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DATA--BASE FOR METEOROLOGICAL FILTERS

i [ Introduction

Met O 16 Branch Memo 1 describes how filters, particularly Polyromial filters
of the Bessel type, can be advantagecous for Meteorological use, Met O 16
Branch Memo 3 describes a method of implementing desired linear transfer
functions, that can be described by Pole-Zero patterns in a Complex Plane,
using computationally economical software, This document atiempts to give
technical data essential for the implementation of filters in both hardware
and software, Dmphasis is laid on filters that can be described in terms of
poles and zeroes, as these filters can be made equivalent in hardware and
software. Certain references are available within Met O 16, and these are

noted.



2e Low Pass Filters

2.1 Met O 16 Branch Memo 1 gives some discussion of Low-Pass filters,

and the trade—off between performance in the time and frequency dcmain.

2.2 Other forms of filter (High-Pass, Band-Pass, Band-Stop) can often
be described mathematically by suitable manipulation of the mathematical

description of a Low-Pass,

2.3 We will consider only filters that can be described in terms of the
complex fregquency s (s:g;lia))o The simplest class of Low-Pass filter

that can be described in this way is the Polynomial Filter:

F (S) = 1' (1)

a"$n+ a"-'s Y e e a,s "',

where F(s) is the Transfer Function of the filter, being the ratio of
o

output signal to input signal as a function of &) for the signal £

It can be seen that (1) describes a Low-Pass Filter because the transfer

function is around unity for s-%0, and decreases to O as s becomes

very large.

2.4 = The order of a Polynomial Filter is the highest value of n. Once
the order has been chosen, the individual coefficients can be chosen to give
2 suitable Transfer Function, often maximising some required property such

as sharpness of cut-off,

2.5 The polynomial in s can be factorised to find the roots of the
polynomial, These are the "poles" of the Transfer Function:

r (S) = 1
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where m = n -1 if n is odd,
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The poles are the values of & for which F(s) becomes infinite,
ie

Poles are: s = -0, (if n is even)
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Poles are often shown as crosses on the "Complex Plane", their position

denoting the values of 0 and W

x A€

A particular pattern of crosses (poles) denotes a particular filter.
Non-Polynomial Transfer Functions may have a numerator polynomial in s. The

roots of this polynomial are termed "Zeros'" These are usually shown as

small circles on a complex plane.

2.6 Once a pattern of poles has been established, and gives some suitable
frequency performance, this frequency performance can be scaled, For example,

if a pole pattern gives 3 dB attenuation at & e & radian/sec, it can be scaled
to give 3 dB attenuation at &pradians/sec by shifting poles (and zeros)

radially from (0,0) by a factor #2/y . This is equivalent to replacing s by

($ IJ!) in eqns (1) and (2).
]
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2.7 The Transfer Function of any given pattern of poles, or set of
coefficients, can be calcuiated as a function of & by using eqn (2), or
eqn (1)s In practice, however, data for the most useful patterns can
usually be obitained as curves from reference books such as Zverev (1967),
or Christian (1966). The former is held in Met O 16f. The latter is out

of print, but can be obtained through a library.

2.8 For Meteorological Purposes the Bessel Filter is important., This
series of vole patlierns is designed to have a maximally flat group delay,
as discussed in Met O 16 Branch Memo No 1. For convenience, the first
few ordersof Bessel Filter are given here, normalised to give 3 dB

s § 8 i A . 4
attenuation at 1 radian/sec:

order Bessel Filter Poles (07, &)
(Normalised to 3 dB at 1 radian/sec)

N
—~
i

( - 1.32475, © ); (= 1.04909, + 1.00085)

1.37222, + 0,41085); ( —= 0.99681, + 1.25913)

I+
I+

A6 ) I B - W
—~~
l

( - 1.50470, O ); (- 1.38301, + 0.71904)
- 0.95913, + 1.47345);

4

0.97304)

I+

- 1.57404, o.32145;; ( ~ 138405,
- 0.93219, 1.66457

I+1+

1.68713,
1.38113,

3
1.19353);

0.59014)
1.83942)

1.61464,
0,91130,

I+ o
i+

I+

1.76034,
1439067);

1.37613,

1.63966,
O‘ 89433 T

0.82417)
2.00166)

-
A~ ~~ NN ~~~
I
1+ 1+
NN PN N
!
I+ 1+

Ry



2.9 It is sometimes convenient to express poles and complex conjugate
pole—-pairs in terms of the "natural frequency"  fn, and the "Qualitly
Factor" Q of a resonant circuit., It is possible to calculate (o w)

from such data by using the relations:

2
o =-_le_ [~ = i‘_ fﬂz— o (4)
2Q
Table 1 reproduces a sheet of such data taken from the Burr—Brown
data sheet on the UAF41 Universal Active Filter, giving details

on Bessel and Butterworth Filters, and also some forms of Chebyshev

filtero

2.10 The Chebyshev type of Polynomial Filter (discussed in Met 0 16
Branch Memo No 1) has an extra degree of freedom in that the pass—band
ripple can be chosen. This means that a concise listing can only be given
for selected examples., Two examples, for 0,5 dB and 2 dB ripple, are
given in Table 1. Some examples are given in Zverev (1967) which gives
nomograme ~ for selecting Chebyshev filters according to their frequency
domain properties (Chapter 5), and also shows various response curves

for selecting filters. Pole-patterns are listed for Chebyshev filters
having pass-band ripple values of 0,0004 dB, 0.0017 dB, 0.0039 dB,

0.007 48, 0,011 dB, 0,028 dB, 0.044 dB, 0.099 dB, 0.18 dB, 0.28 dB, and
1.25 dB for orders n = 3 to 7. These are shown as degenerate forms
of Cauer —Chebyshev filters, Fig 6.5 of Zverev will be found useful.

It should be‘noted that Zverev defines "Poles" and "Leros" in the opposite
way to the abovg convention. Further examples (with pass~band ripple
values of 0.1 dB, 0.25 dB, 0.5 dB, 1 dB, 2 dB and 3 dB for filter orders

2 to 10) are given in Shepard (1969). This latter reference is really

a listing of capacitor values for hardware implementation of filters,

but for even order filters the poles are easily extracted from the data

-5 -




TABLE I

CHEBYSCHEV
NUMBER BUTTERWORTI BESSEL 0.5dB RIPPLE S4B RIPPLE
odll 8 ] ]
GFIPGHLES () Q () 0 m(2) 0 n(2) Q0
5 1o | 070711 1.2742 0.57735 123134 | 0.86372 0.007227 | 1.1286
3 i S ain 1.32475 e —— | o0626456| —=-—=] 0368911 |-=--
10 | 10 1.44993 0.69104 1.068853 | 1.7062 0941326 | 2.5516
4 10 | 054118 1.43241 0.52193 0.597002 | 0.70511 0470711 | 0.9204
1o | 13065 1.60594 0.80554 1031270 | 2.9400 0.963678 | 4.59388
5 Tl P 1.50470 | 0362320 = ——— | 0218308 | — ===
1.0 | 061805 1.55876 056354 | 0690483 | 1.1778 0.627017 | 1.77500
10 | 1.61812 175812 0.91652 1.017735 | 4.5450 007579 | 7.2327%
6 10 | 051763 1.60653 0.51032 0396229 | 0.68364 031611 | 0.9016
10 | 070711 1.69186 061120 | 0768121 | 1.8104 0.730027 | 2.84426
1.0 | 1.93349 1.90782 1.0233 1.011446 | 6.5128 0.98282% | 104616
7 B e g (68713 | =+ | 0256170 = ===} 0155010
1.0 | 055497 171911 0.53235 0.503863 | 1.0916 0.460853 | 1.64642
10 | 080192 1.82539 0.66083 0.822729 | 2.5755 0.797114 | 4.11507
10 | 22472 2.05279 1.1263 1.008022 | 8.8418 0.987226 | 14.2502
8 1.0 | 050980 1.78143 0.50599 | 0.296736 | 0.67657 0237699 | 0.89236
10 | 0.60134 1.83514 0.55961 0.598874 | 1.6107 0.571925 | 2.5327
10 | 089998 1.95645 0.71085 0.861007 | 34657 0.8424%6 | 5.58354
1.0 | 2.5620 2.19237 12257 1.005984 | 11.5305 0.990142 | 18.6873

(1) -3dB Frequency 7
(2) Frequency at which amplitude response passes through the ripple band.




by using the expressions:

¢k dhekifeeed

A more complete listing is in Christian (1966).

2.11 For specialised applications it is possible to determine

the poles of Chebyshev filters with any value of pass~band ripple

by manipulating the basic Cheyshev Polynomials. The method is
explained in Zverev (1967) Chapter 3.5, where Chebyshev Polynomials
up to order 12 (corresponding to order 12 filters) are listed. The
method involves extracting complex roots of real polynomials, for
which Hewletti—~Packard calculator library programs exisi, or else the
I.B.Mes Scientific Subroutine Package can be used. An example of the

method is given in D/Met O 16£/88 ES.

2,12 The Chebyshev form of filier gives the sharpest rate of increase

of attenuation cutside the pass-band for any polynomial filter (implemented
with poles only). By allowing ripple in both pass—band and stop-band
(implying a numerator polynomial and the existence of filter zeros) the
rate of increase of attenuation can be considerably increased. These
"Cauer -Chebyshev" filters are listed in Zverev (1967) Chapter 5, and

also in Christian (1966). The time~domain responses are, of course,

considerably inferior to Chebyshev, Butterworth, or Bessel filters.

3. Transformation of Low-Pass to High-Pass, Band-Pass, or Band-Stop Filters

Method of performing the above transformations are discussed in Zverev(1967)
Chapter 5. Transfer Functions F (75-‘) representing Low-Pass filters can be

transforned to other filter forms by substituting for & e F (' -f,—;)
(4

High-Pass: Bl== )" = X %‘ )




o an AtV
Band-Pass: Pl an ) e TE - )
where a = fm
LF
fm = mid-band freguency
Af =  band width
S &c
Band-Stops: BS( s ) = F (
2 a(s?s w.*)
where a = ‘L
Fo = Fz

]

fo
b
Fi

geometric mid-frequency

low cut-off frequency

upper cut-off frequency

Equivalent transformations can be performed on poles and zeroS in the
Complex Plane (which must include any zeros at infinity) to produce new
Pole~Zero patterns, These can be implemented as shown below,

The itransformations shown above are not the only ones possible, If special
conditions are required, eg precise arithmetic symmetiry in a band-pass or
band-stop filter, then other transformations are possible.

See D/Met 0 16£/88 E2 and E3.

4. Hardware Implementation of Filters

4.1 While designing a system (usually analogue) that has a filtering
function, it is usually best to consider the system as a whole, and so
design the optimum pole-zero pattern (or filter type) for the application.
Implementation is then usually performed by designing a passive network,
or by cascading active stages which each each implement a small number of
poleg and zeros. It is possiﬁle to implement a larger number of poles,
and even incorporate gain, in one stage. However, in practice this puts
severe demands‘on the performance of ampliﬁ£r§ if near ideal design
performance is to be obtained. Required performance demand increasés as

the Q of individual stages is increased. This increases as one goes through

i



the filter types: Bessel, Butterworth, Chebyshev, Cauer-Chebyshev;

and increases with filter order number. It also increases with
transformation to band-pass or band-stop, especially if the overall
band-widths are narrow. Slew-rates of amplifiers are likely %o be

important as well as gain-~bandwidth products.

4e2 Passive networks are listed, as normalised component values, for

various types of filter in Zverev (1967).

4,3 Various types of Active RC filters are discusesed and explained

in a collection of importani papers ccllected together in a book edited
by L P Huelsman (1976). This book is available in Met 0 16, This
discusses Sallen and Key Elements, State Variable Filters, Bi~Quadratic
Building Blocks and other topics., It also discusses methods of
similating inductances, such as gyrators. Using such methods "passive"
circuits can be implemented using the data from Zverev (1967) with

certain advantages in stability,

4.4 The simplest form of active RC.filter is the Sallen and Key. This
requires one capacitor and one resistor per pole, and a unity gain
amplifier for every two poles. Zeros at the origin are accommodated
without any extra components. These can be designed using Pole~Zero
data, together with the relevant paper from Huelsman (1976). bAlternatively
the normalised component values are listed in Shepard (1969) for various
filters. These are:
Bessel, Butterworth, 0,1 dB, 0.25 dB, 0.5 dB, 1 dB, 2 dB and 3 dB
Chebyshev for order n = 2 to 10, Frequency scaling, and High-Pass
Transformation are explained in terms of component values; Suitable
printed‘circuit boards for Sallen and Key filter elements,'with layout
carefully designed to minimise the cfitiéal stray c&ndﬁct;noés, are held
in the Met 0'16 Drawing Office wnder Drawing List 13757,

-8 -
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4.5 Sallen and Key elements are highly economical in hardware, bout
start to place excessive demands oa their unity gain amplifiers where
the Q of a stage approaches 10. This does not happen even for relatively
high order Bessel or Butterworth Low-Pass filters, but occurs above a
Tth order 0,5 dB Chebyshev, or above a 5th order 2 dB Chebyshev Low-Pass
filter, At about this level of performance or above, State Variable
Filters should be used. For each pole-pair, combined with one or two
zeros at the origin, this configuration requires three amplifiers,

two capacitors, and six resistors. In return for this extra complexity,
Q valves approaching 1000 can be relatively easily achieved, although
at the higher end demands are placed on the gain-bandwidth product of

the amplifier as high overall gains are implied.

Software Implementation of Filters

5¢1  Software (or digital hardware) methods of implementing filters
usually involves sampling a digital representation of the input signal
on a regular basis, manipulating the signal to filter it, and then

presenting a sampled version of the resultant signal to the ouiside world.

5.2 It must be realised that the sampling is a significant part of the
overall process, If the sampling rate is N samples/second, then frequencies
above the Nyquist frequency N Hz cannot be adequately represented, and
will be aliased into lower frequencies. Conversely, if no energy in the
input signal exists above the Nyquist frequency, then the sampling produces
no loss of information, and the original continuous signal can be
reconstructed exactly from the sampled data. This is discussed in Met O 16
Branch Memo No 3, Bell (1968), and more physically using an ideal sampler

in Tou (1959). This can imply that when using digital forms of filtering,
the sampling rate must be high; or else the samples must be preceded by

an analogue filter, which could be the first filter stage, or else a

-



6.

pre~filter having high--fregquency poles whose specification need not be

critical,.

5¢3 It is possible to filter in software by weighting the inpul data
stream with the (time reversed) impulse response of the required filter,
This type of method is well documented (eg Pesaressi, 1971; Craddock, 1965).
It has the advantage that filters other than pole-zero types can be used
(finite impulse duration filters). However, if the ratio of the highest
frequency present in the input data stream: significant filter frequencies
(eg pole frequencies) is large, then this methed implies a large number

of multiplications per sampling period, Because the filter is often
per timestep is not unusual,

5¢4 Met O 16 Branch Memo No 3 describes a digital recursive method of
implementing pole-zero filters. In software form, the computation can
amount to much less than one multiplication per timestep. This econcmy
ofAcomputing effort, combined with the fact that little storage space is
required, is likely to be significant, particularly in microprocessor

applications.

Other Applications of Linear Transfer Functions

6.1 Linear transfer functions are used in all forms of analogue circuit,
and in Control applications. Contrél Theory is a methodology enabling
polg—zerQ patterns to be specified for networks (or filters) used in
various control applications, which usually involve feedback. Such pole~-
zero patterns can be implemented using the techniques deseribed above.

Di Stefano (1967) is a useful introduction to Feedback end Control Systems.
A tool in Control Theory is Root Locus Analysis. The Met O 16 program
RTLOCUS is useful in this application.
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