are available
which introduce a separate variable PSFR (= p,), with default value 1000hPa.

The set p,(z), 65(2) and p,(2) constitute a basic hydrostatically balanced, (but not neces-
sarily isentropic) reference state which is calculated by the model from the reference potential
temperature, 6, (THREF), profile which is input by the user. The perturbation potential tem-
perature is given by 8 = 6 — 6,, and in the incompressible Boussinesq case 8, = 6, (THREF0),
a constant.

For the Earth’s rotation the basic LEM makes the f-plane approximation 2 = (0,0, 1f)
This strictly applies only at the Earth’s poles. The terms in Q;,Q; could easily be inserted in
the routine UVWSRCE, but are significant only for 3-D modes on timescales of a few hours or
more (see Mason and Thomson 1987).

3.1.1 Pressure calculation

To compute equation (9) we need to know p’; this is determined diagnostically by continuity
(10).
Taking the Eulerian time-derivative of (10) and substituting for 2% from (9) gives

d (8 8 g . Do
0=7 (a—zi(P.us')) b (P«E(P /Pa)) + 5, (Pe5i) (39}
where o P P
8 = gbiz—* 5, it a5 ‘a—:’j :a—u = 26k Qjuk (16)
J

i.e. the non-pressure part of the velocity tendency. This leads to a Poisson-like elliptic equation
for p’/p, (it could be converted into a true Poulon eqnatlon by coordinate transformation, but
this is not necessary for our purposes) ey ‘
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5 (Pram¥1p) = o (pus) (17)

The boundary conditions on this equation are (for the rigid-lid case):

0= = s~ Z(w/0) (18)

at top and bottom.

We solve this by Fourier-transforming in the horizontal and then, for each mode, solving the
remaining ordinary differential equation in the vertical.

Note that p’ does not necessarily average horizontally to zero, so that p, is not necessarily
the horizontal-mean pressure. The same applies to other variables (e.g. &').

A different procedure is required when running the model in 1-D. For one-dimensional modes
which vary only in the vertical, these equations might seem over-specified in general, since after
suppression of horizontal variations the remaining ODE can be immediately integrated, to give

top

[p, —36;(5,/,,')] bottom o [p‘islf’?:tom (19)

(where tildes denote the relevant Fourier component). This apparent solvability condition is in
fact plainly consistent with (18) for arbitrary specifications of s;, and thus from an analytical
point of view entirely irrelevant. However, it does imply that any attempt to compute this 1-D
mode on the same basis as the others is severely ill-conditioned numerically (a ‘0/0’ calculation).
Therefore, we simply solve the hydrostatic equation, (18), rather than the Poisson equation used
in 2D and 3D, (17). (NB this point is purely computational and involves no approximation.)

3.2 The subgrid model

We now give details of the subgrid model, which was described in general terms in §2.

3.2.1 The first-order closure

The subgrid stress, 7;;, and scalar flux, h,, ;, are specified by

Tij = ps¥Si; (20)
hni = —p,v0q,/0z; (21)

where v is the subgrid eddy-viscosity, v, the corresponding diffusivity for scalars and

Ou; Ou;
Bl BN S el )
Pigmippnchige: (22)

The tensor S;; is a symmetric traceless second-rank tensor in three dimensions, and therefore

has 9 — 3 — 1 = 5 independent components. By rotation to a local coordinate system we
could eliminate 2, but this still leaves 3 independent components. In practice we shall base our i




between local strain and mean shear, and makes assumptions not only about local equilibrium
but also about the combination of different components of strain.

As specified above 7;; = p,vS;; is traceless, in the incompressible Boussinesq case. In effect
we have subtracted the trace or ‘isotropic’ part &;j7i ~ 6;j1p,F(uZ) from the subgrid stress.
This part has no dynamical effect on the flow because it is entirely compensated for by pressure.
The only consequence is that, with the present definition of 7, p’ in the above equations should
strictly be interpreted as p’ + 1 p,F(ug?).

In the anelastic case S;; # 0 in general because of the different continuity equation. In
principle we should perhaps modify our strain, and hence viscosity calculation. However the
effect on the strain-modulus of removing the trace of S;; is O(ly/H)? where I; is the filter scale
and H the scale of variation of p,. This effect is negligible compared to the other uncertainties
in parametrization.

3.2.2 Specification of viscosity

The classical Smagorinsky-Lilly approach, in inertial subranges, is to set
v = (c,A)'S =235

where A is the grid spacing (often assumed equal in all directions in the early literature) and

1/2
S = I5:ll/v2 = ( ). & ) (23)

1,7=1,3

(so that for the special case of parallel laminar flow § is just the wind-shear) and ¢, is
traditionally regarded as a constant (~ 0.2). However Mason and Callen (1986) argued that
¢; was not best regarded as a universal constant. Instead they focused on the length scale, Ao,
and argued that this was related to the filter scale I;. Larger values of c, were associated with
an increase in the filter scale relative to the grid scale. This may not be an optimum use of
computational resources, but is not in any sense fundamentally wrong. Small values of ¢, may
lead to rough fields and hence discretization errors. They argued therefore not for a single value
of ¢,, but in effect for a broad range of acceptable values.

If the grid is strongly anisotropic then, because we are dealing with 3-D turbulence, it is the
coarsest rather than finest direction which matters most. Hence, to compute c, diagnostically
it is better to compare Ao with an arithmetic mean A4y = (Az + Ay + Az)/3 than with a
geometric mean Agy = (AzAyAz)'/? because the latter implies that the filter scale vanishes
as any one of Az, Ay, Az — 0. (Surprisingly, the latter definition has occasionally been used in
the literature.) In practice, in most of our simulations Az < Az, Ay and hence )y may as well
be compared with the horizontal grid spacing.

In practice, we usually use values of Ao which correspond to ¢, ~ 0.23. In large-eddy
simulations in which the resolution is likely to be marginal (e.g. pure shear flow or statically
stable conditions) it is common to use rather smaller values (~ 0.15). This accepts the possibility
of some finite difference errors in order to ensure that the turbulence remains reasonably well
resolved. Following Mason and Callen, we argue that this reduction is made solely to make best
use of the available resources, rather than as a result of any fundamental association of different
values of ¢, with different flow types. In the limit of poor resolution, when A 2 the depth of the

turbulent layer (H), the model is no longer acts as a true LES (at least locally), but more like
a 1-D model or NWP model in its representation of turbulence. In such circumstances, rough




consistency with the Unified model boundary-layer scheme would suggest using Ag ~ [0.15H].
In our subgrid model, the basic mixing length, Ao, is input directly through variable RMLMAX
in namelist SUBMODEL.

We make two important extensions to this classical approach, reducing the mixing length in
proximity to a wall, and modifying it to take account of the dynamical effects of the pointwise
Richardson-number (Ri,) through the stability functions f,, and fa- In the dry case, Ri, is
defined by

Ri, = (¢/0,)(06/93) /S (24)

A discussion of the calculation of the moist Richardson number can be found in §3.8.2.
Viscosity and diffusivity are prescribed through

v = A?Sfn(Ri,) and vy, = A28 fi,(Ri,) (25)
where 1 1 3
% = % * Wt o) i

Here 2 is the roughness length of the surface and k ~ 0.4 is the von Kérmén constant.
Equation (26) provides a smooth match between the interior of the flow, where A = Ao, and
the near-wall regime where the characteristic length scale must reduce and become proportional
to distance from the surface. In some simulations it is appropriate to reduce the length scale
similarly towards a rigid upper boundary or strong capping inversion. See M.K.MacVean for
details.

In the code A, Ao are called RNEUTML, RMLMAX respectively.

The extension of the basic model to include buoyancy effects is particularly important in
stably-stratified conditions, which are common in the atmosphere. In a true inertial subrange,
i.e. at high resolution, Ri, should be small, but the LEM must be able to handle regions where it
is not. Without a substantial reduction in v as Ri, — 0.25, spurious laminarization may occur.
A detailed specification of the stability functions is given below. Separate functional forms are
specified for statically unstable and statically stable conditions. We ensure that these functions
match in value at Ri, = 0 but do not demand a match in gradient.

In statically unstable conditions (Ri, < 0) we use

fm = (1 — eRip)Y? (27)
fn = a(1 — bRi,)'/? (28)

where a, b, and c are empirical constants. However, note that the powers of one half in
equations (27) and (28) are required to ensure finite values of f,, and fj, in the limit Ri, — —oo.
These powers may not be optimum at less negative values of Ri but an adequate match with
observations is possible.

The value of a is given by the value of 1/ Pry where Pry is the value of the Prandtl number in
neutral conditions. We choose a value of Pry = 0.7, consistent with the Kansas observations and
values obtained in large-eddy simulations (Mason and Derbyshire, 1990, Mason and Thomson,
1992). The constants b and c are set to 40 and 16 respectively to give a reasonable fit to surface
layer observations.




For statically stable conditions Ri, > 0 we use

R ( ﬁ"’) (1 - hRiy) (29)
fo=1(1-32) (- gRiy) (30)

where Ri. is the critical pointwise Richardson number above which we assume f,, =f; = 0.
f,9,h and r are constants. f must be equal to a to ensure a match to the unstable function
at Ri, = 0. There are no constraints on the form of these functions in the stable limit but we
demand that the Prandtl number remain finite at Ri.. The primary dependence upon Ri, is
contained in the factor (1 — Ri,/Ri.)" and best agreement with the observations is obtained
with r = 4 for a range of values of the other parameters. The critical value Ri. is taken as
0.25. We use the constants g = 1.2, h = 0.0, giving a value of Prandtl number of 1 in the limit
Ri, = Ri..

This completes the specification of the subgrid model. However in interpreting the subgrid
model it is useful to consider the pointwise flux Richardson number Rf, (which is also used to
determine Ri, when moisture is present, see §3.7.2). This is a measure of the work done against
gravity by the subgrid buoyancy flux to the viscous energy drain from resolved to subgrid scales.

If we define a scalar 7 bearing the same relation to the tensor 7;; as § does to S;;, then (without
backscatter)

%r.-,-S.-,-(l - Rfp) = -;-p,vS,-jS;j(l — Rfp) = pvS*(1 - Rfy) (31)

In alocal-equilibrium subgrid model R f,, should definitely not exceed 1, and probably not exceed
around 0.25. Note the simple relationship

Rfp/Rip=vy/v = Pr~! (32)
where Pr is the subgrid Prandtl number.

Ps€ =

In general, subgrid models with only a weak dependence on stability (or none at all) run
the risk of incorrect laminarization. The allowance for stability via Ri, in Meteorological Office
LES models is a significant factor in our success in simulating stable boundary layers.

The subgrid model can be switched off by setting INOVISP=1. This i is useful in testing
changes to other parts of the code.

3.2.3 Backscatter

As suggested in §2.2, the stochastic backscatter model of Mason and Thomson (1992), extended
to include buoyancy effects by Brown et al. (1994), effectively adds random subgrid terms to
equations (9), (12).

Significant impact is expected in any simulation in which the turbulence is poorly resolved,
whether due to computer limitations, stable stratification or proximity to the surface. The prob-
lem of turbulence initialization is also often made less troublesome due to the fluctuations created
by the backscatter. Note however that there is a significant overhead in terms of core memory,
and that the CPU time per timestep is increased by approximately 70%. Some reduction in
timestep is also often observed due to the increased energy on small scales.

To clarify terminology, note the following relation between three positive quantiti
; SR



VISCOUS DRAIN = DISSIPATION + BACKSCATTER
vS*1—Rf) = € + (%) lulr?

sct 2t

(Here the double primes indicate perturbation from the horizontal mean).

Part of the viscous drain of turbulence energy from resolved to subgrid scales is lost to dissi-
pation, but part is scattered back to the resolved scales. Both viscous drain and backscatter are
‘model quantities’; the dissipation is the term directly comparable with theory or experiments.

Only a very brief description of the stochastic subgrid model will be given here. It gives a
backscatter of turbulent energy into the resolved scales relative to the turbulent KE dissipation

€
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()37 =08(3) (33)

where A, is a subgrid length scale, equal to A in neutral conditions, but reduced in stable

conditions (see Brown et al. , 1994). Similarly, scalar variance is backscattered, relative to the
variance-dissipation rates, € and ¢,
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In the code, backscatter is switched on by setting parameter IBSCATP=1. This automat-
ically applies backscatter to all fields in use, and the setting of other parameters (e.g. IB-
SCATQP) must be changed manually if this is not desired. Note that, although backscatter
has been shown to be beneficial in some boundary layer simulations, it has not yet been tested
in non-Boussinesq simulations, and has only been used in a limited number of runs involving
moisture. Also, backscatter should only be used in three dimensional simulations. The constants
controlling the amount of backscatter are input via namelist SUBMODEL and recommended
values are SCT(= Cp)=1.4, SCTT(= Cpg)=0.45, SCTQ(= CBqe)=0.45 .

3.2.4 Implementation in the code

The constants for the subgrid model are input via namelist SUBMODEL, with the FORTRAN
variable name SUBB corresponding to the present notation b and so on. The following set of
values is recommended. Note that the choice of an appropriate value for RMLMAX(= Ag) must
be made by the user, noting the comments made earlier.

&SUBMODEL SUBB=40.,SUBC=16.,SUBG=1.20,SUBH=0.00,
SUBP=1.,SUBQ=1.,SUBR=4. ,ATH2_N=0.3,A2_N=0.23,PR_N=0.7,
RIC=0.25,RMLMAX=77,SCT=1.4,SCTT=0.45,SCTQ=0.45 &END

Note that A2. N and ATH2.N, the neutral values of the stress-energy ratio and heat flux
correlation coefficient, may be changed without affecting the resolved scales as they are only

used in the diagnostic estimates of subgrid energy and scalar variance. For details see Brown et
al. (1994).

SCT, SCTT and SCTQ are constants of the backscatter model, controlling the amount of
backscatter of energy, TH and Q respectively (see next section). They are included in the
namelist here for completeness, but note that there will be no backscatter if parameter IB-
SCATP=0, irrespective of the values of these constants. i bt i 6 Segis IR




3.3 Galilean transformation
Newtonian dynamics is invariant under the Galilean transformation
(x,t,u) = (X', ¢, 0') = (x — Ugat, t,u — Uga) (36)

where the constant Ug, is for present purposes assumed purely horizontal.

This invariance applies to all the analytical equations of §3 except for the Coriolis terms and
the surface boundary conditions, which need to be evaluated from u = Uga + v'. (Coriolis
forces are really non-Newtonian, reflecting a rotating frame, whilst surface boundary conditions
obviously reflect the velocity relative to the Earth.) Note that horizontal periodicity is invariant
under such Galilean transformations, because there are no ‘walls’.

Spatial discretization is not Galilean-invariant: the grid is stationary in only one reference
frame. By choosing

s 2
Ugal = 5[ min (u) + max (u)] (37)
domain domain
We can minimize maXdomain |U'|, and hence maximize the timestep permitted by the CFL re-
striction (see §4.2 for a discussion of CFL criteria).
The Galilean transformation can be switched off by setting IGALOFFP=1.

3.4 Lateral boundary conditions

The lateral boundary conditions are essentially periodic, but with an additional ‘secular’ (nonpe-
riodic) term reflecting pressure gradients associated with weather systems on scales much longer
than the horizontal domain extent. Formally we may write

U = Uperjodic T Usy (38)

P = Pperiodic + Psy (39)

and so on, where ,, denotes the synoptic scales, making the primed quantities periodic. This is
a bit like filtering in §2 but at the other end of the scale. In reality

Usy(2 + D, y, 2) — Usy(2, 9, 2) ~ DOusy/0z - (40)

where D is the domain size. Hence the systematic error in taking us, constant is O(D/ ly). ¥
u,y is constant, then we might as well absorb it into u, and so in our code we need to insert
explicitly only the synoptic pressure-gradient.

Similarly we may treat synoptic-scale temperature variation. This is of interest for two
reasons: (i) it provides a simple and natural method of representing a ‘stable’ or ‘unstable’
airstream within our model (ii) it can represent a baroclinic zone which may support e.g. Eady
waves. Of course baroclinicity is associated with a height-variation in the geostrophic wind,
given by

(718} g
sl SR 41
B a‘k X Vg (41)
This thermal wind-balance, is implemented automatically in the code. If the baroclinic option is
invoked through IBAROCLP=1 the geostrophic wind is permitted to vary linearly with height
with specified surface value (UG0,VGO0) and gradient (DUGDZ,DVGDZ). An advection term
—u.Vb,y, with V0, calculated from (41) is then added to the equation for 86/t (=SfIfH) in




The LEM is not a quasi-geostrophic model and there is no instantaneous relation between
geostrophic and actual wind, even when horizontally averaged. However it is recommended that
initialization of mean winds, at least above the boundary layer, should normally be reasonably
close to geostrophic, otherwise inertial oscillations will result (unless f = 0).

3.5 Gravity-wave damping

If the upper part of the model domain is stably-stratified, it is likely that gravity-waves will
be reflected back. Such gravity-wave reflection may occur sometimes in reality, but in the
model it will introduce an undesirable dependence on the domain depth, and usually we wish
to have little or no reflection. In the quasi-hydrostatic case, an appropriate boundary condition
in principle is § = @WN/|ky|, where ~ denotes a horizontal Fourier transform, k;, the horizontal
wavenumber and N the buoyancy frequency. A small section in code exists in POISSON (if
IGWRBCP=1) to retrieve vertical velocity for this purpose, but such a calculation has not yet
been fully implemented. Opinions differ as to whether such an approach can be satisfactory.

An alternative method is to implement a Newtonian damping layer in the code. This is
achieved by setting the parameter IDAMPP=1 which will damp u, v, w, § and the Q variables
back towards their horizontal means at a rate given by

= s )

for z > zp and zero for z < zp. The values of 1/74y,,, zp and Hp are input into the code
through namelist DAMPNML as the variables DMPTIM, ZDMP and HDMP respectively.

Note that if the damping timescale is too fast, i.e. comparable to the time-step, a viscous
instability could result. If the rate of increase of damping with height is too great then unde-
sirable wave reflection can occur. As a general rule Hp should not be too much less than the
depth of the damping layer, and the layer should cover at least ten vertical levels. Ideally, Hp
should be greater than the vertical wavelength of typical waves.

3.6 Mean vertical motion

The basic LEM does not permit any mean vertical motion, after horizontal averaging over the
domain. This is a direct consequence of the continuity equation and periodic boundary condi-
tions. However boundary layers, and particularly capping stratocumulus layers, can be affected
by vertical motions of magnitudes measured in cm/s and on the horizontal scales of weather
systems. This effect indeed explains much of the difference between cyclonic and anticyclonic
weather. Such scales cannot normally be computed explicitly in LES but may be added in ‘by
hand’ without formal inconsistency. Specifically, for a general conserved variable g, (e.g. 8), a
term —w 8¢, /8z would be added to its tendency equation, where the overbar denotes horizontal
mean.

Sources of such ‘mean’ vertical motion may be divided roughly into quasi-geostrophic pro-
cesses (differential potential vorticity advection) and diabatic processes (basically ‘Ekman pump-
ing’, giving systematic ascent in cyclonic and descent in anticyclonic situations). Ekman pump-
ing velocities, in response to (the curl of) turbulent Reynolds stresses, are expected to rise from
zero at the surface to a maximum near the boundary layer top and then slowly decline through
the troposphere. There appear to be no exact theoretical constraints on W in the LEM except
that it vanish at the surface. The usefulness of representing explicitly the link with Reynolds
stresses, and hence for instance the likelihood of reduced Ekman pumping as turbulence lessens
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overnight, obviously depends on the particular problem. There is no existing code for w, but
anyone interested in this should consult M.K.MacVean.

3.7 Surface boundary conditions

The surface boundary conditions are ‘synthetic’ ones derived from Monin-Obukhov stability
functions; in fact versions of the Kansas (Businger-Dyer) functions (see Bull and Derbyshire
1990). So far we have not attempted to implement a full surface heat budget, but focused
instead on the two extreme cases of (a) a specified surface heat-flux and (b) specified surface
temperature, corresponding respectively to highly insulating or highly conducting surfaces. In
each case efficiency of the solution method is an important consideration: the Monin-Obukhov
relations are complex and may need to be solved by iterative methods.

The nub of the problem is to obtain u, from the model horizontal velocities at the lowest
grid-level in the model domain. First the absolute velocity relative to the surface is computed
using the Galilean parameters. Then the Monin-Obukhov functions are inverted subject to the
temperature or heat-flux boundary condition, as appropriate.

Surface fluxes can be switched off by INOSURFP=1.

3.7.1 Prescribed surface heat-flux

Selected by setting ITHBCP=1

If IFBCHGP=0, then constant surface fluxes are selected, with values set in namelist INPUT.
SHFLX_SEN is the sensible heat flux (positive upwards) and SHFLX _LAT contains the fluxes
of the Q-fields - note that all are energy fluxes i.e. units Wm~—2. These fluxes are combined in

to a buoyancy flux (FBUQY), which includes both temperature and moisture effects (through
coefficients CQ).

The stable, neutral and convective cases are handled differently. The neutral case may be
solved trivially. The stable case (FBUOY<0) leads to a cubic equation for y,, which is solved
directly using Cardan’s formula. This calculation is moderately complex, but well vectorized
over J. The convective case (FBUOY> 0), however, requires iterative solution. To solve it-
eratively for each point separately would be expensive, so instead we use a look-up table, set
up in subroutine SETLOOK. In calling LOOK to access the look-up table, the entry number
is calculated from the logarithm of the wind-speed. Linear interpolation is used between table
entries. For wind-speeds ‘off the scale’, extrapolation is made from the extreme values using
either free-convection scaling (for low wind-speeds; so stress varies as wind-speed) or neutral
scaling (for high wind-speeds; so u, varies as wind-speed).

In this model it is possible to change the surface fluxes continuously by setting IFBCHGP=1.
Times and corresponding values of sensible and latent heat fluxes are set through variables
TIMHF, FSHFLX SEN and FSHFLX LAT in namelist TIMENML, and linear interpolation
is used to obtain fluxes at intermediate times. In the convective case a new look-up table is
required every time-step. However in most foreseen applications the prescribed heat-flux will
change by only small amounts each time-step. The most attractive strategy is, therefore, to
derive successive look-up tables by making small corrections to the previous ones. This is done
by calls to the routine CHGLOOK.

CHGLOOK operates as follows. Using the new value of FBUQY, together with the old
table of u, (USTLOK), a temporary array VELNEW is calculated. This is compared with

the (fixed) array VELLOK representing the target velocities of particular entries in the look-
up table. The rate of change of log(windspeed) with respect to log(u.) (at fixed FBUOY), :




denoted by DVELUSTR, is estimated from the previous look-up table using a finite-difference
approximation at each level. Then USTLOK is adjusted accordingly via the equation

USTLOK(IL)=USTLOK(IL)/(VELNEW(IL)/VELLOK(IL))**(1./DVELUSTR(IL))

The parameter DFBMAX limits the permissible absolute value of changes in FBUOY within one
iteration. If the changes demanded exceed this, the change is divided up into smaller changes.
In practice a value DFBMAX= 10~ is found satisfactory. The CHGLOOK method, which re-
sembles a Newton-Raphson iteration, converges very fast after a reasonable approximation has
been obtained. By working in effect with logarithms we incur a slight computational penalty
for the sake of peace of mind (simpler methods may allow the procedure to crash if FBUOY
is reduced suddenly). As defined DVELUSTR is extremely well-behaved, varying smoothly be-
tween 1 (neutral conditions) and 7/4 or 2 (free convection). [Businger-Dyer give 7/4, whilst
on theoretical grounds one would expect 2; this small difference is within experimental uncer-
tainty.] This fact could be exploited to provide an efficient and effective iterative scheme if more
complicated convective boundary conditions required solution on a gridpoint-by-gridpoint basis.

3.7.2 Prescribed surface temperature

Selected by setting ITHBCP=2

An alternative simple surface boundary condition is of prescribed surface temperature. This
is no more difficult in principle than the prescribed flux but the code is not currently in the
model as standard. However, M.K.MacVean has been working on this case and code is now
available.

3.8 Moist thermodynamics

Moist thermodynamics are invoked by IUSEQP=1 and IPASQP=0, whether the anelastic or
incompressible Boussinesq option (switched by IANELP) has been selected.

3.8.1 Moist thermodynamic variable

The LES code uses the two variables liquid water temperature perturbation (77’) and the total
water mixing ratio (r7) to model moist processes. The former is described in more detail in
Shutts (1991). The definition of the unperturbed variable is :
(g - Lu"L)

o

T, =T+ (43)
where T is the temperature, g is the acceleration due to gravity, z is the height, L, is the
latent heat of vaporisation, r, is liquid water mixing ratio and ¢, is the specific heat capacity
of air at constant pressure. This definition ensures that 7T, is conserved under evaporation and
condensation. The parametrized form of the thermodynamic equation then becomes :

b, _10(,,0m) LS
Dt ~ p, 0z fazch Oz;

where , is the sink of total water associated with precipitation. The model variable TH, which
is the perturbation of 77, from its reference state (TLREF), can be written as

: (44)
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and the source calculation for TH then includes a contribution from the vertical advection of
the reference state.

[The user inputs the namelist variables THREF and THINIT (reference and initial) pro-
files as potential temperatures which are converted to T;' assuming the atmosphere is initially
unsaturated]

The vertical momentum equation still requires 6/, (and therefore ' and 71 ) for the buoyancy
term (see (9) and (13)), so a method must be found to calculate these from 7}’ and r7. Once
rr, is known, 7" follows easily from the definition of T, (45). For saturated air (rz non-zero),
rL can be determined from 77 if r (T, p), the saturation mixing ratio at temperature 7' and
pressure p, is known. A Taylor’s expansion about the reference state temperature, 7, (calculated
from 8,), gives a sufficiently accurate approximation for 74, (T,p) :

Tsat (T’P) = Tsat (Tnpo) i (T e Ta) (a;;t) e (46)

Noting that T — T, = T' = Ty, + L,r1/c, and substituting re. (T, p) = r7 — 7, in (46) gives the
closed expression for ry,

r7(T,p) — (rut(TnPa)+ oL T; TL,)

1+ 5 (%)

For convective work a closer approximation is sometimes found by using a more accurate refer-
ence temperature in the Taylor’s expansion (see Shutts and Gray,1994).

WPs

o= (47)
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3.8.2 Moist Richardson number

Calculating the pointwise moist Richardson number as a measure of the local stability is not
necessarily a trivial extension of the vertical differences used in the dry case,

o (k41 —6k)

527z
essentially because the numerator stems from the parametrization of the buoyancy flux in the flux
Richardson number (see later) and buoyancy is no longer necessarily conserved under vertical

motion. Two alternative approaches are at present coded into the LES model and they are
selected using the parameter MOISTRIP.

If MOISTRIP=1, Ri, is calculated from the excess virtual potential temperature at model
level k + 1 of a parcel lifted from level k whilst conserving its moist static energy and r7 (and
thus 7). Thus, the pointwise Richardson number is given by

i Py g
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Ri, =

Ripy, = (48)

where, as before (see §3.1),

Ouk = Ok + Osk (Ry — 1)r7x — Ror k)

and a quantity with a tilde has been raised from k to k + 1, conserving its Ty, and has still to
be calculated. From the definition of T, (43), its conservation implies

ik fiinie

Lyfrks1 | 92%k+1 _ i N T TS
+ =Trkr =Tk = T + — + Tok- : 49
e & +1 | Lk & s A :




.

r
f

This is an expression in terms of known quantities and the as yet unknown Tk+1 and g4
which are required for (48). Since rr is conserved, 1, can be calculated from frz,, = 77y —
oat(Tis1, Pk+1) With this re, estimated from (46) and so in terms of Ty,. Substituting this
expression into (49) and rearranging for Ty, gives

i z;‘ (r1k — Toat(Tok 415 Ph+1)) + Tok — Tort1 + ;q; (2 — zk41)

Ly, (2
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Tis1 = Torir (50)

e

This is the value of Tk+1 finally used to calculate 774, and these two can then be substituted
into (48).

If MOISTRIP=2, Ri, is explicitly determined from the pointwise flux Richardson number,
R fp, which in turn is calculated (at the w-point between two §-levels—see §5.2) from the sub-
grid buoyancy flux, hp, implied by exchanging a small fraction by volume (¢) of upper grid level
air between the two vertically adjacent layers and mixing (as detailed in MacVean and Mason
(1990)). By calculating Ri, in this way, some provision is being made for the possibility of
the release of energy by entrainment of dry air at cloud boundaries. The size of ¢ is arbitrary,
in that the final expression for Ri, does not depend on it, but it must be small enough that
the saturation of the layers remains unchanged by the specified mixing process—a condition
found not to be restrictive (in the code ¢ is set as EPS= 0.01, after MacVean and Mason’s
€). Briefly, for constant grid spacing Az, the buoyancy flux in the pointwise flux Richardson
number, Rf, = hp/(7i;Si;), is calculated from the change in total potential energy during the

mixing process, 8P, as
vy 6P

2¢6AZ3

while the denominator in Rf, is given from standard K-theory closure as —»S%/2 (where the
factor of two reflects the fact that we require a vertical average over the two layers involved in
the mixing). Thus

hg = —

v VP e cOR

vp vES2AZ T ES2AZ3

Finally, writing the buoyancy at model level k before and after mixing as By and By, respectively,
gives 8P = ((Bg+1 — Br+1) — (Bx — Bx)) A2z?%/2 which in turn implies

(Bit1 — Biy1 — (Bx - B )/ (2€)
k+1 — Biy1 S2Azk k (51)

Ri, =PrRf, =

R, =

In the model, B is actually only the non-conservative part of the virtual potential temperature
(ie. lacking the ry term), and note that the apparent dependence on £ in (51) is illusory.

In both cases the numerators of (48) and (51) (to a factor of g/6,) are calculated in MOISTRI
and MOISTRI2, while the denominators, being the same as for the dry case, are calculated in
SMAG.

3.9 Cloud microphysics

A bulk-water warm microphysics scheme has been incorporated into the model with the addition
of one extra model variable: the rain mixing ratio, rg. The microphysics is invoked by setting
IRAINP=1 or IRAINP=2 for different schemes and with the moist thermodynamics also invoked
(see §3.8).

In subroutine MICROPHYS the rain source term, Sg, is calculated. Sp is the sole source of
rp and also appears in tlw prosnostm aqus .,n for Ty, equam (ié)né'n wh&:w




1. autoconversion of cloud droplets to rain,

2. accretion of cloud droplets onto rain, =
3. evaporation of rain into dry air.

The prognostic equations for 77 and rp are M
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| where wp, is the rain fall speed which depends on air density and rain mixing-ratio as described T
| below. ;
| Two sets of warm microphysics formulae have been tested in the LES model; those due to -
Kessler, 1974 (invoked by setting IRAINP=1) and Lee, 1989 (invoked by setting IRAINP=2).
Kessler’s formulae were calculated analytically by assuming a Marshall-Palmer (inverse expo-
nential) size distribution of rain drops while Lee’s formulae were obtained by regression methods s
using data from a detailed cloud model that simulates cloud and rain drops with 18 drop size
categories. The resulting formulae for each of the processes and the fall velocity are as follows:
o
Warm Microphysics Parameterization =N
Formulae for Sp (kg/kg/s) and wgr
Process L.Y.Lee 1989 E.Kessler 1974 =
Autoconversion 1.44 r236 30 a0 ey > O0H)
o |
Accretion 7.58 r}0295),042 2.20 (prg)*®%ry, 30550 =
)
Evaporation —0.0136 r*2rG716 —0.0485 (prr)®®rge s ‘ :
Fall speed, wp 33.2p70-15,0.25 43.24p-485p0,237 |
Ceed
where the saturation deficit, '1:,;, ¢ =MAX[(r7 — 74ar), 0].
a

More recently, Swann (1993) has extended these warm rain parametrizations to include the
ice phase (see §7.2), however, it remains likely that both of these schemes will be inadequate for
boundary layer cloud, as they cannot properly represent drizzle.

4 Numerical methods

The aims of the numerical scheme are (i) to preserve a reasonably high order of accuracy and (n) =
touﬁlfyeatampmmplu,mehas stabintymdmugywmmﬁm ' e. Tk




parametrized viscous/diffusive terms are treated with only first-order accuracy in time. We do
not use the formally very high-order accuracy of spectral computations, or indeed sophisticated
time-schemes. Such methods come into their own when all the eddies are well-resolved, but that

is not normally the case in LES. A separate note giving details of the numerical methods in the
LEM will be available.

4.1 Advection schemes

In the present LEM there is a choice of advection schemes. The basic Piacsek-Williams (1970)
scheme is linearly and quadratically conserving (and therefore energy conserving), but not,
in general, positive definite. For certain problems with sharp scalar gradients, more sophis-
ticated, and consequently computationally expensive, ‘TVD’ advection schemes are preferred.
These schemes are positive definite and linearly, but not quadratically, conserving. The Piacsek-
Williams scheme treats the advection terms as centred in time (together with a weak time-filter
to suppress time-splitting), whilst the TVD schemes operate forward in time.

The three advection routines can be selected individually for scalar and momentum advec-
tion using the parameters ITVDSCALP and ITVDUVWP: 0 gives a centred difference scheme,
and 1 and 2 the total variation diminishing (TVD) schemes of Leonard (1991) and van Leer
(1974) respectively. Of the TVD schemes, Leonard’s is less diffusive but computationally more
expensive.

Since both the TVD schemes are designed for forward step codes, there are two ways of
implementing them in the model which carries fields at two adjacent time-levels, and the same
method need not be used for both scalar and momentum fields. Either they can be implemented
as above as a single forward step from time-level £ to ¢ + 1, or as a double forward step from
t —1tot+ 1. These choices are controlled by the parameters IFORUVWP and IFORSCALP,
1 giving the former (single forward step) and 0 the latter (quasi-centred). Not all permutations
have been thoroughly tested with regard to computational stability but various comments can
be made on some of them which should be borne in mind:

o there is probably little to be gained from using TVD schemes only on the momentum
fields,

¢ when using ‘quasi-centred’ TVD on the scalars only, the Courant number stability criterion
is stronger for the double timestep and it can suffer from time-splitting as there is no
connection between adjacent time-levels,

e the van Leer scheme is only stable for all flow directions if the CFL number is less than
roughly 0.4 (see §4.2).

¢ TVD on the scalars only has been found, in quite extreme conditions, to develop a slow-
growing instability associated with wave activity,

e the fully forward step code (with IFORUVWP=IFORSCALP= 1) will suffer from the
unconditional instability associated with the Coriolis acceleration, although this is very
slow-growing with a timescale of the order of years, ~ 2/(f2At) (it is also possible to
evaluate this term partially implicitly but this has not been included, yet!)

In summary, the choice of advection scheme will be a compromise between expense, diffu-
siveness and susceptibility to various spurious spatial oscillations (either stable in the case of
centred difference or unstable albeit slow-growing for TVD schemes when implemented in a fully
ard depending on the application in question. prikee il




4.2 CFL criteria

So far we have assumed that the timestep was sufficiently small that differences between finite-
difference and analytical time-derivatives could be neglected. In practice, however, the timestep
must be constrained in order to maintain numerical stability, and this constraint will ensure
that time truncation errors are very small (hence high order time differencing is not crucially
important) In addition, it is worth noting that dissipative terms in the finite difference equations
must be lagged in time (in a centred difference framework) for computational stability while, as
noted in the previous section, a fully forward step code with non-zero Coriolis parameter will
also be unconditionally unstable (albeit on a long timescale). These and other issues are covered
in more detail in the LES numerical methods documentation.

From a practical point of view, both advective and viscous terms independently place con-
straints on the timestep. These can be expressed in terms of restrictions on the relevant Courant
number. In one dimension, the advective Courant number (or CFL number, after Courant,
Friedrichs and Levy) is simply

ult
FL = —.
e Az

In our case, u will be the flow velocity minus the Galilean velocity (see §3.3).

For stability, all grid-point velocities must remain within the stable region and so when
placing a constraint on the timestep (At) we must use the largest CFL number. In generalizing
to three dimensions we must also combine the ‘worst cases’ in each direction. Thus our largest
Courant number is given by

CVEL = At ((Lil)m . (%)m + (%)m) (52)

Similarly, the ‘worst case’ viscous stability parameter is given by

1 1 1
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where vp,ay is the larger of v and vy, at each grid-point.

These two are then combined using the namelist-input constraints CVISMAX and CVEL-
MAX to give

CVIS & CVEL
CVISMAX = CVELMAX’

If CFLNO lies outside the range 1-TOL to 1+TOL (where TOL is a namelist-input toler-
ance), a variable DTMNEW is changed to the value necessary to reset CFLNO to 1. The actual
timestep is changed immediately to DTMNEW if needs to be reduced but, if an increase is called
for, the change is made gradually (by factors of 1+RINCMAX) over the succeeding timesteps.
A maximum timestep (DTMMAX) is also imposed and the program terminates if the timestep
becomes too small (less than DTMMIN). This procedure is intended to ensure that, once a run
has settled down, the timestep only changes very infrequently.

CFLNO =

The viscous-stability timestep-limit is complicated by the non-constant viscosity. With a
constant viscosity, CVISMAX needs to be less than 1. However, with eddy-viscosity itself
dependent on gradients of wind and scalars, this limit needs to be reduced by a factor of at
least 2. It can be shown that when Ri, — Ri., conventional viscous-stability criteria are grossly
inadequate (S.H.Derbyshire has details; this can be demonstrated in 1-D models). However
this is not normally an issue in 3-D stable boundary layer simulations, because timesteps are
typically limited by advection rather than viscous criteria. If in doubt, CVISMAX=0.2 is a
standard value. Bt et




The Courant-number limit CVELMAX must be less than 1.0 if the centred difference or
ULTIMATE QUICKEST advection scheme is used but less than 0.4 if van Leer’s scheme is used
in more than one dimension (see §4.1).

4.3 Time-smoothing

Since our basic equations (§3.1) are first-order in time, there is a potential problem in carrying 2
time-levels in the centred difference scheme. There is a risk that these levels could decouple (see
the LES numerical methods documentation). To prevent this a weak time-smoother is applied
continuously, using a small parameter TSMTH (=0.01 typically).

The time-smoothing operation, performed after each time-step can be summarized by

FLD(?) 1-TSMTH TSMTH FLD(t)
FID(t-1) )~ \ TSMTH 1-TSMTH )| FLD(t- 1) (53)

Time-smoothing has the undesirable effect of slightly violating energy conservation. It can
be shown that this time-smoother tends to increase the energy of an oscillatory mode with
frequency w at a rate ~ TSMTHw?At. This however is only really significant if very precise
checks on energy conservation are being made. By linearized analysis it can be shown that this
corresponds to the decay of the computational ‘negative energy’ mode.

In some unpublished work, P.J.Smart looked at time-smoothing applied to the Coriolis equa-
tions for inertial oscillation. Based on an idea by N.Wood, he showed that a hybrid between
the present time-smoother and another time-smoother, due to Asselin, which tends to dissipate
energy, was much closer to being energy-conserving.

S.H.Derbyshire has more details of this and other aspects of time-smoothing. NB version
1.4 contains a slight ‘time-slowing’ factor on the clock time, which has now been shown to be
erroneous and should be removed. The only effect of this was that diagnostics and other timed
events were very slightly mistimed.

5 Code structure and software aspects

5.1 Parameters in the model

In its strict sense as a FORTRAN language element, a parameter is simply a number which is
used by the compiler to set up array dimensions, etc. and consequently cannot change during
the run. In the large-eddy model, parameters are also used as switches for the various options
which have been described above (see Table 1). These switches must be parameters (rather than
namelist variables) because they not only select the required sections of code but also set up
further array size parameters (which have not been included below) according to the options
selected so as to keep storage requirements to a minimum, and allow the CRAY computer to do
the maximum amount of optimization.

5.2 Grid, reference profiles and timesteps

The grid is of Arakawa’s type C, i.e. each velocity component is staggered in its own direction, see
Fig. 1. (Note: in NWP a B-grid, with horizontal velocity components collocated, is sometimes
used, and gives a slightly more accurate representation of Coriolis terms; an A grid would mean




Parameter Meaning
P, JJP, KKP Number of grid points in z, y and z directions.
IIP and JJP should factor into 2s, 3s and 5s
(except IIP,JJP=1 for 1 and 2-D)
JMINP, JMAXP Range for J loops (=0,JJP+1 aids vectorisation)
IBSCATP =1 implements backscatter
NQSCTP Number of scalars to be backscattered
NBEGSCATP Step number on which to start backscattering
ITVDUVWP =1 for TVD advection on velocities.
ITVDSCALP =1 for TVD advection on scalars.
IFORSCALP, IFORUVWP =1 for forward stepping of scalars and velocities
respectively. If both =1, code becomes fully forward step.
IBAROCLP =1 for geostrophic wind shear.
IUSETHP =1 to use theta.
IPASTHP =1 theta behaves as passive scalar, i.e. no buoyancy.
IUSEQP =1 to use Q-fields.
IPASQP =0 for moist thermodynamics. Must be =1 if [USEQP=0.
NQP number of Q-fields. Must be at least 1 even if [USEQP=0
IANELP =1 for anelastic formulation, =0 for Boussinesq.
IDAMPP =1 for Newtonian damping.
INOVISP =1 for no Smagorinsky viscosity or diffusion.
IGALOFF =1 for no Galilean transformations on velocities.
INOSURFP =1 for no surface fluxes.
ITHBCP =1 for prescribed surface heat-flux boundary condition,
=2 for specified surface temperature boundary condition,
(see §3.7)
IADJANELP specifies how the reference state is balanced.
NTIMP Number of times for time series.
NSERP Number of time series.
ITSERP =1 to enable time series.
MOISTRIP specifies the scheme used to calculate Ri,.
IMICROP =1 for cloud microphysics.
IRAINP =1 for Kessler, 2 for Lee microphysics.
NMETEORP Number of hydrometeors.
IQBCP lower bc for Q - currently inactive
IGWRBCP 1 gives upper radiation b.c. -NOT READY YET
IFBCHGP value 1 gives varying heat flux lower bc

Table 1: Model parameters




all model variables stored on the same points). It consists of IIPxJJPxKKP grid-points with
uniform horizontal grid-spacings DX and DY. Various constants related to the grid follow:

RNHPTS=1./REAL(IIP*JJP)

CX=1./DX CY=1./DY
CX2=CX*CX CY2=CY*CY CXY=CX*CY
TCX=0.25/DX TCY=0.25/DY

Grid constants for backscatter:

EG=2.0%(CX2+CY2)+RDZ(K) **2+RDZ (K+1) **2
BFM_P(K)=512.*RHON(K)/(3.%*EG) RMLMAX_PM5=1.0/RMLMAX*%5
CY_ON_RHON(K)=CY/RHON(K) RDZ_ON_RHON(K)=RDZ(K) /RHON(K)
CX_ON_RHON(X)=CX/RHON(K) CX_ON_RHO(K)=CX/RHO(K)
CY_ON_RHO(K)=CY/RHO(K)

Others:

CZB(K)=(RHO(K-1) /RHON(K))/(DZ(K)*DZN(K))
! _use for diffusion onto p-level from below
CZA(K)=(RHO(K) /RHON(K) )/ (DZ(K)*DZN(K+1))
! _use for diffusion onto p-level from above
CZG(K)=-CZB(K)-CZA(K)
CZE(K)=(RHON(K+1) /RHO(K))/(DZ(K+1)*DZN(K+1))
! _use for diffusion onto w-level from above
CZF (K)=(RHON(K) /RHO(K) )/ (DZ(K)*DZN(K+1))
! _use for diffusion onto w-level from below
TZC1(K)=0.25*RDZ(K)*RHO(K-1) /RHON(K)
! _for advection onto p-level from below
TZC2(K)=0.26%RDZ(K)*RHO(K) /RHON(K)
! _for advection onto p-level from above
TZD1(K)=0.256*RDZN (K+1)*RHON(K) /RHO(K)
! _advection onto w-level (K) from below
TZD2(K)=0.25*RDZN (K+1) *RHON (K+1) /RHO (K)
! _advection onto w-level (K) from above

Expanded arrays (2D versions of 1D arrays, required for vectorization) are prefixed by E:
e.g. ECZA(J,K)=CZA(K) .

Constants related to moisture are:

CQ(1)=RATIO_MOL_WTS-1.=0.608
THCONA=RATIO_MOL_WTS*THREFO THCONB=THCONA-THREFO

The reference profiles for calculating 77, (see §3.8) are

DELTA_T=1.0
PREFRCP (K)=(PSF/PREFN(K) ) **R_ON_CP
TREF (K)=THREF (K) * (PREFN (K) /PSF) **R_ON_CP




Z(KKP) —y W=0
ZN(KKP) o (unless wave-radiation)
Z(KKP-1) .
ZN(KKP-1) o
Vertical disposition of mesh points
(in reality non-uniform)
%(3) e W,RHO,VIS,DIFF
ZN(3) |Dz(3) o U,V,P,TH,RHON
DZN(3)] Z(2) @
ZN(2) o
M T 7Y o W
ZN(1) o
P Wik
Vijk
Ui, 8 o U
g1,
© Wijk—1

Figure 1: Staggered mesh (Arakawa-C) for the CRAY model
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TLREF (K)=TREF(K) +(G/CP)*ZN(K)

TLREF(1)=TLREF(2) ! as TREF - necessary for correct surface flux
DTLREF (K) =TLREF (K+1) -TLREF (K)

DTLREF (KKP)=0.

Timesteps: DTM is the timestep, entered initially by namelist and used to step fields.
DTMNEW is the new target for DTM based on CFL and viscous stability limits. DTMOLD
is the old value of DTM/(1+IFORSTEP), used only in PSTEP, because pressure-stepping of
the old time-level occurs, slice by slice, at the beginning of the new one. Note that if the old
timestep was forward, DTMOLD is only half the old DTM; this makes PSTEP independent of
IFORSTEP. TIMINC is the forward increment of TIME itself.

DTM_X2=2.*DTM DTM_X4=4.*DTM 5
RDTM=1./DTM R_2DTM=1./DTM_X2
TSMTHC1=1.-TSMTH TSMTHC2=2.*TSMTH-1.

Users should not need to worry too much about the mechanics of time-stepping unless they

are trying a genuinely new time-scheme: for most purposes it is the source terms SF which are
modified.

5.2.1 Variable names

All variables are in SI units (1mb — 100Pa).

P means p//p,. PREF means p,, THREF means 6,, RHO means p, (no fluctuating density
variable is stored explicitly). Some of the basic state variables (PREF, RHO, Z) come in two
arrays, with or without the suffix N (denoting storage on p-points); this notation is a vestige of
the old IBM code. (Note however that the array DZN is obtained by differencing the array ZN
and may be regarded as stored on w-points.) In the source routines TH means ¢’ = 6 — §,, or
T}, if moist thermodynamics are invoked. VIS and DIFF are the viscosities for momentum and
heat, v and vy, respectively. Note that all g-fields have viscosity v}.

5.3 Routines

Figure 2 shows schematically the progress of the model through the subroutines.

Routine BEGIN is always called first, to set up grid (CALL SET1D) and then either START
(cold start) or RETRIEVE fields from dumped dataset.

Routine NNSTEPS organizes time-steps and is documented in Annex A.

The pressure calculation cannot be performed until the velocity source terms over the whole
domain are calculated. This is obviously tricky to handle slice-by-slice. Basically on each slice
the pressure source is accumulated in routine ADDTOPS. The elliptic equation for the whole
pressure-field is solved in POISSON after the model has cycled through all slices for this timestep.
The pressure-terms are applied to the velocity fields in PSTEP, after these fields are read back
from packed storage. Thus during routine NNSTEPS those fields are packed in ‘semi-stepped’
form, i.e. not having been pressure-stepped and not yet satisfying the nondivergence constraint.

The routine EXXIT, with calling argument ISTOPU, is called when time or other flags
indicate exiting from run, or other specific actions, may be required:

Argument ISTOPU governs flow of control as follows:
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Figure 2: Outline structure of the model (version 1.4)
(arrows represent subroutine calls with RETURN implied)
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-1 - writes dump and may write diagnostics; job continues
0 - may write diagnostics; job continues
NB...job continuation in above cases contingent on MSGFILE contents
which may be altered interactively if you wish job to stop at
the next dump.
1 - after writing diags and dumping fields,
terminate job in orderly way
2 - bad error: terminate without dump
3 - bad error: terminate in orderly way after writing diags
and dumping fields (output may be useful for debugging)
MSGFILE contents ensure that chain does not continue

5.3.1 1-D and 2-D routines

A feature of the current code which seems to be found useful is the easy switching between 1-D,
2-D and 3-D configurations. For 2-D, set ITP=1; for 1-D, set JJP=1 also. These automatically
invoke specific 1-D or 2-D source routines.

In 1-D however remember that the parameter RMLMAX should be considered not in relation
to the grid but in relation to the depth of the turbulent layer (see §3.2.2).

2-D turbulence is a slightly strange beast. In cases where it is driven by broadly ‘convec-
tive’ (sometimes ‘Rayleigh-Taylor’ instabilities), considerable insight can be obtained into the
behaviour of the 3-D atmosphere. However 2-D shear flow simulations should be treated with

considerable caution, because even the sign of mean momentum transport can differ from the
3-D result.

5.3.2 List of routines

SUBROUTINES ETC. IN ORDER OF OCCURRENCE, BY SECTION:

(A)  EXXIT, BLOCKDATA, BEGIN, SETSG,
SET1D, SETANEL, SETPREF, SET2D,
(B)  START, RETRIEVE, DUMP, TDUMP, RDFLDS, RESETBAS, CVELGAL
WRTFLDS, STEPGAL, STEP, STEPW, HOLD, RDP, WRTP, RDW
(C)  NNSTEPS, SETINDEX, REINDEX, SWAPSMTH, CALCVIS,
DYNVIS, SMAG, SMAG2D, SMAG1D, SETFRI, LOWERBC,
UVWSRCE, UVW2D, UVWiD, THSOURCE, TH2D, TH1iD,
QSOURCE, Q2D, QiD, PSRCE, DIVERR, POISSON,

FFANAL, FFSYNTH, FOURIER, SETFILT, PSTEP, INITPS,




ADDTOPS, RDPS, WRAP, SETO, EQUATE, REQUATE,
SETLOOK, LOOK, CHGLOOK, TESTCFL, INITCFL
(D)  TESTTIME, SETFLUX, DIAG, WRTFB, RDFB,
ALLOCDGS, ALLOCATE, ALLOCQS,
INDGNEW, INDGAV, RESDGS, SUBDGS, AVDG,
TIMSER, INTIMSER, CHKPARMS, PRINT,
MOISTRI, MOISTRI2, ENTOTHO, ENTOTH1, QSATURATION,
TVDSCAL, TVDFLX, ULTFLX, TVDUVW,
TVDSC2D, TVDF2D, ULTF2D, TVDUVW2D,
(G)  SETRAN, GETRAN, BCKSCT, BCTSCT, BCQSCT,

(H) ENTOTH2, MPHYS

5.4 Namelists

There are a number of model variables which can be set, after compilation, through the namelists
given below.

NAMELIST CNTRL
ISTART =1 if a set-up run
ITDUMP =1 for a tape dump (for use on Cray) - not ready yet
NN Number of steps between diagnostic evaluations (> 1)
NNDIAG  Number of diagnostic evaluations between dumps
NNDUMP Number of dumps for this run

Note that the total number of steps in a run is thus NN*NNDIAG*NNDUMP.




NAMELIST TIMENML
TIMCDG, TIMPDG, Array of times at which to calculate, print
@ TIMRDG or reset the diagnostics.
TIMDUMP Array of times to dump fields to disk.
TIMHALT Array of times to stop job (for chain runs).
~ TIMHF Array of times for time-varying surface fluxes.
FSHFLX_SEN, FSHFLX LAT Time-varying surface sensible or latent heat flux.
NTMCDG, NTMPDG Number of diagnostic calculating, printing or
= NTMRDG resetting times.
NTMDUM Number of field dumping times.
NTMHALT Number of halting times.
&= ITIMCDG, ITIMPDG, Flags for the above options.
ITIMRDG, ITIMDUM, ITIMHALT
NSTEPMAX Maximum number of timesteps in this job
1 IPRTDG Controls the diagnostic output (see below)
NTMHF Number of surface flux times.

Diagnostic output is controlled by IPRTDG as follows: 0 for output only at times given by
TIMPDG and TIMRDG, 1 for output after every job, 2 for output at set times (possibly many
times within one job) to a single file, 3 for output at set times (possibly many times in one job)
to separate files.

The NAMELIST JOBINFO contains character strings which can be used to name the files
connected with the job.

~ NAMELIST INPUT
NRUN Run number
NDATE A number (eq. the date) to help identify the run.
™ IUTARG,IVTARG, =1 to hold fields to TARGET fields.
ITHTARG,IQTARG
TIME Integration time.
1 Z0 Surface roughness length for momentum
Z0TH Surface roughness length for temperature
Z0Q Surface roughness length for ‘Q’ variables
~ PSF Surface pressure
SHFLX SEN Surface flux of c,6
SSHFLX_LAT Surface flux of L,ry
.- USHRTARG, VSHRTARG, Constant shear and N? for target fields
RNSQTARG (see routine HOLD)
- NAMELIST GRID
NSMTH Number of 1-2-1 smoothings of grid heights.
HGD, KGD Arrays of corresponding heights and grid levels.
- ZZTOP Height of domain top.
NAMELIST THPROF
ZNREF READ,THREF READ Arrays of corresponding heights and 8’s for 4,.
" THREF0 8o
' ZNINIT READ,THINIT READ Arrays of corresponding heights and 6’s for
the initial profile.

P The NAMELIST SUBMODEL is discussed in §3.2




NAMELIST DIAGNOST
THORSL =1 for horizontal slices to be output.
NKTEST,KTEST Number of horizontal slices and their grid-levels.
IDGU,IDGV,IDGW,IDGTH,IDGQ, Individual field output control variables
IDGCL,IDGPD,IDGRR,IDGQKG (see below)

For individual fields the control-variables IDGU etc. determine what if any fields are output.
0 means no fields output, 1 means vertical only, 2 vertical and horizontal, 3 horizontal only. If
THORSL = 0 there are no horizontal fields output, irrespective of the IDGs. The Vax reading-
plotting routines are set up to cope automatically with such variations in storage format.

NAMELIST DYNAMICS
FCORIOL The Coriolis parameter
UGO0,VGOo The components of the geostrophic wind.
DUGDZ,DVGDZ The rate of change of geostrophic wind components with height.
NAMELIST NUMERICS
DTM Timestep.
TSMTH Time-smoothing factor.
DXX,DYY Horizontal grid spacings (constant).
RINCMAX Incremental factor for increasing timestep.
DTMMAX,DTMMIN  Maximum and minimum values for the timestep.
CVISMAX,CVELMAX Bounds for viscous and advective CFL numbers.
TOL Tolerance for CFL numbers (see §4.2)
NAMELIST PHYSICS
VK von Karman’s constant
ALPHAH,BETAM,GAMMAM, Monin-Obukhov coefficients
BETAH and GAMMAH :
DFBMAX Maximum change in buoyancy-flux
between iterations in CHGBUOY
CQ Array of coefficients for ‘Q’-field contributions to
buoyancy [the model overwrites the first element
with CQ(1)=R, — 1, see §3.1]

The NAMELIST DAMPNML is described in §3.5

With the exceptions of CNTRL, TIMENML and JOBINFO, all of the above namelists are
only read in a set-up job (ISTART=1). One other namelist, OVRIDE1, allows some of the
namelist variables to be changed after the set-up.

5.5 BAS and BAR arrays

Associated with each of the fields U, V, TH, Q are two sets of 1-D arrays (over K), which must be
carefully distinguished. The BAR arrays are horizontal means. The BAS arrays are somewhat
arbitrary profiles subtracted and added to save rounding error which might be significant if
packed slices are being kept as 32 rather than 64-bit. Neither of these has anything to do
with the anelastic reference state profiles p,,0,,p,, which are represented by RHO, RHON,
THREF, PREF, PREFN. The prefix ‘OL’ for ‘old’ BAS arrays should be considered essentially
independent of prefix ‘Z’ used for old time-levels.

Think of the fields as existing in three possible states: (i) true, (ii) computation and (iii) :

packed. True fields mean the actual values you might measure or compare with theory.
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Galilean transformations are applied to the horizontal velocities (to reduce absolute velocities
for technical reasons). Similarly an anelastic reference state is subtracted from the 6-field so
that in the source routines TH means ¢ = 6 — 0, or similarly Tj. Packed fields are for
storage, not calculation and have had things (BAS arrays) subtracted from them to minimize
(roughly) their absolute values. BAS arrays are approximately but not exactly the horizon-
tal means of the true fields — they are somewhat arbitrary unless you change them while
the fields are still packed, in which case those changes will alter the fields when read back.

-BAS+ADDONS +OLBAS-ADDONS

packed
(WRTFLDS) (RDFLDS)

(e.g. in SRCE routines) (e.g. in SRCE routines)

computational computational

Here ADDONS means things like UGAL and THREF. Note that in the computation (source)
routines, terms with UGAL need to be added onto the Coriolis force to allow for the difference
between computation and true values. Similarly terms in THREF appear in THSOURCE for
the same reason. Note that the OLBAS used in RDFLDS may differ from the BAS used in
WRTFLDS if it has been changed in HOLD to tweak the mean profiles.

RESETBAS is called after fields are safely packed away and takes the form

OLBAS=BAS ! _ensure OLBAS for RDFLDS matches previous BAS used
!  for WRTFLDS (unless changed later by HOLD)

BAS=BAR ! _reset slightly arbitrarily
1

OLBAR=BAR OLBAR, unlike BAS, will be time-swapped and -smoothed

This is for both time-levels (i.e. with and without the ‘Z’). For the purposes of BARs and BASs
the two time-levels are treated in the same way, so e.g. you have both OLBAS and OLZBAS
arrays. The only difference is that in HOLD only the OLZ’s are changed (changing the OLs
would have no effect in the end as that time-level is effectively dead).

In principle BARs are completely separate. These are supposed to be ezactly the horizontal
means of the true fields and hence are time-smoothed like the fields. This is so that diagnostics
can be calculated correctly. The only connection with the BAS arrays is that for convenience
BAR is used as a sort of rough guess for BAS (as above). Also of course when HOLD modifies
OLBAS, e.g. to add on a temperature increment matching to some measured profile, it has to
modify BAR too for consistency.

Remember: OLBARS are for diagnostics, BAS for packing, OLBAS for expanding. BARs are
purely for accumulation and not to be used for calculation except in RESETBAS — otherwise,
particularly in START, you may generate some surprisingly large numbers.

5.6 Time levels

In effect, the model cycles through 4 phases:

¢ Computation phase (source routines)
In NNSTEPS, ZF means F'~!, F means F!, where ¢ indicates the latest time-level solution
currently available; SF always means dF/dt. With a leapfrog step these arrays are passed
straightforwardly through CALCVIS and DYNVIS to the source routines and SF is cal-
culated using the ZF (old time-level) fields for some terms and the F (current time-level)




fields for others, in the usual manner. However with a forward step, CALCVIS and DYN-
VIS are called only with the F (current) fields, so that the source routines effectively use

only the current time-level. Note that only SF (not F or ZF) is updated directly in the
source routines.

e Stepping phase
Basically ZF is the one updated.

Forward step : ZF=F+DTMxSF
Leapfrog step : ZF=ZF+DTM_X2%SF

Hence now ZF means F!*!, F means F!

¢ Packing phase (WRTFLDS, RDFLDS)
Still ZF means F!*!, F means F!

e Swapping phase (SWAPSMTH)
SWAPSMTH swaps (and slightly time-smooths) F and ZF so that afterwards ZF means
F*, F means F'*! and we are ready for another ...

¢ Computation phase (source routines)
The cycle repeats, etc., etc.

5.7 Updating and running the model

The basic model is maintained through the Cray Update facility. Any external user making mod-
ifications to the Fortran should consult Bracknell contacts as to whether these can be recorded
in Update form, to ease incorporation of new updates.

There are three Cray-specific routines (PACK, EXPAND, USSCTI); updates exist to convert
these into standard Fortran for porting to workstations.

The model is run on various machines: on the Cray-YMP and on workstations (including
DEC-as). It has also been ported to a Unix-based Sun-workstation at Sheffield by A.Maguire,
who has also converted the graphics to run on that system.

6 Output

Diagnostic files are produced by routine DIAG. This is called at the end of each run of the model
(or each job of a chain) i.e. when all timesteps have been performed or when the simulation
reaches one of the preset times in namelist TIMENML. Qutput may be controlled in relation to
jobs using the namelist variable IPRTDG, as described in §4.

Each diagnostics file contains the following

¢ Instantaneous fields. Vertical slices of selected fields, and horizontal slices as selected by
the user in namelist DIAGNOST are dumped.

o Time series. The model has NSERP time series, each with NTIMP bins. Information is
written to the series every NN steps, and the first series contains the time:
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 Time averaged statistics. On the first step of each NN, the model calculates horizontally
averaged statistics of turbulence quantities in routines RESDGS (resolved quantities) and
SUBDGS (subgrid quantities). A running time average is calculated in routine AVDG.
Averages are reset at the times TIMRDG specified in namelist TIMENML.

The user may add additional diagnostics by adding new pointers in COMMON /DGCNT/,
allocating values to these pointers by calls to ALLOCATE from ALLOCDGS, and calcu-
lating the new diagnostic in RESDGS or SUBDGS as appropriate. Note that it may be
necessary to increase parameter NDGSP (the maximum number of diagnostics).

Note that a new averaging period will be required if diagnostics which were not in the
original run are required. Another approach, used by some large-eddy groups, is to store
complete model fields at a number of times within the averaging period, thus enabling any
time-averaged diagnostic to be calculated at a later stage. However this is expensive in
terms of disk space requirements, and is not used as standard with the present model.

Workstation graphics routines available include:

1. A program GRAPH14 (Hobson/Brown/Derbyshire) to profile statistics — used particu-
larly for boundary layer applications.

2. A fields-plotting program SLICE14 (Gray).
3. Various pv-Wave procedures (MacVean/Brown/Dharssi/Brown).

7 Recent developments and conclusions

7.1 Ice Microphysics

The representation of ice phase microphysics can be crucial in the modelling of deep convection
in order to simulate the effect that ice has on the transport of heat and moisture and also the
effect that ice cloud has on radiation. The three-phase microphysics scheme developed for the
LEM uses the parametrization of precipitating water particles based on Lin et al. (1983). Lin
however does not detail the representation of cloud. The ice and liquid cloud processes are
parametrized using a scheme based on Cotton et al. (1986). The resulting scheme is the basis of
most microphysics schemes used in 3-D cloud-resolving models (see Flatau, Tripoli and Cotton
(1989), McCumber, Tao and Simpson (1991), etc.) There are over 30 processes contributing
to the conversion rates between water categories for a six variable bulk water scheme which are
described in detail in Swann (1993).

The microphysical processes in a cloud are those processes leading to the formation, growth
and depletion of the water particles. These particles can be liquid, ice or a combination of
both and may have an irregular or regular shape. The model’s scheme divides these particles
into several categories commonly used in bulk water schemes: liquid cloud droplets(gc), rain
drops (gr), ice crystals (¢s), snow crystals or aggregates (gs), and graupel or hail (g6). There
is a further variable (Ny) which represents the number concentration of ice crystals. The mass
mixing ratio wrt air of each water category is represented by a model variable. The size spectra
of the precipitating particles (rain, snow and graupel) is assumed to be an inverse exponential
distribution dependent on their mass mixing ratio. Cloud particles are assumed to form a mono-
disperse size spectrum of homogeneous droplets or crystals. The cloud droplets are assumed to
have a constant number concentration which will depend on type of air mass, continental or
maritime. The number concentration of ice crystals is modelled as a separate variable so tha

the various ice nucleation process can be parametrized. pati s ol i Bodsnetid




7.2 Longwave radiation parametrization

The longwave parametrization scheme implemented within the cloud model is based on the
scheme used by the Meteorological Office Unified Model, as described by Ingrams (1993) and
Slingo and Wilderspin (1986). This parametrization scheme solves the radiative transfer problem
for each model column in terms of a vertically upward and a vertically downward longwave flux.
Such an approach is only strictly valid for a plane parallel atmosphere. For gaseous absorption,
variations in the vertical are much larger than variation in the horizontal and thus the ‘plane
parallel’ approximation will give good results. However clouds can show significant horizontal
variation and it is not clear how valid the ‘plane-parallel’ approximation remains in this case.

The longwave radiation scheme includes absorption by water vapour, carbon dioxide, ozone,
cloud water and cloud ice. Only the effects of absorption and emission are included and scattering
is ignored. However, it is generally believed that scattering is not important for longwave
radiation. For gaseous absorption a lookup table is used to obtain transmissivities from the

absorber pathlength. This pathlength is scaled to include the effects of collision and doppler
broadening of the absorption lines.

A model grid box is assumed to either be completely filled by cloud or to contain no cloud
(partial cloud cover within a grid box is not allowed). For cloud water, the emissivity, €L, is
calculated from an equation derived by Stephens (1984) using results from Mie theory. Only the
cloud water path (cloud water content X layer width) is required. Thus the emissivity is given
by

e =1—exp (-, CWP), (54)
where CW P is the cloud water path and k7, = 130 m2kg~!.

The longwave scheme treats absorption by cloud ice in a similar way to cloud water. The
absorption properties of ice are assumed to depend only on the ice water content and the
difference in the absorption properties of ice and water is accounted for by a scaling constant.
Thus Kre = 65m?kg~!. However, both experiment and theory show that this is an over-
simplification and that the effective radius of the ice particles as well as the ice water content is
important. Francis et al. (1994) measured values of k.. ranging from 3 m2kg~! to 144 m2kg~".
The reason for this large variation is that k. has an inverse dependence on the ice crystal
effective radius, as predicted by simple theory. The value of k. used in the Unified model
corresponds to an ice crystal effective radius of about 20 um. The longwave scheme currently
ignores the effect of rain, snow and graupel.

For more details, contact I.Dharssi at the JCMM, Reading University. Also, M.K.MacVean
has implemented a rather simpler (and cheaper) longwave radiation scheme.

7.3 Other developments

Individual users have made further developments to the code, and should be consulted by anyone
intending to use the model in the following areas:

e Nudging of model variables towards experiment (Derbyshire)

Particle dispersion (Kemp)

Development of improved advection schemes (Lock)

Development of diffusion schemes less restrictive on model timestep (Hobson)

e Stretched grid in horizontal (Gray)
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Annex A : Routine NNSTEPS

The penalty (in terms of loss of transparency) of using slices rather than explicitly three-
dimensional fields is incurred principally in the routine NNSTEPS. Anyone who wishes to
modify this will require a good knowledge of the structure of the code, whereas the source
routines (UVWSRCE, THSOURCE etc.) are designed to be relatively close to the analytical
formulation, so that e.g. forcing functions could be introduced fairly straightforwardly.

The philosophy in NNSTEPS is to cycle through the vertical slices, storing only a few at a
time in COMMON/LARGE/, and computing from these the ‘source terms’ Ou/dt, 86/8t and
so on (these terms are called SU, SV, STH etc. in the code). In writing back to the packed
fields (or external storage) via WRTFLDS, note that the values held in /LARGE/ are not
themselves changed (because some of them may still be needed in the current timestep). (The
routine STEP, called by WRTFLDS, uses temporary arrays to avoid changing these slices; the
non-packed slices U,V,W,TH,Q are not themselves incremented).

To avoid copying one array into another, the cycling is accomplished by reindexing. The
indices are set up in SETINDEX and, when the current I is advanced by one, we call REINDEX,
which reindexes the pointers. For example, the slice previously referred to as IP1 (i.e. slice I+1)
becomes I0 (i.e. slice I). The slice previously referred to as IM2 (i.e.I-2) is no longer required and
is overwritten. The details of which slices are held in COMMON/LARGE/ and the reindexing
depends on whether backscatter is used, as explained below. VIS is viscosity, DIFF is diffusivity
for scalar, DIS is drain of momentum, DIST is drain of scalar variance.

A.1 NNSTEPS without backscatter

¢ To step fields on slice I requires viscosities on slices I+1. This in turn requires fields on
levels I+2 to have been read. This is done as follows.

e slice IFTRSTP= —1: read slices -1,0,1; compute VIS, DIFF on slice 0
e slice 0: read slice 2; compute VIS, DIFF on slice 1

e slice I (I=1,ITP): read slice I+2; compute VIS, DIFF on slice I+1; step fields on slice I;
write new fields on slice I

¢ The subroutine RDFLDS is written so that CALL RDFLDS(L,...) is treated as CALL
RDFLDS(I+IIP,...) for I < 1, and CALL RDFLDS(L-IIP,...) for I > IIP.

o Storage requirements: 5 slices of fields (I-2,I-1,1,1+1,1+2), 3 slices of viscosities (I-1,L,I1+1).

A.2 NNSTEPS with backscatter

e To step fields on slice I requires viscosities on slices I+1 for the viscous terms (as before)
AND dissipations on slices 142 for the backscatter. To calculate these dissipations we need
to have calculated viscosities on slices [+2, and therefore need to have read fields on slices
I£3. This is done as follows.

o slice IFIRSTP= —3: read slices -3,-2,-1,0; compute VIS, DIFF, DIS, DIST on slice -1
(required for dissipations on I-2 when I= 1)

e slice -2: read slice 1; compute VIS, DIFF, DIS, DIST on slice 0

e slice -1: read slice 2; compute VIS, DIFF, DIS, DIST on slice 1




e slice 0: read slice 3; compute VIS, DIFF, DIS, DIST on slice 2

e slice I (I=1,IIP): read slice I+3; compute VIS, DIFF ,DIS, DIST on slice I+2; step fields
on slice I; write new fields on slice I

® The subroutine RDFLDS is written so that CALL RDFLDS(L,...) is treated as CALL
RDFLDS(I+IIP,...) for I < 1, and CALL RDFLDS(I-IIP,..,) for I > IIP.

e Storage requirements: 6 slices of fields (I-2,I-1,L1+1,I4+2,1+3), 4 slices of viscosities (I-
LLI+1,I42), 5 slices of dissipations (I-2,I-1,1,I4+1,1+2).

A.3 Implementation in the code

The code is written so that the changes in the structure of NNSTEPS when using backscatter
should be transparent to the user. Backscatter requires storage of extra slices of fields and
dissipations. Extra pointers IPA, IPB, IPC and IVISIPA have been introduced. These are used
to select mean-field slices in calling CALCVIS. IPA, IPB and IPC point to slices I, I+1 and 1+2
without backscatter, and to slices I+1, I4+2 and I+3 with backscatter. The extra slices required
for backscatter are dimensioned and read only when the backscatter is switched on through
parameter statements, so there should be minimal memory or CPU penalty when switched off.

If making changes to NNSTEPS be very careful to ensure that you know which slice you
are dealing with. Note, also that ‘I’ in routines such as CALCVIS is not the same as that in
NNSTEPS - ‘I’ in CALCVIS is the slice on which we are calculating viscosity; this is I+1 or
I+2 of NNSTEPS. Please see S.H.Derbyshire, A.R.Brown or M.K.MacVean if in any doubt.

An abbreviated version of NNSTEPS is now given.




------------------------------------ begin loop over timesteps
DO 1 N=0,NN
IPRINT=0
IF(N.GT.0)THEN
various housekeeping, notably check on timestep

carried out on first step on each NN
ENDIF ! (N.GT.O)

IF(IBSCATP.EQ.1.AND.HOD(NSTEP,2).EQ.O.AND.N.NE.NN)CALL SETRAN
set up random numbers for use in backscatter routines

CALL SETINDEX(IM2,IM1,I0,IP1,IP2,IP3,IVISIM1,IVISIO,IVISIP1,
&  IVISIP2,IDISIM2,IDISIM1,IDISIO,IDISIP1,IDISIP2)
IF(IBSCATP.EQ.0)THEN
IPA=I0
IPB=IP1 =
IPC=IP2 "
IVISIPA=IVISIP1
ELSE
IPA=IP1
IPB=IP2
IPC=IP3
IVISIPA=IVISIP2
ENDIF

set up pointers - this allows same code to be used whether
reading two slices ahead (standard) or three (backscatter)

IF(JJP.GT.1)CALL INITPS
initialize pressure source

begin loop over SLICEs
DO 2 I=IFIRST,IIP

IF(I.EQ.IFIRST.AND.IIP.GT.1) THEN
CALL RDFLDS(I,U(0,1,I0)..... )
CALL RDFLDS(I+1,U(0,1,IP1)..... )
IF(IBSCATP.EQ.1)THEN
CALL RDFLDS(I+2,U(0,1,IP2).....)
ENDIF
ENDIF
Reading in velocity slices when on first slice
(I,I+1=-1,0 without backscatter;
I,I+1,I+2=-3,-2,-1 with backscatter)

CALL RDFLDS(I+2+IBSCATP,U(0,1,IP3).....
Reading in velocity slice (all slices)
(I+2 without backscatter, in which case IP3=IP2;
I+3 with backscatter)

o
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IF(N.GT.0)THEN
IF(I.EQ.IFIRST.AND.IIP.GT.1)THEN
= Pressure step, time-swap and smooth fields read in on
first slice (see calls to RDFLDS above)
ENDIF

IF(JJP.GT.1)THEN
CALL PSTEP(I+2+IBSCATP,ZU(0,1,IP3)..... )
- ENDIF
CALL SWAPSMTH(IFORSTEP,ISMTH,I+2+IBSCATP,U(0,1,IP3)..... )
Pressure step, time-swap and smooth fields read in (all
= slices)
ENDIF ! (N.GT.O)

IF(N.EQ.NN)THEN
"~ IF(I.GT.0)CALL WRTFLDS(N,I,INOSTEP,U(0,1,I10),...SU...)
No further stepping; simply call WRTFLDS and return

- ELSE
calculations for new timestep

F] IF(I.EQ.IFIRST.AND.IFBCHGP.EQ.1)THEN
CALL SETFLUX(TIME)
IF(IPASTHP.EQ.0.OR.IPASQP.EQ.0)CALL CHGLOOK
) ENDIF
set new surface heat flux and look up table for lower
boundary condition if appropriate

IF(IFORSTEP.EQ.1)THEN
CALL CALCVIS(N,I+1+IBSCATP,IFORSTEP,U(0,1,IPA),..... )
) ELSEIF(IFORSTEP.EQ.0.AND.IFORSCALP.EQ.0)THEN
CALL CALCVIS(N,I+1+IBSCATP,IFORSTEP,ZU(0,1,IPA),..... )
ELSE !IFORSCALP=1 AND IFORSTEP=0
{1 CALL CALCVIS(N,I+1+IBSCATP,IFORSTEP,ZU(0,1,IPA),..... )
ENDIF
calculate viscosity (on I+1 without backscatter; on
I+2 with backscatter; pointers eg IPA ensure that correct
fields are passed to CALCVIS. Note that CALCVIS also
calculates ‘surface’ viscosity in LOWERBC.

IF(I.GT.0) THEN
CALL DYNVIS(N,I,IFORSTEP,U(0,1,IM2),....)
- calculate source terms on slice I

IF(IBSCATP.EQ.1.AND.NSTEP.GE.NBEGSCATP) THEN
r1 CALL BCKSCT(I,SU.....)
IF(IBSCATTP.EQ.1)CALL BCTSCT(I,STH.....)




ENDIF

backscatter routines - add random forcing to source terms
on slice I

IF(N.EQ.1)THEN
IF(I.EQ.1)CALL INDGNEW
calls to diagnostic routines on each slice on
first step of each NN.
RESDGS for resolved scale, SUBDGS for subgrid diagnostics.

Fields passed into these routines depend on numerical
scheme in use.

IF(I.EQ.TIP)THEN 1
IF(ITSERP.EQ.1)CALL TIMSER
CALL AVDG g
On last slice, call TIMSER (time series) and AVDG to
update running averages of diagnostics
ENDIF “
ENDIF !
CALL WRTFLDS(N,I,IFORSTEP,U(0,1,I0),..... v ia) _
call WRTFLDS for slice I which steps field and writes
to packed storage
=
ENDIF ! _ENDIF(I.GT.O) ?
ENDIF ! _ENDIF(N.NE.NN)

q
| CALL REINDEX(IM2,IM1..... ax) ;
IF(IBSCATP.EQ.O0)THEN
| IPA=I0 etc. ~

ELSE
| IPA=IP1 etc.
| ENDIF -
Cycle pointers and set correctly both with and without
backscatter
B
2 CONTINUE :
e end loop over I (SLICEs)
IF(N.LT.NN)THEN .
IF(IIP.GT.1.0R.JJP.GT.1)CALL POISSON
CALL SET2D -
ENDIF
POISSON solves elliptic equation for pressure. Calculation
overwrites some expanded arrays in COMMON/LARGE/. These are -
recalculated by SET2D. |
1 CONTINUE
------------------------- - end loop over N (Timesteps) T ‘

Finally check tins'coubi:.dfté'ccnfi%i‘tiﬁil?iﬂﬁfi§i§iﬁs




Annex B: The anelastic equations

B.1 The anelastic equations

The present model is formulated alternatively as (i) an incompressible Boussinesq or (ii) a ‘deep
anelastic’ (or ‘quasi-Boussinesq’) system. The latter set forms the natural generalization of the
incompressible Boussinesq equations (which in meteorology are principally a boundary-layer set)
to the troposphere as a whole. They are nonhydrostatic but exclude sound waves (which are
undesirable in atmospheric models).

The original ‘deep anelastic’ equations were invented by Batchelor (1953), although most of
the meteorological literature gives Ogura and Phillips (1962) as the first reference. The latter
pointed out a technical condition, namely a lower limit on time-scales, to justify the equation
set. Physically this point is rather obvious and corresponds essentially to the exclusion of sound
waves. Unfortunately the generalization of the the Batchelor-Ogura-Phillips (BOP) formulation
from an isentropic to a more general basic state is a vexed issue. Users should be aware that
‘anelastic’ is not an unambiguous term.

The approach outlined below is consistent with that standard at Imperial College for some
decades. It is also found in Lipps and Hemler (1982). The continuity equation is approximated
slightly better than the momentum equation (whereas Clark (1977) for instance uses an almost
exact momentum equation), but a good analogue of energy conservation is found. The under-
lying reason is the presence of an isomorphism (though not exact physical equivalence) with a
nonhydrostatic pressure-coordinate set (Miller and White 1984).

The anelastic equations can be modified to give the slightly simpler, though less accurate,
incompressible Boussinesq set, simply by discarding the gas law for the reference density profile,
and setting this constant. This is done in the code if IANELP=0.

B.2 Derivation

In forecasting, plotting isobars at constant height is essentially equivalent to contouring geopo-
tential ¢ at constant pressure, via the approximation p’/p, ~ ®'. Both Boussinesq and quasi-
Boussinesq (anelastic) sets rest on very similar approximations, linked to the assumption that
pressure and density fluctuations about some hydrostatic basic state are ‘small’.

Formally, let p = p,(2) + p', p = ps(2) + p', then we require p’ < p,, 0, < 0,, and
so on. We also require that the variation in 6,, be small over the vertical wavelength of all
significant modes. For density variations to be small we require low Mach number (else sound-
waves will interact strongly with the flow). The ‘wavelength’ condition can accommodate the
incompressible Boussinesq limit (vertical wavelength < scale height) and also the isentropic
(BOP) limit (vertical wavelength ~ scale height < scale of variation in 6).

In the absence of viscosity, the exact momentum equation is

Du 1
Du _ 1 Bl
FrReA (B1)
and writing g = p, ' Vp, gives
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If we assume the basic profiles are nearly isentropic, i.e. approximate

2) (‘_’L’_) = [0, Sdipe
(dp 0, o) Ll d gps dz (B4
then

Du 4 ;

Dt i ovai - V(p /ps) (B5)

A useful way of thinking about the above equations is to write p”™ for the density of a parcel
when compressed or expanded adiabatically to its local reference pressure p,(z), and similarly
T, for the virtual temperature after such an operation. The amount of such compression or
expansion will be small, since by assumption p’ < p,. However, by this means we may separate
out the effect of fluctuating pressure on buoyancy. Both p* and T, may be calculated directly
from the conservative variables, via

P* =p,/RT; E-[p,/Rﬂ.,(p,/pr)“] (BS6)
(i.e. ps/p* = 6,/6,,) where & = R/c, ~2/7. Then

Du p* ! | 2
i o by V(©'/ps) (B7)

Hence, in general, buoyancy should be calculated using the reference pressure Ps because
the term V(p'/p,) already incorporates (an adiabatic approximation to) the effect of pressure
fluctuations p’ on buoyancy. If you use density directly to calculate buoyancy, you should use

p” not p. However, in effect 6 = 6* and 6, = 6 because these are unaffected by pressure
finctuations

The exact continuity equation is

0
P+ V.(pu) =0 (B8)
t
In the anelastic set, for purposes of continuity p is regarded as a function of height alone (i.e. not
z,y or t). Ogura and Phillips pointed out in effect that the condition p’ < p, was not formally
sufficient, because the explicit time-derivative could be large; one needs formally to assume
Dy’
— B
22 < pallVu | (89)
But this condition will only be violated by sound waves, and so except at high Mach number can
be neglected. Its neglect is also consistent with the neglect of an extra term in (A5) (neglected
through the approximation in (A4)) because retention of one of these terms (but not the other)
can be shown to give distorted gravity waves (see Green’s unpublished Imperial College notes).

So the complete set, in the absence of water phase changes, is

/
— =-V(?'/ps) + g—o—"—i + viscous terms (B10)
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subject to the divergence constraint

V.(psu) =0 (B12)
where p,, 0,, are fixed ‘reference profiles’.

In §3 the notation 6,, is not used, but replaced by 6, (as it is in the model), thus effectively
choosing dry reference profiles. Although this is very slightly less accurate, there is no formal
inconsistency with the anelastic approximations.

In view of their non-hydrostatic nature and mass-flux divergence constraint, these anelastic
equations form the natural generalization of the incompressible Boussinesq equations to cases
where the variation of p, across the domain is not small. They obey an exact ‘gas law’, except
for the approximation of p by p,. The incompressible Boussinesq equations can be regarded as
an approximation to the more general anelastic equations by approximating ps(2) ~ po, constant
and 6,(z) ~ 6o, constant. The basic state density p, does not then obey any exact gas law.

We shall take c, as constant, despite a slight dependence on humidity. The errors involved
are small — “even in extreme conditions the factor involving ¢ [i.e. the effect of humidity on K]
is only 1% less than unity, and so usually ignored” (Gill, 1982, p.53).

[Note water phase changes can be handled by using the liquid water temperature Ty, which
like 6, in the dry case, is conserved (unless precipitation occurs). In that option it is the
calculation of buoyancy which is more complicated, because in effect a mixed-phase system
obeys a more complicated ‘gas law’. The key approximation, as before, is that density variation
with height is dominated by the pressure effect, and not by the variation in the adiabatically
conserved variable. ]

B.3 Energy properties

The following energy analysis does not consider phase changes or the 77, option in the model.

The reader concerned with moist processes, moist energetics and moist variables is referred to

Shutts (1991), who concludes that, generally, discretization errors at cloud boundaries are a
greater concern than some of the niceties of moist thermodynamics. The remainder of this
section refers therefore to the option coded by IMOISTP=0.

First note that any quantity g governed by an equation of the form

Dgq 1

i u.Vg, + ;‘-V.(p,Fq) (B13)
(for some ¢,, F,, where typically but not necessarily F, = —K,Vq for some K,) obeys an overall
conservation law

Tjt- f psq d°r = boundary fluxes (B14)

since p,u.Vg = V.(p,uq), using (B12). Taking the scalar product of u with (B10) gives (in the
absence of dissipative fluxes)

fucly e mgnte =0 /
Dt [2u ] = —-w.V(p'/ps) + gwb, /0y, (B15)
But note that
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and hence

DT &
( Dt )a = —gwps/cpp” = —gwly[cyBys = —gw/cp — gwb! [cpBy, (B18)

whence
P {1 2 * /
Dt |aW +eTs + 92| = —u.V(p'/p,) (B19)
leading (cf. (B13))to conservation of

1
/p, [5“2 + c,T,','] d’r (B20)
(since [ gzd®r is constant).

The form of the energy integral may be unfamiliar to those brought up on incompressible
fluid dynamics. However, by noting that

T*/6, =TI, (B21)

where I, = (p,/p,)™/ is the Exner function of the reference state, we may transform it into
something more familiar. The hydrostatic relation may be written

oo i
0z cpl,

so that in particular for an adiabatic reference state II, is linearly related to the geometric height
z. This motivates the definition of a Hoskins height-like coordinate

(B22)

%= 220 -1,) (B23)

where 6 is some fixed value of 0, so that for an isentropic reference profile (6, = 6,) we have
Zs = z. In general, of course, z, will differ from z. But now we can write our energy integral as

/p, [lu2 - lﬂ.,z,] d®r + const. (B24)
2 0o

(where the ‘constant’ assumes conservation of J ps0,d°r).

Our quasi-Boussinesq equations are isomorphic to another approximate set obtained from
similar assumptions in non-hydrostatic pressure-coordinate models, which gives some confidence
that we have not introduced qualitative errors (see Miller and White, 1984). Note in particular
that the initially slightly puzzling anelastic term V(p'/ Ps) (why should p, go inside the bracket?)
corresponds (at linearized level) to V, &, i.e. the gradient of geopotential along pressure-surfaces.

Finally the validity of our anelastic equations can be examined from the energy integral (B20).
In particular, propagating gravity-wave packets should be reasonably accurately represented even
in (say) an isothermal atmosphere, because the energy-conservation law is essentially correct.
This represents a distinct advantage of our set over the BOP equations.
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