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Introduction Among the most flexible and useful techniques for modelling

the dispersion of atmospheric pollutants over short to medium range, the
random walk, or Markov process, takes pride of place. The technique (Hall,
1975, Reid 1979, Ley 1982) has now been extended to diabatic and
inhomogeneous conditions (Wilson et al 1981, Legg and Raupach 1982, Ley and
Thomson 1983, Thomson 1984a) and to fhree dimensions (Thomson 1984b). So
far, however, no attempt has been made to explore the possibility of using
other stochastic models as a bagis for simulation — the Markov process is
the simplest member of an extensive family. It is the purpose of this paper
simply to introduce alternative stochastic processes and to try to identify

the areas in which they may be relevant.

1. The general stochastic process Stochastic time series models fall into

three main categories:

(a) Autoregressive (AR) processes

Zt = Z‘.cﬁ_izb.&-f bt

‘1)

where the ¢ (4 ‘\) are coefficients and bt an innovation at time t 5
: (&

The 1st order AR process is the Markov process

Zk_: 2 qbz-b-—\* \Dt

(2)




often called a random walk, although strictly a random walk is a Markov
, -
process foxr which (Z) e l'

(b) Moving Average (MA) Processes

Zl: - \Dt o LBLEt}L (3)

That is, Z is composed of a current innovation plus a linear combination
of earlier innovations, which are partially ‘'discounted' by the 9"‘ (4 \ )
coefficients.

(c) Mixed (ARMA) Processes

Simply a combination of types (a) and (b):

Z& Y Z.—'¢:Zt~1 o l?h 5 Z@:‘ b\:—:) (4)
L o .,_\ A

Thus the 1lst order mixed process is
iz i -8b (5)

2. Integrated Models ( ARIMA_)_

The above models are properly applied only to stationary data. If a

time series is non-stationary it must be differenced to form a new series
y.\-_— i zt: zb——\ = VZ(: ‘gﬂt o X - ()

which normally produces a close approach to stationarity. If not, the

differencing operation can be repeated until stationarity is obtained, e.qg.
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To restore the Z values, these differenced series must be integrated —hence
the name. |  is the backward difference operator.
3. Egtation

A convenient and conventional representation of a stationary

stochastic process is (N,M,P) where N is the order of the AR process

e oo SR P LB
P " number of differencings.
Thus we express the Markov process (2) (1,0,0)
and the l1lst order mixed process (5) (1,0,1)

For a comprehensive account of the ARIMA processes and their applications
see Box and Jenkins (1976).

Do higher order AR, differenced, and MA models have any relevance to
the simulation of turbulence? In the following sections the problem is
approached heuristically (and later, empirically); the mathematics is
practical rather than stringent.

4, Higher order autoregressive models The Markov process implies a single

constraint on the evolution of a stationary time series of Lagrangian
turbulent velocity measurements. That is, the inertia of the moving

particle represented by ¢ in
- V. +

This is a finite difference form of the Langevin equation

clv. T
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(TUa time scale) which integrated over a time interval ék: gives

V(k*c?t\/\ltk\ 2ot _:-C—:Vu.’\-k € dt
C
yvielding (8) when
&tgt
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/uw = Led o
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2 is a white noise process, a random acceleration, analogous to molecular

theory. Thus ¢ (&) &L&+t‘):5?2t)5:w(13ere CSL J is the Kronecher delta; by
/
assumption the successive values of & are \’mcorrelated, and the rate of
change between successive values is infinite. /‘lt is accordingly also a
random seguence.
Equation (9) seems to have been used exclusively (and adequately) as a

basis for stochastic models of atmospheric dispersion, despite certain

physical shortcomings. Consider a typical parcel motion, in the vertical:

ﬂz
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There is continuity or at least sectional continuity. Over short time

intexvals the velocities are correlated, but the accelerations are by no
means always random, especially in the lower frequency motions of large

eddies. Thus between \'—\ and t'q =,
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This is not simply a case of W (t“.;\ depending upon th() plus a random

shock. There is a trend in the velocity over successgive time intervals so

that W (E‘cﬁ =wl U‘"?\ ia related to W (E3Y — WALEL).

Combining the two ph@gical constraints in the form
Wig = & W

dW dw ik
a0

corresponds to a second—-order differential equation

Yw f_\__é_‘é’. B =
e o T 5

(11)

where § is an innovation of dimension LT3 (a second order derivative of

velocity) or the equivalent stochastic process

Wi = ¢1 Wt Sb,_ Wiy ot /ut-\—\

(12)
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where /.A — (yE %dk, SE the time interval between the b‘\.’
t+

Tt L?(:
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or /le-ﬂ s gb g Gk 11? &t*\ is defined E -

This line of reasoning may be applied to higher orders so that, in general,
an autoregressive process of order N corresponds to an Nth order linear
homogeneous stochastic differential equation: that is, to a turbulent flow
in which there are N independent physical constraints on the inertia. The
random innovation will be a éerivative of velocity of the same order as the
equation.

In conclusion, higher order models are, strictly, more appropriate
than the Langevin equation when Cft‘<3:11_(25, the Lagrangian timescale,

but improvements stemming from their use may not compensate for the added

complexity.
5. Integrated processes
- dv ~ Vagtg?
Consider a Markov process T " which is
2 Ak %

‘embroidered’ on a low frequency (and in general non-stationary)

fluctuation — meso-scale, perhaps. Let: the Eulerian velocity at time , =

beV';
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(13)
and make the assumption that over a short interval
é——- = constant
ak
From (13), and the expression for a Markov process,
dv' . é_\.‘/ AT
A 4. L
so that
2 7 K
B Sy e
e Fe < 3 ak (14)

assuming € is differentiable in some sense. (14) is a stochastic
differential equation. To obtain a stochastic process it is necessary to

integrate (14) over an intexval Jt . The last texrm becomes

(S
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This can represent only 'snapshots' of the random innowation sequence, not

)"
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its integrated effect. BAccordingly (14) cannot be represented by a finite

difference formula unless the white noise is ass%med at a higher order of
Esdt

velocity and a piecewise Etﬁ is defined l%o\b ass before. Then the
e

(1,1,0) integrated autoregressive process

vvb-ﬂ 3 Cﬁvvh +/.k\7‘”
where q’).: o & /4 = g &VE ,Which can be expressed :
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is analogous to (but does not precisely represent) the differential
equation (14). Differencing to produce stationarity in a time series is
equivalent to differentiating to remove steady (constant) low order
accelerations, such as .élf . The diagram implies a large spectral gap
which need be nothing like as marked as represented, for these
considerations to apply.
Extension to higher orders is straightforward: if the rate of change
3V
.:;L
to derive the stationary stochastic process (1,2,0)
z
AT ¢VV "'f*bﬂ
¢ = I- ‘% = V(W)
?

Mea = St Vlf-t«-l

analogous to the stochastic differential equation
25
%% L0V e
e T'éb' AEL.

of is constant in an interval the series can be differenced twice

Thus an integrated autoregressive process (N,M,0) is a difference equation
(which is analogous to a stochastic differential equation) of order NiM
which is truncated of the last M terms in the dependent variable, while the
innovation (equivalently) is differenced to order M. The difference
equation can only be used to represent the differential equation in
modified form, that is when the it are assumed piecewise averages of
higher oxder white noise.

For integrated processes, there is no way around this restriction.
Thug replacing QV/JQ: in (14) with a high frequéncy second order

derivative of velocity q; gives

Sl
':;i;1, = T <}t. <;
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which on the face of it integrates easily to give a stochastic process.
However, the process is a non-physical one in which the time series
velocities are differénced but not the random component of the velocities.

6. Moving average models The moving average processes (N,M,P) include a

‘history' of random 1nnovatlons which are weighted and integrated to form a
current 'shock': 214 & 6) = |, Many geophysical time

t-wv t vy e
series are modelled well by the IMA process (0,M,P) particularly where
there is substantial inertia in the gystem. The involvement of earlier
innovations even in (N,0,P) process has a similar effect to the
differencing of the preceding section - it restricts the extent to which
the stochastic process can be used to represent a stochastic differential
equation.

The standard moving average differential equation

Y e b 1
o st

O
cannot satisfactorily be converted to (1,0,P) stochastic form, and it is :

not obvious that in turbulent atmospheric motion, P can much exceed N. For
present purposes it will be assessed that N > P. The (1,0,1) process can

be expressed in finite difference form

VV&-H: o ‘V % V/'(L—\\*w}’\b

S T, (16)
Ef&b
where /&( L4t . & Ah the TL appropriate time scales.

Expression (16) is attractive as it reflects both the (1,0,1) symmetry and

the physics, and, generalised to any order, allows the siméle rule:

=



A stochastic process (N,M,P) in velocity, N 2 P, is a difference
equation of order N+M for velocity, order P+M for innovation (the impulse

being a derivative of velocity of order N-P), each of which is truncated of

the last M terms. c+fe
Thus for N=P uge /'(\:M = |edt /A a velocity,
\ . £
L & an acceleration
o
N-P=1 use ?‘L- % > % e €> a rate of change
C of acceleration

7. Further Considerations The situations discussed go far are those in

A

wﬁ?h the random innovation is piecewise averaged over a finite interval<ft.
An alternative; if unorthodox approach, is to employ a running mean of the
innovations so that at time t the 'random' component of velocity is
expressed as the linear average of a number of adjacent (past and future)

values: write

A st
/Ak =

Although resultant functions would no longer be 'non—anticipating' (see

t*“ll :
L}o
gy

\
A
?-h

Durbin, 1983 for a precisgse definition) in that future values are required,
this would not matter for purposes of simulation, and the method has the
advantage that the random component is now gquasi-continuous, so that any
process could be expressed as a linear homogeneous differential equation in
two smooth and differentiable variables. Such equations would have
analogous finite difference forms, which could nbt be regarded as pure
stochastic processes as the latter, by definition, require independent

random innovations.

10



In support of this suggestion recall that air is a weakly viscous
continuum, and it is as realistic to assume that many forcings vary in a
quasi-continuous manner as to assume that they are all instantaneous
shocks.

There are other interesting facets to the suggestion. If a broad-band

moving average is applied to all the terms of the Markov process,

nkl At
A e N+l g > X
\/ =¥ & ok /L( e
(ol t
(allowing (t+1)-t = X = the interval between successive shocks), and
£ At
if a value of n exists sufficiently small for /'(L 9 ?9 O but
A wu
sufficiently large such that VL . ‘___ , the resultant series
reduces to the approximation
V e BT Y (17)

J¢

The likelihood of a suitable n existing depends, presum2bly, upon the
nature of the process generating the time series. For an nth-order AR
process (17) becomes VV\* \ ( /.;Yt) s:imila.r simple approximations
can be obtained for equations analogous to other ARMA (but not ARIMA)
processes.

8. Sample turbulence time series In 1982 the Boundary Layer Branch of the

Meteorological Office mounted a field experiment at Blashaval, North Uist,
to study the mean flow and turbulence over a fairly smooth, conical hill
(Mason and King, 1984). Measurements were also made on an adjacent level
site (upstream) and some of these data are here fitted with (N,M,P)

stochastic processes. Two immediate difficulties arise - the measurements

X



are Eulerian, not Lagrangian, and it proved feasible to fit only relatively
short lengths of the data. Nonetheless, the results are not without
interest, and are reproduced in Tables 2 and 3.

The measurements-used were 17HZ vertical (w') and crosswind (v')
turbulence components recorded at 3m and l4m above ground on 29th Sept
1982. Sections of 500 values, either of the unprocessed 17HZ readings, or
of piecewise averages of the same, were utilised. The broader the average,
the more data is required to yield 500 values, so direct intercomparisons
cannot easily be made. For one or two.of the fits, 1000 values of 17HZ
data were used.

The (N,M,P) stochastic models fitted were restricted to those for
which N<2, P<2, M<£l. Lon-Mu Liu's Box-Jdenkins algorithms in the Biomedical
statistical computer package (1981) were used: these did not converge in
all cases so that every possibility could not be covered. Two tests were
applied to obtain a best fit; -

(i) that the mean square error oﬁ the residuals after fitting should be
as small as possible, and

(ii) that there should be minimal lag correlation in the residual time
series: strong residual correlation is a sure diagnosis of an incorrect or
inadequate model.

Allowance must be made for the fact that high order processes will
inevitably provide better fits than low order (the Markov process is of the
lowest order). No attempt has been made to establish the statistical
significance of the éitted parameters — the exercise is simply one of

intercomparison.

e
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The w-component, Table 2 Little improvement can be obtained over the

Markov process for the 17HZ data, at either level. For piecewise averaged
data (up to about 3 secs time-average) the (1,1,1) process (see Table 1)
becomes more appropriate, and shows striking improvements over the Markov
process at 14m. Evidently the piecewise meaned time series may well be
non—-stationary, and the innovations at consecutive intervals are not
independent.

The v—component, Table 3 This table is not so easily summarised. The

Markov process is occasionally adequate but many of the residual lag
correlations are rather large. An improvement of over 5% in the residual
mean square error can be made quite often, and the correlation structure
greatly improved, at the expense of using slightly more complicated models.
Note that occasionally very different stochastic models can give not only
similar residual errors, but even a parallel correlation structure in the
;esiduals. This may be due in part to the 'real' process being properly of
an even higher order, so that large residual correlations occur in the lag
3-5 range.

At 3m there is a tendency for higher order inertia terms in the 17HZ
data to - be replaced by higher order innovation terms when the data are
éveraged. At 14m it can only be said ihat the 17HZ models tend to have
parameters of lower order. The (1,1,1) process again scores well at both
levels for time-averaged data.

9. Summary The general autoregressive process (N,0,0) corresponds to an
Nth érder linear, homogeneous, stochastic differential equation; that is,
to a turbulent flow with N independent physical constraints upon the

inertia. It is in principle suited to simulations where the timestep is

considerably smaller than the turbulence time scale.

13



Exponents of Langevin random walk models argue that velocity

fluctuations are correlated over much longer periods than fluctuations in
acceleration (which are assumed uncorrelated). For non-stationary series,
however, a slowly fluctuating accelerétion is superimposed. Integrated
processes are non—gstationary, and may have some potential for simulating
atmospheric motions with irregular low-frequency oscillations, such as
often occur with the horizontal turbulence components. The differencing of
time series is equivalent to removing constant accelerations by
differentiation.

Moving average processes allow representation of a history of accumulated
innovation, which may constitute an input to the evolving eddy dynamics.

The general ARIMA process, (N,M,P), yields difference equations
according to the rule in Section 6. Unless M=P=0, the difference equations
can only model stochastic differential equations, in a non-rigorous
fashion, when the white noise input is integrated over a timestep to
produce a piecewise average of appropriate dimensionality. Difference
equationé are best considered as having potential for use in their own s
right, to approximate atmospheric turbulence in a finite difference form
which is not necessarily stringently reducible to a differential equation.

Some examples of the difference/differential equations corresponding to
stochastic process are given in Table 1, in which the notation follows that
of earlier sections.

Fitting the observed turbulence data at Blashaval with stochastic time
series models suggested that (for the very restricted range of conditions
studied) the Markov process provides a reasonable first approximation. It
can, in principle, be improved upon — any stochastic model can be used to

simulate a turbulent process in the same way as the Markov process, and s

14



integrated (ARIMA) models clearly have relevance to the non-stationary
situations experienced in reality. The feasibility of practical
application, however, is not explored here.

Acknowledgement Thanks are due to D J Thomson for discussion and

criticism.
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Process

(1,0,0) (Markov)

(1,1,0)

(1,0,1)

(1,1,1)

(2,0,0)

(2,0,1)

5
(1,2,0) V'V
2:1:) 5\}

(2,1,0) ‘\73\/

- (2,0,2) v'l\/

Difference or differential equation

\

(Langevin)

Table 1. The correspondence between some simple stochastic processes

(N,M,P) and difference or differential equations. The

are left in a form which is analogous to different;ai equations. The rEL

are timescales,

<Ly

difference equations




s MARKOV PROCESS 'BEST' PROCESSES
DATA (1,0,0)
Residual Residual Lag Correlation Type:- Residual Residual Lag correlation Mean square: % improvement
3 metres Mean square: 1 2 3 y 5 Mean Square 1 2 3 L 5 over (1,0,0)
17HZ, values 1-500 .0150 09 =221 =,12 <.07 01 - (2,0,0) .0144 07 =05 =.13 "=401l =,03 4.0 (0,1,2) equivalent
(&30 .0146 -.07 =.15 =,05 =.05 .04 2l
17HZ, values 500-1000 .0250 .13 =.16 -.10 -.05 -.01 (1,0,1) .0241 -.05 -.10 -.05 =-.02 .01 346
Means of 10 values (500) .0482 -.12 SO2ES 0T =300 2301 ) .06l -.04 .06 .01 .01 .02 BT
Means of 30 values (500) .0420 -.10 B0 oAy =03 003 (0] ) .0399 -.02 .04 <02 =303 .03 5.0
Means of 50 values (500) .0375 =] = 06 e 056 S0 =201 (:1,1,:1) .0346 .01 -.02 -.03 .01 .0 Teaf
14 Metres
17HZ, Values 1-500 .0079 OT=1320 02 =02 : (2,0,0) .0078 .08 -.01 .0 .01 =.02 Tia3
(2,1,0) .0078 .0 .0 .0 .02 -.03 1.3 (1,2,0) equivalent
Means of 10 values (500) .0279 -.15 =-.12 -.03 -.14 .06 (1,1,1) .0243 -.02 -.03 .03 =.08 .08 12.9
Means of 30 values (500) .0460 -.24 -.14 -.13 -.04 .11 (1,1,1) .0338 .02 -.03 -.08 =-.02 .10 26.5
Means of 50 values (500) .0459 -.32 =-.15 .0 06:=:09 (1.1.1) .0328 -.02 =-.02 .06 .08 -.05 28.5

Table 2. The stochastic processes best fitting the Blashaval turbulence data with diagnostic statistics:
w-component. Residual lag correlations ;; 0.1 are underlined.




MARKOV PROCESS BEST PROCESS
L (1,0,0)
Residual Residual Lag Correlation Type:- Residual Residual Lag Correlation Mean Square: % improvement
Mean Square 1 2 3 4 5 Mean Square 1 2 3 Y 5 over (1,0,0)

.0126 .08 -.18 -.06 .06 -.02 (2,0,0) .0122 208 =06 Wioh E. 0% -, 03
21,0) - ..012] .0 .01 -.06
: -.11' -015 006 .0” (2,1,0) 00263 00 001 "'01!'
el : (0,1,2) .0262 -.01 -.14 .06
 500-1500  .0238 Sele T 50 0 . (1,0,1) - .0230°: =.03: =.10 =,05

(0,1,2) almost
equivalent

nN U U ?J-:U)&'UJ
o~ @ FO=O0O N

0 values (506) .1097 233 0 0003 (0,1  .1033 =0l wi0B
A : (0,1,1)  .1035 £.00. .09
= o U T R ) 0. 175 wLON T w s

- -

o

«.15 =.11 .01 {057,2) . 1158 01715

{1,71.0)
(059:5:1)

(0,1,1)
(1,0,1)
£2:1,0)
(2,0,0)
0,10

(2,0,0)
(0, 1:2)




