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1. INTRODUCTION

The central problem of cumulonimbus modelling, and of understanding cumulo-
nimbus clouds themselves, is the interaction between themotions of the air and the
changes of phase of water that these motions induce. These interactions introduce
a wide range of length and time scales, from molecular to mesoscale (10 orders of
‘magnitgde), that must be represented in some way. The physics of water vapour,
liquid water and ice (the "microphysics'") are complex aﬁd not fully understood. We
cannot hope to explicitly model the molecular interactions governing the microphysics
at the same time as the bulk air motions ;nd s0 we parametrize the microphysics,
that is represent the microphysical processes in functional form, the parameters of the
functions being determined by the air motion scale or externally (such as the density
of CCN). This note describes the parametrization scheme chosen for the CYBER cumulon-
imbus model (introduced in van den Berghe (1985)) in sufficient detail to enable the
computer code to be followed, to delineate the areas of weakness of the parametrization
and to indicate where improvements could be made.

The first approximation is to neglect the ice phase of the microphysics and
consider only the interactions with and between liquid and gaseous water. This
gives a large simplification since, to a good approximation, the effects of
liquid water depend only (!) on the droplet size- a single parameter. The complexity
of the next step, considering the effects of the different shapes of ice crystals and
the increase in the number of interacting species, has meant that almost
all Cb models ignore ice. Neglect of ice is valid if the cloud top temperatures
are warmer than about -15°C which is reasonably valid in the tropics but not in
mid-latitudes. The ice phase will be added to the model later.

The choice of the external parameters is usually made to force a model to fit
certain aspects of observed clouds (eg rainfall rates, amounts, cloud height: see

Bennetts and Rawlins (1981)). 1In the early formulations functional forms were




postulated with all the external parameters as simple constants of proportionality

(eg Kessler (1969)) but later formulations have been in terms of properties, such

as dispersion, of the droplet distribution (eg Lin, Farley and Orville (1983)). .
Since it holds the promise of a physically consistent choice of external parameters

we choose.the second method;and so a more bi;;sible way of changing parameters in
differing situations (since there is no a priori reason for assuming that the

same external parameters apply to both tropical anq continental Cbs).

The following section describes the basis of the parametrization and the
conservation equations used. Section 3 shows how the célculations are made and
consistently approximated. Section 4 describes the functional forms used and

discusses the choice of external parameters.

2. ANALYTICAL EQUATIONS AND NUMERICAL APPROXIMATIONS

As described in van den Berghe (1985) the model is based on an expansion of

the anelastic equations that assumes that the zeroth and first order thermodynamic

variables are hydrostatically balanced ie
Q@)= @+ O'R+O"XE) - @(1+6%)
P &e)= PRI+ P'(R)+ P E)
P EE) =PRIt PR
T e 6) = Tt el 7' (k)
cl,u_c.é) = 9y 3) # Gy (ZE)

Vhere T‘IO'P'Q'ZV are the air's temperature, density, pressure, potential tempera-
ture and water vapour mixing ratio. The basic state(©(X)=@) is ary.

We assume that the continuous spectrum of condensed water drop size can
be represented by two discrete classes. The choice of these classes is made by
assuming that there are two regimes of drop size with distinct physical properties. 4.

The first is small drops which do not fall relative to the air but rapidly convert
. LS

to water vapour; these we call cloud water (mixing ratio O[lc ). Larger drops,

however, fall relative to the air and take a finite time to evaporate (rain water,

mixing ratio “[/«)°



The conservation equations relevant to the microphysical scheme are

L 1= oo™
g_f‘L 1 ¢ Cuerene) + 52 Pl 3S (1)
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C(,S is a conversion rate from field i to field j, VT a suitable fall speed for
rain water. KH the eddy mixing coefficient, assumed the same for all fields (but
not constant, see van den Berghe (1985)). L is the latent heat of condensation
of water vapour. Equations (1) to (4) are simplified versions of the full
equations, for example the change in 9‘* due to advection of water from different
temperatures has been ignored (see eg Lin, Farley and Orville (1983)).

All the prain 1is falling at its terminal velocity and so exerts its full weight

on the surrounding air, the vertical momentum equation becomes

dw _ op" " , o7
Al E SN L (COr AR

The equation of state for moist air is
P=pIZCJCt+(ZU%;)T 5

Rv and Rd are the gas constants for dry air and water vapour. This approximation is
valid provided ‘lv P qucr) vhere (Zv.—,CT) is the saturated value of Zu at
temperature TEqguation (5) is alweys vzlid in the model since we will assume no

-

positive supersaturations.




Equations (1) to (4) are approximated as

—t (
5, T - ADV(OM h ( (CErCh) + DreenT @

s %—t = ADV CQT>6— CJFQ - C:e + DlFF(Qr)f'/ (7)

qﬁ”_ Cﬁ(e: B t 4 e - t
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Where Q‘("" Q‘; fQ?f +qC ) C% 2(Q5+CLS ) ADV(d)) the numerical form
of the advective terms, FALL ((_zz) the form of the term with V1 and DIFF (@) the
form of the diffusive terms. The superscripts denote the time level at which the
approximation is_made.

Equations (6) to (8) contain a mixture of leapfrog and forward time differencing
with implicit backward approximations to the conversion terms. Equation (7) is the
approximation to equation (2) plus equétion (3). The remainder of this section will
explain the reasoning behind this system.

The diffusive terms are appfoximated by a forward time step (over Zat in
equations (6) and (7?) and & in equation (8)) for stability. The most accurate and
economical advective approximation is leapfrog and equations (6) and (7) use this
(with ADV written using second order centred space approximation). Rainwater mixing
ratio is always positive but approximations to ADV with leapfrog time differencing
can produce spurious negative values so equation (8) is written using a forward time
step and ADV-FALL can now be approximated by a scheme guaranteed to keep fields

positive (a number of approaches to this problem exist, the earlier methods being

based on arbiirary apportioning of fluxes while a steady stream of newer more rigorous:

methods is being developed; the simplest such scheme is upstream differencing, while
adequate schemes are the FCT variant of van den Berghe and Nash (1984) or the scheme
of Schneider (1984)). The implicit formulation of the conversion rates also arises

from the need to ensure that q’(, and Zmremain positive.

.



The parametrization of the microphysical processes reduces %_to a diagnostic quan-
tity (ie given 7:‘,0 and Z?' there is a unique partitioning of QI‘ into?yuand Zc ). We can,
therefore, sum equations (2) and (3) to giv?e' (7), allowing ZC to be advected using
the more accurate second order centred/ﬁeapfrog combination. The non-positive
definiteness of this scheme does not matter since ix}itial conditions with gctz,ého
ensure that QT -2: is a small deviation about Z‘; = Another advantage
of this choice is that, in the absence of rain, Zr is conserved making the
turbulence closure more valid.

The mixture of time differencing schemes means that care must be taken to
ensure that total water substance is conserved during the conversion process

((Clark (1973)). Consider the approximation of the coupled equations

29 _ _ L
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Where (_Z-c is chefore any conversion to rainwater has taken place.

3. CALCULATION OF CONVERSION RATES

The scheme for describing the rates of conversion between the three water
classes and the consequent transfers of heat has three main assumptions (and
several lesser) which produce an (@lmost) explicit calculation from the implicit
formulation. To help in assessing any limitations of the model microphysics we
list these assumptions before describing the scheme in detail. The primary
assumption is that the advected and diffused values of 9*, gr andgz are good
approximations to the €+l values and so can be used instead of the ¢/ values in

calculating the conversion rates. The "bulk physical" assumption (eg Clark 1979))




is that the relative humidity is never greater than 100% which is justified by the
small dynamical effects of supersaturated updraughts in cumulonimbus (see eg

Ludlam (1980), p 252). If we also assume that cloud water evaporates and condenses °
instantaneously then cloud water becomes a diagnostic quantity. Conversely we-assumc
that the evaporation of rain proceeds on a long time scale: so that it does not
_produce significant supersaturations over a single timestep (r produce sufficient
cooling to change ZVS ), that /D” is small compared to P' and that A7 is sufficientl
small so that @, (T+AT) can be linearly approximated in AT . These

approximations have the effect of allowing either Q’¢ or € to interact with Z(,

{but not both) and allowing a single iteration to adjust for the effect of conden-

sation on Zlb'

We may be adding the ice phase to the model microphysics at a later date so it
wil.l be most convenient to'work in terms of temperature rather than potential
temperature. The conversion between the two is effected by linearizing 9=7—(P//€>,
about the basic state to give

Txe =~ I+T'+ 5T

where we have assumed P”Z/— _‘P - This approximation overcomes the implicit
relationship between /D/ 9(4(/7_ in the anelastic equations (Ogura and Phillips
(1962)) and has also been used by Clark (1979) and Dutton and Fichtl (1969) (it is
also necessary since the @& [/ calculation takes place at E#/ where/)”is unknown) .
To find the time stepped values of the fields we firstly advect and diffuse
them with the conversion rates set to zero and then use these advected and diffused
values to calculate the conversion rates needed to produce the final values. This
two step procedure is usually used in bulk microphysical calculations and, as
implemented here (and discussed by Klemp and Wilhelmson (1978)), in effect solves
equations (1) to (4) in terms of conservat.ion equations for non-precipitating water
and equivalent potential temperature, both quantities being more conservative than

the original individual fields Gy e end o
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Clc qc+ (advection and diffusion);and is used to calculate the amount of

heating tnat results from condensation between ¢ and €+,
~ |

—

s
‘
We then convert @* © | , diagnose an initial estimate of gus (-: Zus )

and adjust the fields as follows:

IF ‘lf' Acz.,s AND g, #0O

~ M N A
otherwise T=T , qu = ZUS eETC.
(ie if the air is subsaturated at €#/ but some cloud water has moved in then evaporate

all this cloud water into the air at €¢+/ )

2 € §r £ Gus_ AND g5 =

e+a €+’ éf/

€t
e (9 /

~n *&H
= Ir o &L 9* gcg' ) e =0, @5 =@ e

(ie the air is subsaturated and there is no rainwater so no conversions)

Or IE_ §1 &Gy AND g #0

€+
qu @'r at C-UQ : éf' q i Aé CVE : qc s
eu L @ &+l
A5 = Co 1 =TCw CT=‘C02,

ot E & <§‘ :

(ie the air is subsaturated but there is rain so evaporate the rain, without

% considering noss:Lble supersaturations or changes to ZUS

2] B ‘ZT g (ZUS

The air is above saturation and we convert sufficient vapour to cloud water

to just reach saturation, taking account of the release of latent heat which will




change st- Ve then convert cloud to rain water. We assume that the
adjustment procedure will change a field ¢ by an amount A¢ The equilibrium
values (with qu qu ( O% ’) ot QUSC @ ) w:.ll be
o= S+ cpjé_?cclc- 22,6)*'&9 ) Qc qu
N

el £+
Cl;* gt AGe Qus Qus t OGus . Qu = fv +Oy
/ —
CQH': e+ i‘cc%; T (4 2&”439

(the final amount of cloud water will be gc/ after any conversion to rain
water) .,

Vo
We linearise gvﬁabout oY (Miller and Pearce (1974)) to find AZU& ie

oOFys
AQys= (C O“‘Qe)a_g I ) CP C@, %)

o=6

The bulk physical assumption states that ﬂev = QZ‘/s

The change in temperature is related to the change in LO.V needed to reach
equilibrium, as is the change in q{_ ie

@ -
L = = é‘;f ng, and Ag =BGy

hence
B L & Qg
AO- lL:B W = el /(9
finally e |
Ge: ™ q mCap

%z %2 7 CC(Z
gy =i
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Computationally the most efficient way to calculate saturation vapour

pressure (and [AUS 2vs ) is to use the polynomial expansions of Lowe and
Ficke (1974%). These polynomials have sufficient accuracy only in the range of

fit (-50°C to +50°C) and must not be used outside this range.

625
. e W
e Qe Gy 5T
L ol L o, L1
s.— S— = s, eiieg ! Y o
%29" = T8y Ivs 20  ~ i B2

"
where we have neglected the f? contribution to the denominator (Clark 1979)).
When é;;is in 47& and 7— is in °C the Lowe and Ficke poly-

nomials are (=o, = o+ T (& +T(q,+ TCaz+TCay + Tlas+Ta,)))))

Es
do = 6.107799961
G = L4.h36518521 (-1)

Cp=  1.428945805 (-2)
(= 2-650658471 (-4)
Q= 3-031240396 (-6)
Qg = 2-034080998 (-8)
q,: 6-136820929 (-11)

b, PARAMETRIZATION OF CONVERSION RATES

The figure below shows the interactions allowed between the water classes.
Each of the interactions needs to be parametrized and this section describes some

possible formulations.

CVC.

QC. P q,(l



(i) (yc This conversion rate is derived from the difference between

the diagnosed g, at &#/ and that after advection and diffusion
. ie it follows from the bulk ﬁhysical assumpfion.

(ii) Ck,z_ if the air is subsaturated and there is rain it evaporates (at
a rate CEVAP). If the air is above saturation no sondensation
takes place (since all excess wate; vapour is assumed to condense
on to cloud droplets)

(iii) CcZ  this conversion rate consists of two parts:

CQQUT} "autoconversion" of cloud to rain, a parametrization of the effects
of cloud drop collisions in producing rain sized drops. Since)initie
it is the only way of producing rain it is important in
the early part of the cloud (in mid-latitudes pure water-water
collisions are thought not to be important and the ice phase is
crucial)

CACW the accretion of cloud water by rain water falling relative to the
air and sweeping up droplets.

To specify CEVAP and CACW we take account of the variation of these rates with

the size of the rain drops and integrate over an assumed drop size distribution and so

relate these rates to the rain water mixing ratio. If D is the diameter of a rain-

drop and n(D) is the number of raindrops between D and D+dD then
Mm(pd) = No eap (-AD) (9
6

No is given by Marshall and Palmer (1948) as 8 x 10 m-h. The slope parameter,,A)
is obtained by multiplying equation (9) by the particle mass, integrating over

D=0 to 00 and equating to ¢p » thus )
4 LPLr (10)

( /OZV= density of liquid water).

10




Most cumulonimbus models start with equations (9) and (10) but then diverge in

their parametrizations with large variations in complexity. Most of this
complexity. is superfluous so a scheme that'iékcomputationally efficient but based
on sound physical principles is probably best. To enable this proposition to be

tested we use the parametrization of Lin, Farley and Orville (1983) which can easily

be changed from an accurate but expensive scheme to a cheap scheme. At the end’of

this section we give the most computationally efficient version of this scheme.

Rain reaches its terminal velocity on formation which,for a drop of diameter D,

i Vp = « Db(ipﬁo)’/z.

(the best choice of‘é‘is .8 but plausible arguments can be made for the use of % or

1, which are computationally more efficient).

The appropriate mass weighted terminal velocity is

m a [Measo) /
= —_—
Assuming that raindrops sweep up the cloud water in their path with efficiency

Ec, the accretion rate is

. TEeNo allCsto) (p_O)”Z e

/_//\3%

The evaporation of rain is assumed to obey a diffusional growth equation

modified by ventilation from the drop fall (eg Orville and Kopp as7?7))

2N (Gy-gulWo o 7S by 7 025) e 5l o - [6+2]
CEUAP= Bl g 2 ;2 w2 peg PR SV e <o) 4?) Ap
2A r

A= ka‘? 12 Qus

(Other symbols are defined at the end of this section.)

Since autoconversion results from the statistical nature of the collision process
and elso depends on the details of the cloud droplet size distribution paramet-
rizations of it are less well theoreticall& pased. We repeat three forms here with

their justification (if any).

"~



The most commonly used, but unjustified, form is (Kessler (1969)), ;.
CAUT= X (G~ Geer () (11)
Where ikp”is a threshold mixing ratio below :hich no autoconversion takes place.
Tripoli and Cotton (1980) note that the autoconversion rate will depend on
the collision frequency of cloud drops (?Q,). the efficiency of the collisions & w/
_and the amount of cloud water, ie
CAUT= Earfe Je
and estimating as proportional to the mean droplet concentration (AL), fall

speed of the cloud drops (!) and area swept out (assuming a constant mean radius)

.10y Ecw
2V (Ne pu) /3 Qc (12)
[ 2
‘ 'O_ﬂ_é:au (Gxt69) = P e

NV
N Y (Nepw)'B

EAT=

They also assume that,if the drops are on average smaller than 122”-;C55uacaand
this implies a threshold of
Gerr : _‘ i 5. ﬁJa
Jeen = 3 pca crm Y (13)
Berry (1968) has considered detailed integrations of droplet growth and proposed a

form of CAUT that can be simplified to

13 >
CAUT= 3. 76x</(0 22

Ne CZC (14)

Where [, is the relative dispersion of the cloud drop size distribution.

A version of the microphysical parametrization is given below but before any
particular form is fixed for the model experiments should be performed to determine
the trade off (if any) between accuracy and efficiency and also the best form of CAUT.
It should be remembered that different air masses may have different properties
that are reflected in the choice of parameters (eg Nc will be vastly different between «¢.
continental and tropical maritime air). A good scheme will allow a consistent way

of taking these variations into account{ if they are important. The coded scheme.

12




2
uses a linear fall speed law; Up~= (’go) a D

- -

-3
(valid for 8 x 10"5 m< D& l.x0O- My

s0 Upx olypley g
g vl 5 Q- CTP(?;) r/o
Xy = amuuo)"“ Rz

ﬁ(q =2
o= Gpa Ve

o (Gutqy- Qus) ke 2
also EUA = 02 g ( )
e "SR (23) Qus tolz(3)) () g%+ S50 22™")

and CACW = dACN 2(;2[2

ollr—ZTYNo

L
X2 = e By (I"T')z

L
Az = L2y "
Ay = ?Bp"z (ﬂ/zaﬂ/a)
Y ( Loy /4

= LES e

o Bl &2 (s a ( (n_ (aﬂ/a

we use the Tripoli and Cotton autoconversion

2
CAUT= olaor Je >chlT

5 = loqﬂ Ecw 4 o %nﬂza Tce?r Ne
AT ™ 50N ow)is 65"’0 ) £ s a8

The parameters of the microphysical scheme are,

No

a, b

& il

intercept of drop size distribution = 8 x 10° m

n

parameters of terminal velocity

=G sines 6= = A0 5/)"
Q = collection efficiency for rain/cloud collision = 1
é;,/ = collection efficiency for cloud/cloud collisions = .55

ﬂ/e, = mean concentration of cloud droplets = 3 x 108 a2

13
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critical radius of cloud drops for efficient coalescence = 10'5 m i
density of water = 10° kg m>

A

Py 2 -t
kinematic viscosity of air = 1.36 x 10~ m2 0~

diffusivity of water vapour 2.26 x 1077 n2 571

Y/ =o0.6 i

thermal conductivity of air

air

Schmidt number

= 2.43 x 1072 g1 o1 -1

6

latent heat of condensation 3.121 x 10

of water

- 2.27% x 10°
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