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Summary

A new set of estimates of observation and model error covariance statistics has been constructed
for the Forecasting Ocean Asssimilation Model (FOAM) system. These statistics have been
calculated from three years of collocated observation and model forecast data using a method
based on Hollingsworth and l.onnberq (1986). The calculations represent each univariate
component of the forecast error covariance as the sum of two second-order autoregressive
(SOAR) functions with different correlation scales which are intended to represent errors in the
ocean mesoscale and at the atmospheric synoptic scale. The statistics are calculated for
appropriate sub-domains to allow the statistics to vary geographically (l.e, be inhomogeneous).

The data used in the calculations are sea surface height (SSH) data from satellite altimeters,
surface temperature (SSn data from in-situ and satellite platforms and in-situ temperature profile
data. The model forecasts in this paper are from a 20 level configuration of the FOAM system for
the Atlantic and Arctic which has a grid spacing of 40km.

For the SST and SSH it is found that the mesoscale variances have a marked maximum in the Gulf
Stream region and that the mesoscale correlation scales have relatively little geographical
variation with typical values of 40-60km. The synoptic scale errors for SST and SSH have much
longer correlation scales (typically 300km for SSHand 500km for SSn and both the variance and
correlation scales vary relatively little geographically.

Vertical correlation scales have been estimated using temperature profile data for both error
components. The mesoscale length scales appear to be significantly longer than those for the
synoptic scale. To estimate from the statistics how the SSH data should be projected in the
vertical, the temperature profile data has also been used to calculate isopycnal displacement
statistics as a function of depth. These show a maximum displacement variance at the
thermocline depth with a decrease in displacement above and below.
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1. Introduction

A major international effort to demonstrate the viability and value of operational ocean
forecasting is planned for the period 2003-2005 (GODAE, 2002). This period coincides with
improvements to the ocean observing system such as the implementation of the Argo array of
profiling floats (Argo Science Team, 1998) and the operational dissemination of altimeter data
from the Jason- 1 and Envisat satellites. To make the most of these and other observations, the
schemes which assimilate them into ocean circulation models need to be developed so as to
produce more accurate initial conditions for forecasts.

Most of the methods used for assimilating data require some knowledge of the errors in the
system. These observation and model forecast error covariances need to be known a priori for
methods such as Optimal Interpolation (01) or 3D-Var in which they are usually kept constant
(Daley, 1991). For more advanced methods such as the ensemble Kalman filter, the error
covariances are implicitly evolved with the analyses, although some initial estimate is required
(Evensen, 1997). The error covariance matrices are not known exactly and could not be specified
exactly even if they were known due to their size (- 107

X 107 for a 10 resolution global ocean
model) so they have to be approximated in some manner.

There are various methods in the literature for estimating the error covariance matrices. The
method of Hollingsworth and l.onnberq (1986, hereafter referred to as HL) can be used to
estimate both the forecast and observation error covariances. Here, collocated observation and
model forecast values are used to form the error statistics. The NMC method (Parish and Derber,
1992) compares forecasts with different lead times which are valid at the same time and uses
many realisations to estimate the forecast error statistics. It is usually used to produce statistics
for a range of horizontal and vertical wave numbers using spectral techniques. The specification
of the model forecast error covariance matrix is crucial to the effectiveness of any data
assimilation scheme as it determines how the observation increments are spread onto the model
field.

The true model forecast error covariance matrix will be spatially inhomogeneous in the
horizontal and will contain energy in many different scales. The method of HL introduced above
is usually used to estimate statistics which vary in the horizontal but only one correlation scale is
calculated. Conversely, the NMC method is usually used to estimate multi-scale error statistics,
homogeneous in the horizontal, for a wide range of spectral scales. In this work, a method
whereby the different oceanic signals present in the observations can be extracted will be sought
using a method based on that of HL so that the resulting error statistics will be both spatially
inhomogeneous and multi-scale.

Section 2 describes the assumptions and methods used to estimate error statistics. The data and
model used in the calculations are described in section 3. The methods used assume separability
between horizontal and vertical errors. The estimates of horizontal statistics are described in
section 4 and the vertical statistics in section 5. The shortcomings of the methods used and the
results, together with some suggestions for improvement are discussed in section 6. Section 7
presents a concluding summary. Estimates of error statistics for salinity over the north Atlantic
and Arctic are briefly described in Appendix A and global statistics for SST are shown in Appendix
B.
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2. Assumptions and method used to calculate error covariance statistics

The forecast error covariance matrix pf is very large. A standard method for representing pf
specifies the variances V from its diagonal elements and correlation functions f which give
smooth approximations to the off-diagonal elements, thus reducing the dimensions of the
problem. Writing the forecast error covariance matrix as described gives

~~/)= P;V/(I/)(xt,x,), (2.1)

where ~~/) is the forecast error covariance at point i,j and x is the variable for which the
covariance is to be determined. This covariance can be written as the sum of K standard
functions (such as Gaussian or SOARfunctions), each with their own scale, that is

K

~~')= L~V/Vfgtt/)(Xt,x,).
k=l

(2.2)

An important requirement of correlation functions is that they be positive definite so that the
resulting covariance matrix is positive definite. Any linear combination of positive definite
functions with nonnegative constants is also a positive definite function (Weber and Talkner,
1993).

The method of HL uses collocated observation values, denoted by YI at point i , and model
forecast values (of the same quantity) denoted by x{ to estimate the variances and correlation
scales. This is valid if the observation errors are uncorrelated and the forecast and observation
errors are not cross-correlated. Ifthese assumptions hold then

< (x{ - YI)(X~ - y,) >

=< [(x; - x:) + (x] - Yt)][(x; - x~) + (x~ - y,)] >

=< (x; -x:)(x~ -x;) >+2 < (x{ -x:)(x; - y,) >+ < (x: - YI)(X~ - y,) >

=< (x; - x:)(x~ - x;) >,

(2.3)

where <. > indicates an ensemble mean, i and j are observation locations (i i:- j), superscript f
denotes the forecast value and superscript t denotes the "truth" (see Lorenc, 1986 for a
definition). This shows that the ensemble mean covariance of the forecast errors at two
observation locations can be calculated from the differences between observation and forecast
values. The forecast error covariance can therefore be calculated directly from the data as a
function of separation between points. Assuming that the error covariance data is smoothly
varying with separation, a predetermined function can then be fitted to the covariance data and
the correlation scale and the forecast error variance can be estimated. Extrapolating these
covariances to zero separation then gives estimates of the forecast error variances (HL).

Assuming that forecast and observation errors are not cross-correlated, the ensemble mean
variances between collocated observation and forecast values can be re-expressed as the sum of
the forecast and observation error as
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( f )2 (x] t t )2< XI - YI >=< XI - XI +XI - YI >

-«Xf _Xt)2 >+«y _Xt)2 >- I I I I •
(2.4)

The observation error variance can therefore be estimated (at least in principle) by calculating the
difference between the forecast error covariance at zero separation and the forecast minus
observation variance.

The calculations described above need to be performed for a given area with sufficient
observations to obtain statistically meaningful results. The number of observations available
therefore limits the resolution of the grid on which the statistics can be estimated. The amount of
data available will depend on both the type of data and the period over which the calculations
are performed. So for a given period over which observations are available, the spatial resolution
of the statistics which can be calculated will be different for each data type. The statistics are
assumed to be homogeneous in each grid box over which they have been calculated.
Anisotropic statistics could in principle be calculated in each grid box, but only isotropic values
have been obtained in this work.

Correlation functions have to be specified to represent the error covariance data. The model
forecast is likely to contain errors on many different horizontal and vertical scales and it is
important to use knowledge about the dynamics of the ocean to specify the type of functions
used to represent these scales. Also, the correlation scales which are used should be appropriate
for the particular application. For instance, different scales are important for short range forecasts
(5-10 days) and longer range applications such as seasonal or climate prediction. For these
longer time scale applications, where the model grid is often of much coarser resolution,
processes which occur on small spatial scales can be viewed as noise in the system and may be
included in the errors of representativity of the observations. For short range, high resolution
forecasts, it is important to include these small scale features in the forecast error statistics.

The number of different correlation scales that are to be extracted from the data depends on the
type of application. In short range ocean forecasting it is thought that there are two main sources
of model forecast error. The first arises from errors in the forcing of the model by atmospheric
fields such as the wind or freshwater forcing, or in the response of the model to such large scale
forcing. Errors in the wind forcing are likely to occur on horizontal scales similar to those for
synoptic weather systems in mid-latitudes (of order a few 100kms) with fairly small correlation
with errors in the deep ocean. Errors in the freshwater fluxes applied to the ocean model may
have smaller time and horizontal scales as they will mainly affect errors in the mixed layer. These
type of errors are expected to be small compared with those for the large scale wind forcing and
so are ignored here although might be treated in future work. Errors which occur on scales
similar to those of atmospheric synoptic scale systems are called "synoptic scale" errors in this
work.

The second source of forecast error arises from errors in the internal dynamics of the model.
These internal errors are likely to be associated with the baroclinic modes of the ocean and hence
consist of several horizontal and vertical scales. At present, the resolution in FOAM is such that
many of the higher baroclinic modes are not resolved. Only the first baroclinic mode is dealt with
in this report although the work could be extended to include some of the higher modes. The
first baroclinic mode is likely to have horizontal errors on scales of a few tens of kilometres with
large vertical scales. These types of errors are termed "mesoscale" errors in this report.
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Two second order auto-regressive (SOAR) functions are used in this work to represent the two
types of model forecast error described above. Univariate error covariance correlation functions
are written as

per) = Vme.(l +r / Lme.)e-r/Lm<, + V.yn(1+ r / L.yn)e-r/L,yn, (2.5)

where r is the separation distance between two points, subscript mes indicates the mesoscale
component, subscript syn indicates the synoptic scale component, V is the variance and L is
the correlation length scale. A set of separation distances Ij are defined and the covariance data
is put into bins which surround each distance (the separation distances are shown in figure 3).
The function P is then fitted to the covariance data ZI using a descent algorithm which
minimises the X2 value which is a measure of the goodness of fit of the function to the data and
is given by

X2 = L~[ZI-P(Ij)]2,
10'1

(2.6)

where a is some weighting factor which indicates how well the data should be fitted at different
points. The algorithm which is used to minimise this value is the steepest descent method which
makes changes to initial estimates of the parameters to be estimated, namely the length scales
and variances, based on the gradients of ~ with respect to each parameter normalised by the
norm of the gradients. The nonlinearity of the function in equation (2.5) means that the final
values of the parameters have some dependence on their initial estimates. An example of the
initial values of the parameters used for the calculation of SSH covariance data is L~e. = 50km,

L~yn=150km, V~e. = 50cm2 and V.~n= 1Ocm2
•

3. Data used in calculations

3.1 Model fields

The operational FOAM system currently includes two model configurations. A global model with
1° horizontal resolution was implemented in 1997. A north Atlantic and Arctic model with 40km
(1/3°) grid spacing, which takes its boundary conditions from the global model was
implemented in April 2001. Both these models have a vertical grid with 20 levels which range in
resolution from 10m in the upper ocean to about 500m at depth. The model dynamics and
parameterisations are very similar to those used in the ocean component of the HadCM3 climate
simulations (Gordon et 01. 2000). The models are forced by 6-hourly wind stress, evaporation-
minus-precipitation, heat flux and radiation fields derived from the Met Office's operational NWP
system. For more information about the model see Bell et 01. (2000).

The statistics in this paper were calculated using one day forecasts from an integration of the
north Atlantic and Arctic model which ran for 3 years between 1997 and 1999. The initial
conditions were produced from a model-only integration of the same model and boundary
conditions were taken from a run of the global model which assimilated SST and temperature
profile data. The main integration assimilated quality controlled SSH, SST and temperature
profile data using an implementation of the analysis correction scheme described by Bell et 01.
(2000).
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3.2 Observations
'"7

Observation and model forecast values have been output at observation positions from the 3
year run of the FOAM 1/30 system described above. Only those observations which passed the
quality control contribute to the statistics. The number of these observations in two degree
boxes from the three years of integration is approximately 1.1 xl 06 SST and 9Ax106 SSH
observations. There are enough of both of these observation types to enable root mean square
(RMS) values to be calculated on a 20 grid although the SST results are likely to be noisier than
those for SSH as there are less of these observations. Calculations of covariances have been
performed on a 100 grid for these data types to ensure there are enough observations to produce
realistic statistics. The number of temperature profile observations is significantly smaller, the
total number of observations (counting those for each depth separately) being approximately
1Ax105

• These observations have been used to compute error covariances only as basin
averages although RMSvalues have been estimated on a 100 grid for comparison with SSTdata.

4. Horizontal error statistics

Values for the total RMS errors in 20 grid boxes are shown for SSH and SST data in figures 1(a)
and (b) respectively. For both data types, errors are largest in the Gulf Stream region, reaching
maxima of about 40cm for SSH and about 4K for SSTdata. This is to be expected as this area has
a large amount of variability. The errors are probably larger than they might have been (at
300km) because the length scales used in the assimilation were quite large so that the small scale
eddies in the Gulf Stream would not have been accurately represented.

9o" +5W 45£ 90¥!' +5W .5£

Figure 1: RMSvalues of (observation - forecast) for (a) SSH (ern) and (b) SST(K).

The RMS patterns (on a 100 grid) for the temperature profiles are fairly similar to those of SST in
the upper levels with values of 0.5-1 K in most of the region, increasing to about 2.6K in the Gulf
Stream region as shown in figure 2. There is a slight increase in the errors with depth down to
about 150m, especially in the equatorial region where errors in the model's density gradients in
the thermocline are likely to cause larger errors. Below 150m, the errors decrease except in the
Gulf Stream region where they remain relatively constant down to about 600m.
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Figure 2: RMSvalues of (observation - forecast) for temperature profile data (K) at
(a) the surface and (b) 150m.

4.1 Sea surface height

Estimates of the forecast error statistics for SSH have been computed using the method described
in section 2 with a 100 grid. Two examples of the fit to the data are shown in figure 3. The first
example is at a grid box in the centre of the north Atlantic, away from the western boundary
current, and two scales can clearly be distinguished. The dotted line shows the mesoscale errors
which have a length scale of about 40km. The synoptic scale errors are shown by the dashed line
and have a length scale of about 560km. These scales are fairly typical of boxes over the whole of
the region. The ratio of the variances is more variable. In the second of the examples, the
mesoscale errors completely dominate the signal because it is in a region of high eddy activity in
the Gulf Stream. The total forecast variance is over 300cm2 compared to about 30cm2 for the first
example. Now only one scale is extracted from the fit to the data and this scale is about 40km,
similar to values in most of the region for the mesoscale. In this example, there is a slight
negative covariance at about 200km separation which is not captured by the function fit to the
data. It would be possible to use a different function to include negative covariances but this is
not attempted here as these negative lobes are of small magnitude and only occur in one or two
grid boxes.

40r-------~ ~ ~--------------__,

1,f
8~

3OW.40N

Mesoscale lel'€th = 37.13
Synoptic length = 561.63 Mesoscale lenglh_42_46

Synoptic length .. a 0

400r-------------------------~-------r------_,

o 1- .--.

SOW,40N

s,
~

I
\
\
\
\
\
\
\,,

o I.............::~·:~· .. . l -200
o 200 400 600 800 1000 LO,--~----2::0:::0--~---4,.,0"'0~----.c.,6;;;O*'0------'-;6;;;0;;-0--~-J1(

Distance (km) Distance r km)

Figure 3: Examples of fits to the SSH covariance data (crrr') using two SOARfunctions (a) at 30W,
40N and (b) at SOW,40N. Shown are the covariance data (circles), the mesoscale errors (dotted

line), the synoptic scale errors (dashed line) and the total errors (solid line).
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To use the results of this analysis in the assimilation, it is desirable to process the fields in
appropriate ways. The total SSH RMS errors on a 2° grid shown in figure 1(a) have been
combined with the results of the analysis of the mesoscale forecast error variances on a 10° grid
so that the regions of high mesoscale variance can be more accurately defined. This was
accomplished by interpolating both the synoptic scale and observation variances onto a 2° grid
and subtracting them from the total RMS field. The results are shown in figure 4(a). The Gulf
Stream region is clearly defined and has much larger mesoscale variances than the rest of the
north Atlantic. There are regions to the northeast and northwest of the region with large
variances. These are areas where the model does not perform well due to the shallow depth of
the ocean. The synoptic scale error variances are not shown here because they are fairly constant
over the whole of the region and an average value is therefore used of about 9cm2

• This is much
smaller than the mesoscale variances over most of the region.

90W <5W o 45£ 90W <5" o 45£

Figure 4: SSH mesoscale forecast error (a) variance (crrr') and (b) correlation length scale (km).

The mesoscale correlation scales have been smoothed and interpolated onto a 2° grid and are
shown in figure 4(b). The smoothing was applied by replacing the value at each gridpoint with
the average value over the 3x3 box centred on that point. The resulting scales are fairly constant
over the north Atlantic at about 40km although they do increase slightly in the Gulf of Mexico.
There are also larger scales in the southeast of the region. This might be associated with the flow
which enters the region through the southern boundary which comes from the 1° model which
inherently has larger scales. It could also be due to the fact that the scales are isotropic in these
calculations whereas flow near the equator is known to have longer zonal scales than meridional
scales. The synoptic length scales have been averaged over the whole region as they are fairly
constant at about 400km.

Observation error variances have been calculated from the difference between the total RMS
errors and the total forecast error variance and are shown in figure 5. These errors are of similar
magnitude to the synoptic scale forecast error variances at about 1Ocrrr' over most of the region.
They include both the actual errors in the observations and the errors incurred by trying to use
observations valid at a single point to infer information about fields on a model grid with a 30km
resolution.

8 of 23



Estimation of three-dimensional error covariance statistics for an ocean
assimilation system

~~
~iii!!

90W <sw 45£

Figure 5: SSH observation error variance (crrr'),

4.2 Sea surface temperature

The error statistics for SST have been calculated in the same way as for SSH and show
qualitatively similar results. The mesoscale forecast variances are again much larger in the Gulf
Stream region, as can be seen in figure 6(a), with maximum values of about 12K2. The synoptic
scale variances are fairly constant with an average value of about 0.2K2 and are not shown here.
The mesoscale length scales are about 50-70km over most of the region and increase towards
the Gulf of Mexico as can be seen in figure 6(b). There now seems to be some decrease in the
scales towards the equator which is the opposite to those obtained with SSH data. The synoptic
length scales have an average value of about 500km. The observation error variances are slightly
larger than for the synoptic scale errors, with values varying from about 0.1 K2up to 2K2.This is
shown in figure 7.

90W <sw 45£ 9QW <sw 45£

Figure 6: SSTmesoscale forecast error (a) variance (K2)and (b) correlation length scale (km).
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Figure 7: SSTobservation error variance (K2).

4.3 Temperature profiles

A basin wide average of error variances and correlation scales for temperature profile data was
calculated as a function of depth. The mesoscale and synoptic scale forecast error variances are
shown in figures 8(a) and (b) respectively. These show that both components are maximum at
about 50m depth and decrease with depth. The mesoscale has larger errors with a maximum of
about 1.8K2. The synoptic scale error variances decrease more rapidly with depth and are less
than 0.2K2 by about 200m depth.

0 0

200 200

400 400

E E
~600 ~ 60.-"--
0 s

800 eo

1000 1000

120°0.0 izno
0.5 1.0 1.5 zo O. 0.2 .4 .6

Figure 8: Temperature profile forecast error variance (K2)(a) mesoscale and (b) synoptic scale.

Figures 9(a) and (b) show the forecast error correlation length scales for the mesoscale and
synoptic scale components respectively. The mesoscale length scales are fairly constant between
about 40 and 50km throughout the top 1000m of the ocean although they do increase slightly
between 200 and 400m depth. The synoptic scales are about 700km at the surface, increasing to
over 1000km at 50m depth and then decreasing to about 500km. At a number of depths, these
synoptic correlation scales are 500km which was the initial estimate for the function fitting
algorithm. The final X2 value was small at these depths (0.01477K2 at 1200m for example)
which indicates that the function did fit the data well and that the minimisation was insensitive to
the synoptic correlation scale.
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Figure 9: Temperature profile forecast error correlation length scales (km) (a) mesoscale and (b)
synoptic scale.

The observation error variance for temperature profile data was estimated by averaging the total
RMSdata over the whole north Atlantic and subtracting the sum of the mesoscale and synoptic
scale variances shown in figure 8. The results are shown in figure 10 and show that the
observation error variance is generally small compared to the total forecast variance. The slight
negative value at about 100m depth indicates that this estimate of the variance might not be
very accurate.

.§:400
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Figure 10: Temperature profile total mean square errors (solid line), total forecast error variance
(dashed line) and observation error variance (dotted line) (K2

).

5. Vertical error statistics

5.1 Vertical isopycnal displacement variances

One of the aims of this work is to test the validity of the Cooper & Haines (1996) scheme. To do
this, the temperature profile data was used to calculate statistics of isopycnal displacements. The
first stage of the calculation was to convert the model and observed temperature values to
density values. This was done by using the Levitus salinity data set so that for each temperature
value, a salinity value was interpolated to the correct position for the same time of year.

For each pair of model and observed density profiles, a functional was minimised which
described the amount the model density profile would have to be displaced in order for it to
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equal the observed density at each depth, allowing for some additional synoptic scale error in
the "horizontal" placement of the profile. This is done by minimising the following functional
with respect to p ,

:T(p) = (P: - p)B;y~(p: - p) + (z, - hm(p»B;l(Zk - hm(p», (5.1)

where P: is the density on the observed profile at level Zk' hm(p) is the depth of the density
value on the model profile and Bsynand B, specify the weightings for the horizontal and vertical

displacement errors respectively. In other words, for density P: on the observed profile at
level Zk' find the density p on the model profile which minimises the difference in height
between level z, and the height of p on the model profile, allowing for errors in the placement
of p:; in the horizontal, as shown schematically in figure 11. Then the isopycnal displacement is
given by (z, - hm(Pmin» where Pmin is the minimum of the cost function given in equation (5.1).

DePilil~.
i --':":":_-'"
i ---......:_~i ~"'-
i '~
I ' "<,! Model profile' -. <, Observed profile

Zk r··· \.I \I \[ .
I 'r··············· ~>~/-;\: .
I '! __...- _-.,./

1 (:1;- h"tp)) ( " _// '.I k P.-p)

I
I

-.

Potential density

Figure 11: Schematic of the calculations for isopycnal displacement.

The minimum of the cost function depends strongly on the specification of the weights Bsynand
Bv' The horizontal errors in the placement of model density profiles should depend on the
synoptic scale horizontal error variances, as only those parts of the errors in the vertical which are
due to the mesoscale should be extracted. These have already been calculated for temperature as
averages over the whole basin as a function of depth and are shown in figure 8(b). These are
therefore used for Bsyn, after converting to density variances using the thermal expansion
coefficient.

The vertical weight should be some estimate of the variance in the vertical displacement of
isopycnals. This poses a problem as this is similar to the quantity we are trying to deduce. We
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therefore parameterise this quantity by the value D = (SSH RMS)/(Pl - PK)' the SSH RMSdivided
by the difference between the density at the top and the density at the bottom of the profile. This
is an estimate of the lifting and lowering implied by the SSH RMS.These RMSs have already been
calculated, as shown in figure 1(a) and are used on the 100 grid. So B, is constant with depth
but varies horizontally.

The functional in equation (5.1) was minimised for each pair of model and observed profiles at
each depth down to 1OOOm.The results were then split into three regions according to the SSH
RMS. These are shown in figure 12, along with the average depth of the thermocline in the
different regions and the isopycnal displacement variance implied by the Cooper & Haines
scheme which is given by D2. For all three regions, the general picture is that the isopycnal
displacements are maximum in the region of the thermocline and decrease above and below this
depth. The displacements also increase near the surface which is likely to be due to large errors
in the mixed layer.

In regions of small SSH RMSwhere the eddy activity is fairly small, the Cooper & Haines scheme
seems to overestimate the isopycnal displacement. As the SSH RMS increases, the value implied
by the Cooper & Haines scheme explains less and less of the isopycnal displacement below the
top 150m. This is a surprising result as errors in regions of high SSH RMS are expected to be
regions with large vertical scales because of the vertical coherence of eddies.

These results seem to compare reasonably well with those of Faucher et 01. (2002), where
isopycnal EOFs are calculated as a function of depth over the north and tropical Atlantic from a
set of historical hydrographic data. In the Gulf Stream, they find that the isopycnal displacement
has a maximum at mid-depths for the first EOF,which corresponds to the maximum variance at
the thermocline depth in this work. They find that the first EOF is vertically homogeneous in
regions outside the Gulf Stream, indicating the lifting/lowering should be as implied by the
Cooper & Haines scheme. This result is different from the results shown here although the rest of
the signal might be explained by the higher EOFs.The use of large amounts of historical data in
their work means that they are able to give spatially varying estimates of the EOFs. In this work,
values for only three regions can be computed due to the number of data, but the results should
be more relevant to the FOAM system than using the historical data. Also, it is possible to use the
results in a way which enables spatial and temporal variability by letting the displacement of the
isopycnals depend on the model's thermocline depth, as indicated by the results.
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Figure 12: Isopycnal displacement variance (rrr') (solid line) with depth for regions dependent on
SSH RMS(a) SSHRMS < 10cm (b) 10cm < SSH RMS < 20cm (c) 20cm < SSH RMS.Also shown is
the average thermocline depth (dashed line) and the isopycnal displacement variance implied by

the Cooper & Haines scheme (dotted line).

5.2 Temperature profiles
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With the two component error covariance matrices described in section 3.1, two components of
the vertical correlation scales are required for the temperature data so that the mesoscale and
synoptic scale errors are put into the correct part of the vertical signal. A method for calculating
the synoptic part of these errors using the temperature profile errors is shown schematically in
figure 13. For each depth on a profile, correlations are calculated between the value at this depth
and the values at all the different depths on another profile. These correlations are then binned in
terms of the distance between the two profiles. This is done for all the pairs of profiles available
which have a separation of less than 1000km. So for each depth and separation, the correlations
with other depth levels are available. Two SOAR functions are then fitted to the data, one to
estimate correlations above this depth and one below it so that two length scales are obtained
for each depth and for each separation. These results are then averaged at each depth for
separations between 200 and 1000km so that none of the mesoscale signal will be included.
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Figure 13: Schematic of the calculations for vertical error statistics for synoptic scale temperature.

The results of these calculations are shown in figure 14. This shows the vertical correlation scales
for the synoptic component of the temperature error as a function of depth. For each depth the
two scales are shown together with the average. The results show that, on average, the vertical
correlation scales for the synoptic component are about 70m. This value increases at about
100m depth to a maximum of about 160m for those points below this depth.
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Figure 14: Vertical error correlation scales for temperature profile data for the synoptic scale.
Shown are correlations above (dashed) and below (dotted) each depth along with the average of

the two (solid).
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Calculations have also been performed which attempt to estimate the vertical correlation scales
for the mesoscale component of the temperature errors by using the covariance statistics
obtained during the isopycnal displacement calculations. The synoptic scales have been taken
out by allowing the profile to have horizontal errors so these statistics give information about
how the density is correlated in the vertical for the mesoscale component. Since climatological
salinity values were used to calculate both the forecast and observed density profiles, the
statistics will also be relevant to the vertical temperature displacements. It is assumed here that
the vertical displacement covariance statistics will be similar to the vertical covariances of
temperature errors.

Two SOAR functions were fitted to the isopycnal displacement covariance statistics for each of
the three regions distinguished by the SSH RMS. One of these functions estimated the correlation
length scale above and one below each depth for the three regions. The results of these
calculations are shown in figure 15. The initial estimate for the fitting routine to calculate the
length scales was set to be 150m. For the region with small SSH RMSespecially, the data was not
very coherent at some depths and so the fitting routine failed to estimate the length scales and
returned with the initial estimate. In the two regions where the SSH RMS is larger, the length
scales vary between about 10m and 190m which is a fairly large variation. Overall, the average
value for the vertical correlation scale for the mesoscale is about 120m .
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Figure 15: Vertical error correlation scales for temperature profile data for the mesoscale for
regions dependent on SSH RMS(a) SSHRMS < 10cm (b) 10cm < SSHRMS < 20cm (c) 20cm <

SSH RMS. Shown are values above (solid) and below (dotted) each depth.

6. limitations and potential for further work

The statistical estimates which have been shown in this report improve the information provided
to the assimilation scheme about the errors in the model and observations. There are a number
of limitations in both the method used and the results presented here which should be addressed
in future work.

A problem with the method which has been used in this work is that the underlying assumptions
are not always valid. As described in section 2, it is assumed that observation errors are
uncorrelated but there will be correlations along altimeter tracks which violate this assumption.
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This is a general problem with this technique but a way of reducing its effect might be to remove
the long wavelength errors from the altimeter data before it is used in the calculation of the
statistics, perhaps using a method similar to that described by Le Traon et 01. (1998).
Temperature profile data are also likely to have correlated errors with depth.

The method also relies on there being a large number of observations available for the
calculation of the statistics. The number of observations that were available from the three year
experiments is shown in section 3. These numbers restricted the amount of information that
could be extracted in both spatial and temporal resolution. The finest spatial resolution obtained
was 2° in the horizontal and temperature profile statistics were calculated as basin averages to
get meaningful results. Statistics also could only be obtained at a limited vertical resolution and
only down to 1000m depth. The ideal spatial resolution of these statistics would be on the
model grid so that grid scale variations in the variances and correlation scales could be captured
by the assimilation scheme although these statistics should be smoothly varying.

One of the choices made in this work was to fit a combination of two SOAR functions to the
covariance data. This was done because of the idea that there are two main sources of error in
the model and the results generally fitted the covariance data well. Other choices could be made
however. If the covariance data could be calculated at finer resolution then more functions could
be added to try to extract more components of the error such as some higher baroclinic modes.

The inadequacies in the spatial resolution have already been discussed but there are also benefits
to be had by including some temporal resolution. If enough observations were available then it
would be possible to obtain statistics which change monthly or seasonally. This would enable
any time dependence in the errors to be taken into account when assimilating the data.

It would also be useful to estimate how the errors in the observations are correlated in time so
that some estimate is made of how long the observations should be retained in the analyses. If
this retention time scale of the observations is accurate then more use can be made of each
observation as it can then affect the analysis over the correct period of time.

It would be desirable to produce an improved method for estimating the vertical scales in the
temperature profile data for the mesoscale and synoptic scale components. Whilst some
progress has been made in understanding how best to project the SSH data onto the subsurface
temperature and salinity fields, this is still an unsolved problem and could be worked on further.

No attempt has been made in this work to estimate anisotropic scales in the horizontal, yet it is
well known that the correlation scales are anisotropic, especially near the equator where the
zonal scales are much larger than the meridional ones. It would also be desirable to produce
statistics for salinity data using observations of salinity although this would be difficult at present
due to the limited number of these observations available. Some estimates of salinity error
variances have been calculated however using the temperature profile statistics together with
climatological temperature and salinity fields. The method used and some of the results are
described in appendix A. Estimates of the cross-correlations between the different variables
would also be useful and would enable a fully multivariate scheme to be used.

A way in which a number of the shortcomings described above could be improved upon would
be to use a different, complementary method for estimating the error covariances. The NMC
method (Parish, 1992) would provide estimates of the statistics for all model variables on the
model grid and would enable estimates of cross-correlations to be made. This would address the
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problems of spatial and temporal resolution and might enable more error components to be
resolved. The statistics described in this report would not become redundant however as they
would be needed to estimate the effects of systematic model error on the statistics when using
purely model values. This is because the NMC method does not relate the model forecast to the
truth so that systematic errors in the model will distort the resulting statistics. The two methods
seem complementary as the method of HLcan produce some general large scale estimates of the
error statistics and the NMC method can provide the means of producing more detailed spatial
and temporal resolution statistics and can also provide estimates of the errors in variables which
are not observed, together with cross-correlations between variables. It might also suggest ways
of grouping the data to get better results from HL.

This report has concentrated on results of estimating error statistics for the north Atlantic region.
However, error statistics are also required over the whole globe so that the global FOAM system
can be improved. The results of applying the method to the output of an integration of the 1°
resolution global model are briefly described in appendix B.

7. Concluding summary

This report has described some calculations of geographically varying two-component
inhomogeneous three-dimensional error covariance statistics for a model of the north Atlantic
ocean. This region of the ocean contains areas which are dominated by different dynamical
regimes and in which the sources of model forecast errors are also likely to differ. A method has
been developed which provides a unified approach to estimating the different types of model
error over the whole region, providing estimates of errors which arise from both the internal
model dynamics ("mesoscale" errors) and the external forcing of the model ("synoptic" errors).
It has been shown that these two sources of model error occur on different scales and so can be
clearly separated. The method, based on that of Hollingsworth and L6nnberg (1986), uses
collocated model forecast and observation values to form the covariance statistics, and
decomposes these into forecast errors on different scales. It also provides a way of estimating the
observation errors which include both instrument error and errors of representativity.

A three year (1997-1999) integration of the 1/3° north Atlantic configuration of the Met Office
FOAM system was used to form the statistics. The number of observations which were available
over this period restricted the resolution at which the statistics could be calculated. For SSH and
SST it was possible to produce error variance statistics on a 2° grid whilst statistics for
temperature profiles were calculated as basin averages. At the surface the results show that
mesoscale error variances dominate in the Gulf Stream region and synoptic scale errors become
more important elsewhere. The average mesoscale variances decrease with depth so that they
are of similar size to the synoptic variances at 1200m depth. Spatially varying correlation scales
were also calculated at the surface which showed that the average mesoscale error length scales
were about 40-60km whereas those for synoptic scale errors were about 400-500km. The
synoptic correlation scales increase below the surface to a maximum of about 1000km at 100m
depth whereas the mesoscale length scales remain fairly constant with depth.

Vertical correlation scales for the two error components were estimated using temperature
profile data. The synoptic scale vertical correlation estimates gave reasonable results whereas the
mesoscale vertical correlation scales seemed quite incoherent and were also smaller than
expected. More work is needed to produce better estimates of these quantities. A method was
used to test how well the Cooper & Haines scheme represents the lifting and lowering implied
by the observations. This also used the temperature profile data and showed that more
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lifting/lowering of model profiles should be carried out in the region of the thermocline and less
above and below.

The main limitations of the Hollingsworth and l.onnberq (1986) method to calculate error
statistics are that it assumes that observational errors are uncorrelated and the spatial and
temporal resolution at which the statistics can be estimated depends on the number of
observations and is very limited for ocean profile data. Also, statistics can only be estimated for
variables which are observed. The main advantage of the method is that the observations used in
the calculations provide a connection with the "true" ocean.
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Appendix A

Estimating salinity statistics for the north Atlantic and Arctic

The number of salinity observations available for assimilation into the FOAM system before 1998
was very small. The number of these observations is set to increase substantially with the
implementation of the Argo project (Argo Science Team, 1998), for example, 431 Argo floats
reported salinity in October 2002. Appropriate assimilation of these data into the FOAM system
should therefore bring about a marked improvement in the salinity field. This requires some
estimate of the error covariance statistics for salinity.

The experiment described in section 3 which provided the data for the calculations of error
statistics did not assimilate salinity data. It is therefore not possible to calculate error statistics for
the salinity data directly from the model output as was done for the other data types. Instead, a
method is used which estimates these statistics using the temperature profile statistics together
with climatological temperature and salinity values.

To estimate the error variances for salinity from those calculated using temperature data, the two
are assumed to be related through the following equation,

< (Sf _ St)2 >-a2 < (T/ - T.t)2 >/ / - / i / , (A. 1)

where a/ represents some time-average value of the ratio of the salinity variations to the
temperature variations at point i, and is given by

a/ =< dS/ > / < d7; > . (A.2)

The climatological temperature and salinity data of Levitus et al. (1994) was used to provide
estimates of a/ . This was done by splitting the model domain into 10° resolution grid boxes and
calculating the interquartile range of temperature and salinity values in each box and at each
depth over the year. This gives an estimate of the range of values which are expected in each grid
box for each variable. The field of values of these ratios is then used to give some estimate of the
error variance for salinity by using (A.I) above. Figures A1(a) and (b) show examples of a/ for
the north Atlantic at the surface and at 300m depth. Examples of the mesoscale error variance for
salinity are shown in figures A2(a) and (b) for the surface and 300m depth respectively.

Estimates of the error correlation scales for salinity cannot be estimated in the same way. Until
more data is available for salinity, these will be set to the same values as for the temperature
data.
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Figure A1: a, (psu K-1) at (a) the surface and (b) 300m depth.
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Figure A2: Salinity mesoscale error variances (psu") at (a) the surface and (b) 300m depth.

Appendix B

Estimates of global error covariance statistics

This appendix gives a summary of the results of estimating error covariance statistics for the
entire global ocean. The data used in these calculations were obtained from a 3 year integration
of the 10 resolution global FOAM system which ran between 1997 and 1999 assimilating SST
and temperature profile data. Collocated observation and model forecast values were output
from this integration. The same method as described in section 2 was used to calculate the
statistics. Only SST statistics are shown here.

Some regions of the globe contained few observations, particularly at high latitudes in both
hemispheres. In these areas, the estimates of variances and correlation scales were not
statistically significant and so the values have been extrapolated/interpolated from regions where
a good estimate has been found.

The variances for SST are shown in figures B 1 (a) and (b) for the mesoscale and synoptic scale
components respectively. In contrast to the results for the 1/30 resolution north Atlantic model,
the synoptic scale error variances are inhomogeneous and are of similar amplitude to the

21 of 23



Estimation of three-dimensional error covariance statistics for an ocean
assimilation system

mesoscale variances. The regions of high error variance are similar for both the mesoscale and
synoptic scales. These generally occur in the areas of the major ocean currents. For instance, the
Gulf Stream has the highest error variance closely followed by the Kurushio current. The
mesoscale error variances are also large in the Agulhas current region, the southern Indian
ocean, the eastern Australian current, the region to the northeast of Drakes passage and in the
region off the coast of Peru.
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Figure 61: SSTforecast error variance (K2)(a) mesoscale and (b) synoptic scale.

Figures 62(a) and (b) show the error correlation scales for the mesoscale and synoptic scales
respectively. These figures show that the split between the two error components is not always
as clearly defined as it was in the 1/30 resolution model of the north Atlantic. For instance, there
are regions, particularly in the southern Pacific and Atlantic oceans where the mesoscale
correlation scales are as large as 200km which is much larger than the Rossby radius and is of a
similar order to the synoptic scale correlation scales. Elsewhere, there does appear to be a well-
defined split between the two components.
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Figure 62: SSTforecast error correlation scales (km) (a) mesoscale and (b) synoptic scale.

The observation error variances are shown in figure 63. The maximum values are smaller than
either the mesoscale or synoptic scale error variances and occur mainly at mid-latitudes in both
hemispheres. There are also some larger values in the eastern tropical Pacific.
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Figure B3: SSTobservation error variance (K2
).

The way these statistics should be used in a model with a resolution of lOin the horizontal is
different than for an eddy resolving or eddy permitting model. This is because the mesoscale
correlation length scales are generally significantly smaller then the model grid so that
observation increments will not be spread out into the model field. This means that point values
will be put into the model field in the assimilation which could have adverse impacts on the
subsequent model forecast. Because the mesoscale length scales are smaller than the model grid
spacing, they should be counted as errors of representativity and included in the observation
errors.
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