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ABSTRACT

1

The three dimensional vortex methods of Chorin and Beale and Majda
are compared for simple initial data and the similarity of the methods
is illustrated. Tests performed using Chorin's method show that the
solution is only weakly dependent on most of the adjustable parameters.
However there is a strong dependence on the form of the smoothing
function required for the velocity integral. The solutions illustrate
the rapid stretching of vorticity in inviscid flow but cannot prove
conclusively the presence of a singularity in finite time. An important
result of this study is that pairing of opposite signed vorticity may be
responsible for a significant part of the increase in vorticity and may

be a useful concept when parametrizing the effects of viscosity.
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T6F99.



1. INTRODUCTION

Vortex methods, as described in [1, 2], are a potentially useful
tool to use in tﬁe attempt to simulate three dimensional turbulence.
Computational points can be concentrated in the turbulent, vorticity
containing regions of incompressible flow at high Reynolds numbers, thus
allowing the resolution of smaller scales of motion than is possible in
Eurlerian finite difference or spectral models.

However, it is important to understand the accuracy and limitations
of the various methods available for this task. Chorin in [3, 4] used
the evolution of the configuration of single computational vortex
filaments to study the inertial range of turbulence and produced
important conclusions on the intermittency, spectra and singularities in
developed turbulence. Thus it is important to verify whether ﬁhese are
properties of turbulence or just of the approximate solufions resulting
from this method.

This paper addresses the problem of verifying the consistency of
Chorin's method and the accuracy of the solutions obtained as
approximations to the solutions of Euler's equations. Thus the
evolution of a periodic vortex lattice is computed and the dependence of
the solution on various adjustable parameters is studied, extending
Chorin's tests in [4]. Comparisons are made with solutions given by an
implementation of the discrete method described by Beale and Majda [5]
which illustrate the similarity of the methods [6]. The two vortex
methods are described in sections 2.3 and 2.4 and the problems

associated with the necessity to smooth the integral defining the



velbcity fieid are discussed in section 2.5. The riumerical methods and
form of the initial data are described in section 3 and the results are
given in section 4.

If, as considered, by Chorin [4] the Euler equations can be
considered as the high Reynolds number limit of the Navier Stokes
equations and the vortex method accurately approximates the Euler
equations, we can use the results to investigate the behaviour of
turbulent flows. A careful choice of initial data, such as the periodic
vortex lattice, will result in self-induced vortex stretching and
increasingly chaotic flow with the cascade of energy to diminishing
scales. In fact in the absence of viscosity there are suggestions that
the vorticity becomes singular in finite time for all but special
initial data.

The results of the simulations by Chorin [3, 4] indicate that the
L1 and Lo norms of vorticity are tending to become infinite in finite
time. Work by Morf, Orszag and Frisch [7] and Brachet et al [8], on the
Taylor-Green vortex also suggest the possibility of a singularity.
However the latter work [8], extending the earlier power series method
[7] to higher accuracy and including a comparison with a direct
simulation, concludes that the results do not yet provide convinecing
evidence of the presence of a singularity. Comparisons of results for
viscous and inviscid flow indicate that some of Chorin's results may be
consistent with the presence of some viscosity in his method.

In section 4.5 we consider the evolution of the_&1 and Lp norms of
vorticity in order to investigate the presence of singular solutions to
Euler's Equations. 1In section 4.3 we investigate the properties of the

flow and identify a mechanism that becomes important in the rapid



stretching of vorticity whilst conserving the energy of the flow. This

dipole pairing of vorticity may be a useful concept when parametrizing
the effects of viscosity on the flow.
2. VORTEX METHODS

2.1 Theoretical Background

The Euler equations for three dimensional, incompressible, inviscid

flow are
> > > > > >
do = 3w + (U.V)w = (w.V)u (1)
. 8t
> >
where w = Vxu (2)
>
V.u =0 (3)

- -
and ﬁ’ and w are the velocity and vorticity vectors respectively. The

combination of (2) and (3) gives the Poisson equation

Vou = - Vxow (4)

If the normal components of velocity on the boundaries are zero the

solution to (4) may be written as the Biot-Savart integral

> > 1 > > > > >
UX L) i (.5 20 ) e mley, t) d% (5)
— ‘"’ =
x-x I3

Hence the fluid velocity is uniquely determined kinematically from the
vorticity field and it is known that the inviscid motion of the
vorticity field is given by the local fluid velocity from the theorems

of Helmholtz and Kelvin.



2.2 Implementations

In general, vortex methods approximate the vorticity of a fluid by
collections ‘of 'vortex elements' such as point vortices or sheets in 2
dimensions, and line vortices, tiles or line segments in 3 dimensions
[1, 2]. Their movements are then followed in order to study the
behaviour of the flow. The high velocities induced in the flow by these
singular distributions of vorticity must be suppressed by applying some
type of smoothing to the velocity integral, see section 2.5. This
allows stable solutions of the equations of motion by distorting the
close interaction of the elements.

Three types of three dimensional vortex methods have been proposed
and used for various calculations [2]. These can be described as
firstly the thin filament approximation, secondly bundles or
distributions of computational filaments and finally the discrete or
'arrow' methods.

The thin filament approximation [9, 10] uses single line vortices
of zero cross—-sectional area and constant circulation, T', to study the
behaviour of isolated tubes of vorticity such as in aircraft trailing
vortices and vortex rings. If the tube has finite core of

cross—sectional radius ¢ and area A
-’
i j w . dA (6)

In order to study smooth or distributed fields of vorticity the
other two methods are invoked. The first considers the vorticity field
to be given by a sum over a collection of line vortices [11, 3, 4]. The
final group of methods can be referred to as Lagrangian grid point

methods. The vorticity is defined at points on an initial grid [5] or




defined as vortex segments or sticks [12, 13] with no assumed

connection, in contrast to the whole filament approximations of the
.first two groups. 'The vortex element locations are moved with the local
N smoothed velocity and the vorticity vector is updated at each step using
Eq. (1).- )
In this paper direct comparisons are made between a method of the
second category, Chorin's method, and a discrete Lagrangian grid point

method, Beale and Majda's method.

2.3 Chorin's Method

Chorin [3, 4] supposes that the initial data can be approximated by
a collection of M vortex tubes of small but finite cross-sections A.
The circulations, I‘_i_, of these tubes are constants of the motion given
by Eq. (6) so that the velocity integral reduces to one along
computational filaments or line vortices.
ax,t) = -1 %— B _&@sl_z_\x 3 ri(s) ds (7)
. ol T i

Y 1

where s is the distance along the filament,

~ >
ri(s) is the location of the filament
>
-’(x,t) is the velocity field at position?at time t

u -
and a-=%-7 (s), a-= 12l
The smoothing function g_(_ai/6) removes tr_xe singularity of the velocity
integral by taking account of the .f‘init;g_:Qﬁéaé*ée'ctiop-»féfg ‘the vorté%;—i :

tubes and so_-avoi’ds_;:_lthg infinite velo




‘Chorin [3]'uséd:

ga/e) - | (®
a2/s2 if a<$

The filaments are further approximated by line segments and the motions
of the end points of the segments;.or nodes, are followed. Vortex
stretching is represented by thehincrease in separation of adjacent
nodes, that is the increase in length of the vortex segments. Thus the
velocity integral is approximated by the sum of contributions due to
line segments with the separation, a, calculated at the midpoint of the
segment (the rectangular rule).

The lengths of the segments are limited to a maximum value of Ap
and once this value is exceeded the segments are split at their
midpoints. Therefore the number of nodes increases as the length of the
filaments, and hence vorticity, increases.

§
Thus for the node ‘.)Cm"l at the start of segment n on filament m

3 Xgt(t) = ulxgo(t)) (9)

b
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The solution may thus depend on a variety of parameters such as the

number of filaments, the number of segments per filament, the cutoff
distance § and Ay as well as the function g(a/é), the time integration
scheme and method of integrating along a segment.

Recently Greengard [14] has produced a convergence theorem for
filament methods of this type by reformulating them into a version of
the discrete methods, described by Beale and Majda [5], in a curved
coordinate system. This proof assumes smooth initial data and that the
time step, separation of node points and the width of the smoothing
function, related to §, are all sufficiently small. The separation of
the node points must also be sufficiently smaller than the width of the
smoothing function and the proof applies for a finite interval of time.

2.4 Beale and Majda's Method

In the algorithms described by Beale and Majda [5, 15] the velocity
is updated crudely as in Chorin's method. However the vortex stretching
is now incorporated via a Lagrangian update. The trajectory of a fluid
particle starting at time zero at the position is again determined by

the equation

dx (L) = iz (8)) , (0] =706 . {an)
Lo fP5

= (g, o, &3)
where the velocity.E is given by an equation of the form of Eq. (5).
The stretching of the vorticity is described by the vorticity equation
(1). This can be expressed in a Lagrangian formula, [5, 16]

do(x () = @(X(0)) . ¥ u(Xt)) (12)
P e
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involving the gradients of velocity at time t with respect to the ‘
; ! > > >
initial position of the points x‘x(t_;_) where Va_u(xd(l:_)) is the 3 x 3 |

Jacobian matrix

aﬁjgi“(g)) 181,083 (13)
J

and 3(;:(0)) is the initial vorticity of the fluid particle starting at
position 3

The initial vorticity fields are discretized onto a three
dimensional uniform grid of gridstep h. Values of position, velocity
and vorticity are held on the grid, the grid data points moving with the
fluid but the velocity derivatives being calculated with respect to
their initial positions. This minimizes errors due to errors in
evolving quantities.

There are thus two coupled nonlinear ordinary differential
equations for the vorticity and positions of fluid initially at the grid

=t >
points X;(0) = (lh,mh,nh) =&X;
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associated vorticity. uib(g) again represents a smoothed velocity

integral so that

S =- 1§ [g@re) 3 x ey n’ (15)
. = L X 3
j=1 a
.« > > > |—>| X
where a= xj(t) - Xj(g), a=lal, i= 1,N

No provision is made to increase the number of vortex elements as
their separation increases in this implementation. Therefore as
stretching occurs and separation increases there is a loss of accuracy.
However as the aim of the study here is to compare solutions obtained
with different resolution remeshing was not used.

Beale and Majda (5) have proved that methods of this type are
stable and convergent with arbitrarily high accuracy for a period df
time T. The stability and accuracy depends on the smoothing or cut off
function g(a), the difference operator Y&ﬂ and the choice of the
parameter § and the initial grid size h.

Recently Anderson and Greengard [6] have pointed out that the two
methods of Chorin and Beale and Majda are essentially the same as in
fact the vortex stretching in Chorin's method is carried out using a
forward finite difference operator applied to the velocity fields with
respect to the initial configuration of the vortices. The work reported
here illustrates this point.

However the two methods can obviously be used in different
situations, Beale and Madja's method being more applicable to

distributed fields than is Chorin's method.
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2.5 Smoothing of the velbcity Integral

In order to calculate the discretized velocity integral the
singulaﬁity must pe removed by a method that accurately approximates the
exact velocity field. There have been various differént approacheé. e
Either the vortex elements are considered to have finite cores or
associated non-singular distributions of vorticity [11]. Then the
elements are often referred to as vortex blobs. Alternatively a short
interval, or volume, is removed from the velocity integral [17] or the
singular integral is just assumed to be replaced by an accurate smooth
approximation [5].
These methods can all be considered to include some type of
smoothing functionlg(g/d), with associated parameter § in the velocity
integral as in Eq (7) aﬁd Eq (15). Anderson and Greengard [6] have
shown that smoothing of the velocity integral by a function §(§/6) is
equivalent to approximating the vorticity field by a collection of
vortex blobs.
They consider the velocity field'3 to be the convolution of a .

= -
kernel K with the vorticity field w expressed as : -f

i , (16)

> > -»"

> > I
ax ol s ket (g iRt g
a

et g
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where K = -




Then g(a/§) is defined by Eq. (18)

K, = K glass) (18)
and wé(g) = w(a/gv)_ (19)
8

where g p(x) dx = 1
Eq. (17) can be considered as

(20)

[=i 2
1

¥
k3
€+

q >
an w(s

V(@) * w (21)

where z; is a vorticity field smoothed by yg(a), equivalent to a
collection of vortex blobs, so that.:; is the exact field due to the
vortex blobs.

In the thin filament approximation the form of the function g(a/s),
and hence ygs(a), and the value of § are usually chosen to carefully
match the calculated velocity with that due to, for example, vortex
rings with given core sizes and vorticity distributions. The parameter
8§ is then related to the core radius o [9, 17]. These methods attempt
to take account of the core dynamics that cannot be treated explicitly.
However they are accurate only if o/R << 1 [10, 18], where R is the
radius of curvature of the filament, so that short wavelength
disturbances, and possibly close interactions, are mistreated.

In the discrete methods used in the convergence proofs [5, 6, 19] ¢
and § are determined by the need to provide stability and accuracy

whilst avoiding infinite induced velocities rather than a need to

account for core dynamics. The proofs assume that sufficient resolution

14




of the vorticity field, particularly in the'core; has already Séen
obtained and § is closely related to the original mesh spacing h. The
accuracy of these vortex methods are controlled .by the choice of ¢y and
the relative sizes of § and h. Beale and Majda [5] require § to be

sufficiently larger than h and establish the relationship

A

q £ 1 in order to balance errors in smoothing and

-

6 =hd, 0
discretization which are opposite in character. Smoothing errors are
worse for large § and discretization errors are improved by increasing
§. Accuracy can be improved by using higher order accurate y [5, 6].

However it is not clear what should determine the choice of
smoothing function and the parameter § in the limit of low resolution
when only a single or few elements are used in the cross—section as in
Chorin's work [3, 4]. Should the smoothing represent properties of a
given distribution of vorticity in the core of a vortex filament or just
be a means of stabilizing the method that allows convergence as the
number of the filaments increases?

It is not obvious what flow is being modelled when Chorin [3, 4]
follows the evolution of the configuration of single vortex filaments
with the form of 5(3/5) given by Eq. (8), § being kept constant in time.
It can be argued that it is the case of single line vortices with zero
cross—sectional area, where 5(3/6) just produces stability and removes
the singularity. Alternatively a vorticity field composed of elements
with small support, determined by §, ie vortex blobs or an approximation
to a general flow containing more widespread vorticity are being

studied. Obviously it is important to understand the relationship
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between the solution obtained using the smoothed velocity intégral at

low resolution and the solution of the Euler equations if the results
are to be interpreted in terms of the properties of turbulent flow.

Recently Greengard [14], using a method very similar to Chorin's,
has studied the behaviour of solutions of the smoothed equations, which
he calls the Eg equations, using both single filaments and bundles of
filaments. The Eg equations converge to the solutions of Euler's
equations as § tends to zero [5, 6, 14] as long as the separation of the
vortex elements h tends to zero more rapidly and the timesteps also tend
to zero.

He assumed, and illustrated, that for a multifilament calculation
increasing resolution and reducing timesteps for constant § will produce
a converged solution of the Eg system. He considered that in the case
of single filament calculations the computed solution converges towards
a weak solution of the Eg system as the resolution along the filaments
is increased for fixed §. Thus we need to understand the relationship
between these weak solutions of the Eg system and the solutions of the
Euler equations.

The dependence of the solution of the smoothed equations on the
smoothing function §(§/6) is studied in section 4.4,

One further consideration required in single filament calculations
is whether or not the parameter §, which can obviously be related to the
core size of a vortex filament, should be kept constant throughout the
evolution of the flow in order to correctly approximate the solutions of
Euler equations. From conservation of volume, as a vortex tube of
finite cross—-section stretches its cross—sectional area must decrease.

Since the circulation is conserved the vorticity will increase. When §

16




is kept constant the strain rate can only increase due to the presence
of more vorticity in the fluid. The effect of increased velocities near
filaments, due to the production by stretching of intensified vorticity
inside a smaller cross-section, is removed. Leonard [11] considers that
use of a constant core size or § acts as a sub grid scale
parametrization of viscosity proportional to vortex stretching. Thus
smaller scale structure, due to variable amounts of stretching along the
filament, may be lost. This problem is also discussed in section 4y.ou,
3. COMPARISON OF TWO VORTEX METHODS

3.1 Form of Initial Data

Direct comparison of the Beale and Majda method and Chorin's method
without the problem of the initial representation of curved vortex
filaments is possible by considering the evolution of a periodic lattice
of straight filaments. Flow is considered in a unit cube with periodic
boundary conditions. Each unit cube contains two filaments crossing at
right--angles and separated by 0.1 units in the perpendicular z, or X3
direction, see Fig. 1a).

One filament has vorticity parallel to the x, or xj;, axis and the
other parallel to the y, or xp, axis, each having unit circulation and
an assumed radius rq.

This is a simple situation in which to study vortex stretching as
each filament causes the other to rotate about it producing stretching
and compression along their lengths.

The initial data contains symmetry since the initial position

- -~
vectors of the axes of the filaments, X, and Xp are

=¥
]

(0.0, X2, =0.05), -0.5 $ X2 $ 0.5 (22)
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X, = (%1, 0.0, 0.05), :=0.5 & %1 &.0.5 (23)

In fact at all times the flow at x3 < O can be obtained from that

. calculated at x3 > 0.

” since if 3(51, x2, x3) = (uq, uz, uz) (24)
>
ulx2, x1, -x3) = (u2, ¥1 = u3) (23)

Therefore the velocities and positional increments, also vorticity
increments in Beale and Majda's method, of only one filament needs to be
calculated and they can then be applied to the second filament. This
not only reduces the number of calculations required per time step but
preserves the symmetry of the flow.

3.2 Boundary Conditions

The flow is considered inside the cube

-0.5 s x5 £0.5 1i-=1,23 (26)
with periodic boundary conditions.
The use of periodic boundary conditions allows consideration of
conservation of energy in the unit cube. However it is not easy to
implement these conditions due to the infinite number of images that
should be included. In fact the initial velocity induced on each of the
filaments is that due to a 2-D infinite array of perpendicular filaments
but this velocity does not appear to be well defined. This can be seen
by considering an infinite number of periodic rows. However following
Chorin [3,4] and considering that 1/33 is small for large a, we can

neglect contributions (to the velocity integrals) from distant vorticity
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with a greater than 5@a§:' Hence if 3@3{_13 less than 0.5 only one

'nearest' vortex element image needs to be considered. A value of Rmax
= 0.495 is used.

3.3 Time Integration scheme -

A fourth order Runge-Kutta time integration scheme was used to
update the positions of the nodes in Chorin's method and the positions
and vorticities of the grid points in Beale and Majda's method. An
initial timestep of dt = 0.001 was used with an arbitrary test for

stability as in Chorin [U4].

P = dt x umax < h Beale and Majda's method (27)
P =dt xumax < F < Ap  Chorin's method

where umax is the maximum velocity of a node or grid point. The

—— e

timestep is halved if P exceeds the limit.

3.4 Implementation of Chorin's Method

The two filaments were each represented as single computational

line vortices of circulation I' = 1. A limiting segment length of A, =

0.05 was used and the lengths of the segments were checked every

timestep. F was set at 0.03.

Initially integrations were run starting with each filament split
into N equal length segments. However it became obvious (see section
4,1) that better resolution, with fewer points could be obtained by
decreasing the initial segment lengths only in the regions where rapid
stretching occurred. Hence a posteriori initial segments of unequal
lengths, AoiJ, were chosen varying from Ao to Ao/128 with Ao = 0.05.

This initial data is used in the analysis of the evolution of flow.

19



3.5 Implementation of Beale and Majda's Method

The two crossed vortex filaments were discretized onto a grid of
length E} For initial calculatiohs the cross—sections of the Qilaments
were limited to one grid point only and a value of vorticity was
assigned to these points so that the circulation was equal to one for
all the resolutions used, h = 0.05, 0.025, 0.0125 and 0.003215. Each
filament was represented by E}Z points along the length where_§=1/g:

—

Initial vorticities wp(m) and wg(m) were assigned to points Xp(m) on the

-
first filament and Xg(m) on the second filament respectively where

X,(m) = (0.0, xa(m), -nh) (29)
Xz(m) = (x2(m), 0.0, nh) (30)
with xp(m) = (m—Z)D, m=1, N+2

n = 0.05/h

e >
and wp(m) = (0, wg, 0), wp(m) = (wp,0,0) where wg = 1/h2
No other points were required as initially the direction of the
vorticity was constant along each filament.

The derivatives of the velocity required in the vorticity equation

are fully derived from the positions of the initial vorticity and
approximated by a second order centred difference operator.

3.6 Smoothing Function

The smoothing function g(a/é) used in the calculations is defined

as
g(ass) =0 a > Rmax
gla/s) =1 § < a s Rmax_ (31)
g(ass) = a3/s3 assé

with § = 0.05, Rmax = 0.495

20




This corresponds to

Vs = 3/(4ms3) for a S & (32)

1]

=0 for a > §

and a vorticity distribution of

N i
w(a)l - 3(62-22)72 forass (33)
2183 i

This is slightly different from the form used by Chorin [3, 4] but
allows easier comparison between Beale and Majda's and Chorin's methods.
This smoothing function is discontinuous at 8 =g and so does not
necessarily have the high order accuracy of these described by Beale and
Madja [20]. However calculations to_E = 0.2 using their second order
accurate §(g/6) = tanh (§3/63) and exponential form
g(a/8)=1 -exp(-a3/§3) with 6§ = 0.05 gave very similar results to the
form used here.
3.7 Diagnostics
The principal diagnostics calculated are the Ly and L, norms of

vorticity defined as

L (w) = §|$|g! (34)

Ly (@) = g' o 12av (35)

These are simply calculated in Beale and Majda's method as

L2 w - anl oy | n3+ n | &y m |’ (36)
LY () - L | &, @) 1203 zml ag@) |23 (37)
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In Chorin's method the Lq norm of vorticity is given by the total

lengths of the filaments in the unit cube.

C

2

Ny
() = § ¥ A (38)

where AiJ is the length of a segment. Similarly, if we assume that the
radial distribution of vorticity remains constant as the vortex

filaments stretch, the L, norm is given by
Nj ’
= 2
DR OTE (39)

where Vil is the volume associated with the segment.

Thus we need the extra variable yiJ_which remains constant unless the

-

segments are split. Then the value must be halved and assigned to each

half segment. Initially

Vil = Mro? Aoj (40)

-

where r, = initial radius of filament

Ao-l = initial length of segment 2 on filament l
This extra variable also enables us to keep track of the amount of
stretching that a single segment has undergone during the evolution of
the flow. So that the amount of stretching‘§il is given by

Sid = 21d/ho1d = AL W r2/ysd (41)

The method of assigning vorticity to the grid points in Beale and
Majda's method means that the definitions of circulation and Lq norm of
vorticity are directly comparable between Chorin's method and Beale and
Majda's method. However the L, norms differ by factors depending on the

resolution h in Beale and Majda's method. So that L>C(w) should be

compared with h2L 0 (w)/wrq2.
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Foﬁ periodic boundary conditioﬁs we can consider the ability of the
methods to conserve energy in a unit cube. 'The total kinetic energy per
unit cube was approximated by using the velocities calculated on a 20 x
20 x 20 grid. It should be possible to calculate the energy directly
from the vorticity distribution but it is not easy to find a method
consistent with the use of the smoothing function. Tests with 403 and
803 grids indicate that the 203 grid approximation is reasonable.

4. RESULTS OF NUMERICAL INTEGRATIONS

4.1 Chorin's Method

The standard integration, as described in section 3.4 used the
smoothing function of section 3.6 and a fourth order Runge-Kutta
time-integration scheme. The various adjustable parameters were set so
that 6 = 0.05, Rmax = 0.495, A\p = 0.05, F = 0.03, and timestep dt =
0.001. The initial data had maximum resolution in regions of maximum
stretching as determined by previous trial runs, so that the Aoii were
unequal.

The initial configuration of the vortex filaments in a unit cube is
shown in the top row of Fig. 1 in plan and side views and a three
dimensional projection. The symbols mark the original node points. The
two filaments become increasingly tangled, as each induces the other to
move around it and the evolution is shown in the rest of Fig. 1.

After a slow initial increase in vorticity, until about E (0
there was then a rapid increase in both the Ly and L» norms of
vorticity. Lq(w) had only increased by appro*imately 50% at t = 0.2 but

was over thirty times its initial value when the integrations were
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stopped ét L= 0.399. The integrations weré stopped Qhen eaéh filament
had 999 segments produced from the 160 initial segments. The evolution
of L1(w) is shown in Fig. 2 and Table I.

One test of the stability of the method is the conservation of
kinetic energy and as seen from table II this is roughly achieved.

In order to study the accuracy of the solution obtained by Chorin's
method its dependence on the spatial resolution, boundary conditions,
temporal resolution and time integration schemes was investigated.

The spatial resolution of the method is determined by the initial
segment lengths Aoii and the maximum segment length Am.

Integrations with Am = 0.05 and all Aoii = 0,05, 0.025 or 0.,0125
each produced the same general evolution but with greater resolution of
the curvature as AyjJ decreased and hence better accuracy at later
times. It became obvious that the extra resolution was not required
where little stretching occurred and so variable segment lengths were
used in the standard integration. Table I shows that the evolution of

Lq(w) for equal Apjd = 0.05 agrees well with the standard case until t =
0.3. At later times the configuration, Lq(w) and Lp(w) diverge slightly
for the two cases due to increasing errors resulting from lack of
resolution when Aoii = 0.05.

With Aoil as in the standard integration, test runs to t = 0.3 show
reproducibility of the solution as A\, was decreased from 0.05 to 0.025
and 0.0125, providing extra resolution of curvature. The configurations
were slightly smoother at higher resolution but the similarity of the
solutions does not justify the extra computational expense, see table I.

There were 757 segments per filament at t = 0.3 for Ay = 0.0125 as

opposed to 228 for Ay = 0.05 and only a 5% difference in Li(w).
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Thus the spatial resolution of the standard integration can be
considered to be sufficient during the period of comparison. The
kinetic energy was roughly conserved in all the comparison integrations.

In order to test the sensitivity of the results to the approxiation
to periodicity the maximum separation of points included in the
calculation of velocity was increased to 0.995 from 0.495, This means
that more 'images' are included in the calculation and as'Bgég_tends to
infinity the solution will tend to the correct solution for periodic
data. The results are very similar to those from the standard case as
shown in table I. A run to t = 0.2 with no limit Rmax but including
only the 27 nearest images of a segment also showed close agreement, see
Table I. This justifies a posteriori the neglect of contributions from
distances greater than Rmax = 0.495. Again kinetic energy was roughly
conserved.

The temporal resolution of the method is determined by the initial
timestep, dt, and the parameter F. With dt = 0.001, as in the standard
integration, and initial umax = 1.56 a maximum displacement per timestep
of 19 times the initial displacement is allowed by the value F = 0.03.
In order to limit the allowed displacement to closer to its initial
value an integration to t = 0.3 was performed using F = 0.002. This
showed no difference from the solution obtained with the higher value of
F, see table I, even though the timestep had been reduced to dt =
0.00025. Thus the standard integration had not lost any temporal

resolution as the flow evolved.
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In order to try to decrease the CPU time required for the

integrations simpler time-integration schemes were tried, such as
centred difference and Euler forward difference. All séhemes agreed
well until approximately t = 0.2 as shown in Table II.

Time splitting occurred in the centred differencing scheme solution
which became evident as an oscillation in the maximum node point
velocity by E = 0.274 and an increase in kinetic energy of greater than
100% by t = 0.36. The stability was improved by using a time filter

such that

1 (42)

3 8 L bee) x5 ¢ Suab 0n0)) + el2dn - 22 Y

X

where n indicates the time level and ¢ is a weighting factor. Using g =

0.1 good agreement is then found with the fourth order Runge-Kutta

solution.

The Euler first order forward difference time integration scheme,
as used by Chorin [U4] diverges from the standard solution after t = 0.2
by which time the kinetic energy is also increasing, indicating that the
solution cannot be trusted.

Thus the solution was independent of the time integration scheme i
until about E = 0.2. At later times the Euler scheme loses accuracy and
diverges from the solution obtained from the higher order schemes.

4,2 Beale and Majda's method

As the resolution along the filaments is increased the
configuration of the filaments appears to be converging to that produced
by Chorin's method as can be seen from Fig 3. However the resolution is
unable to cope with the rapid increase in vorticity after about t = 0.2

and the solutions diverge as can be seen from table III and Fig 2. The
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solutions are able to follow the solution from the standard integration

of Chorin's method for longer periods into the integration as the
resolution is increased. The case with h = 0.003125 almost matching the
standard integration out to t = 0.25, compare Fig 4, Fig 1c) and d). s
L1(w) shows a smaller increase by t = 0.4 than with Chorin's method
although the increase in Lqi(w) with resolution seems to indicate that
the solutions are converging to that obtained by Chorin's method.
Obviously remeshing is required to compute accurate solutions once rapid
stretching has occurred. The solutions lose accuracy after t = 0.2 to t
= 0.25 depending on the initial resolution and the kinetic energy
increases with time indicating instability.

These results provide evidence to support the accuracy of the
solution obtained by Chorin's method and show the similarity between the

two types of methods.

4,3 Description of Flow

We see from section 4.1 that the solution obtained from Chorin's
method for the given smoothing function is reproducible and only weakly
dependent on the spatial and temporal resolution, boundary conditions
and time integration scheme. Also its accuracy is supported by the
solution obtained from the Beale and Majda method once it has sufficient
spatial resolution. Therefore we can consider with confidence the
features of the predicted flow as the converged solution for the given
smoothing function.

As mentioned in section 4.1 the vorticity of the fluid as measured
by Li(w) and Lp(w) increased gradually until t = 0.2 and then rapidly
until the end of the integration at E = 0.399. There was only an

increase of 50% in Lq(w) by E_= 0.2 and then a twenty fold increase in ®



the next interval of At = 0.2. However despite this rapid increase in

vorticity the kinetic energy of the flow is apparently conserved. Chorin
[4] noted that the constraint of energy conservation prevented even
spreading of the vorticity and that stretched filaments are forced into
tangles or folds so that their associated velocity fields cancel. 1In
this case close alignment of opposite signed vorticity is evident as
well as some tangling. This is illustrated in Fig 5. By t = 0.3 about
73% of the length of each filament is aligned within a distance § of
another section, of either the same filament or the other filament, so
that their vorticity vectors are in opposite directions, the angles
between the vorticity vectors being greater than 160°. 40% is within
0.02 and the pairs get closer together as time increases. These dipole
sections will have only a small net effect on the velocity field away
from their locations and energy is conserved despite the greatly
increased vorticity present in the flow.

This vortex dipoling may be responsible for the rapid increase in
the vorticity. A pair of rectilinear line vortices will induce motion
on each other such that they will move in a direction normal to the line
joining their axes and hence sections of paired filaments move causing
stretching at the end of the paired sections.

From these observations it can be expected that the detailed
interactions of vortices become important for correct modelling of
vortex stretching. It is noted here that the vorticity starts
increasing rapidly at about E = 0.2 when the filaments have rolled up so
that some seprations are less than § and the future evolution of the

vorticity will depend on the form of the smoothing function.
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We can study the spatial intermittency of the flow by studying the

amount of vortex stretching that occurs and its distribution. Fig 6
shows histograms of enstrophy and volume against the stretching factor
for the individual filament segments at the end of the integration. A
very small fraction of the filaments have stretched by a factor of more
than 105 whereas other parts have compressed slightly. The most highly
stretched segments with high enstrophy, L>(w) occupy a very small
fraction of the total volume, an indication of intermittency.

4.4 Effect of altering the smoothing function

A trial integration was run with the value of § allowed to vary
with the radius of the segments. Each segment used in the velocity
calculations was assigned a value of § equal to the radius determined

from the amount of stretching it had undergone. At a given time

. 4t gk
Rad;d = (vid/mid) 72 (43)

where 5?912 is the radius of the 1th segment on the ith filament.
Initially the radius of all segments 59912 = 0.05. The rest of the
parameters in Chorin's method were as in the standard integration. The
results showed a far more rapid increase in vorticity after t = 0.188
than for the standard integration, see Fig 2 curve B. The integrations
could not be followed for a long period of time because of the far
higher induced velocities, the maximum reaching 347 ms~! by E = 0.224 as
opposed to a maximum of 5.2 ms~! in the standard integration at t =
0.333. However the increase in velocity is not steady, nor that of

Li1(w) and Lo(w). After £ = 0.191 oscillations occurred in all three




values and continued for about 68 steps, the timestep being reduced at

step 197, by this time the kinetic energy had increased so that the
calculation was probably unreliable.

In order to increase the accuracy of the method another run was
undertaken with a reduced value of E = 0.002, thus providing better
temporal resolution when the velocities increased. The maximum segment
length Ay was also made to vary with the segment radius so that Apjd =

ngii thus providing better spatial resolution and allowing more
acé;rate representation of small radii of curvature. This run showed an
even more rapid increase in vorticity, see Fig. 2 curve ¢, and diverged
from the F = 0.03, constant \p solution at about t = 0.186 when the
vorticity increased sharply. The configuration was much smoother and
the velocity, Lq(w) and Lp(w) increased without oscillations. The
velocity reached a value of 188 ms~1 at t = 0.18874. Over the next
three steps the velocity increased to 1028 ms™! indicating that by that
stage even this solution had lost accuracy and obviously this test case
is very unstable.

The evolution of the configuration of the filaments also differed
from that‘for constant §, see Fig. 7. The rapid stretching occurs at a
different part of the filament but is again associated with dipole
pairing between the filaments. The filaments being more tightly paired
and folded than for equivalent values of Lq(w) at later times when § is
kept constant. Nearly all the extra vorticity above that in the

standard integraiton can be accounted for in very small scale, highly

stretched and dipole paired vorticity.
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Now consider the comparison of the evolutiﬁn of Lo(w) against
_Li(w), see table IV. Lp(w) is higher for a given value of Lq(w) for
variable § at later times when the filaments have stretched. This
implies that the stretching is less intermittent.

In this case, despite the smooth, apparently accurate solution and
the tight dipole pairing seen in Fig. 7, the kinetic energy was not
conserved. It increased from about 0.34 per unit value to 0.4 per unit
volume by the end of the integration as calculated on an 803 grid.

A final test integration of Chorin's method used his form of the
function_g(g/é) given by Eq. (8) corresponding to a vorticity
distribution increasing from zero at § to infinity on the line segments.
Again in order to limit the number of image contributions to the
velocity integral

g(ass) = 0 when 1zl > Rmax (uy)
The value of § was kept constant as in the standard integration and § =
0.05.

Again the evolution is similar to the standard integration until
about t = 0.15 when Lq(w) and Lp(w) increase more rapidly, see Fig. 2.
Vortex pairing is observed, although the configuration is different from
the standard integration, compare Fig. 8 and Fig. 1. But this time the
rapid stretching occurs in the same region as for the standard
integration.

After t = 072 Lo(w) is lower for a given Li(w) than in the standard
integration indicating that the stretching is more intermittent, see
table IV. The kinetic energy is again increasing slightly by the end of

the integration so that the results may not be reliable after t = 0.3.



4.5 Investigation of the singularity of Euler's Equations

If the vorticity is to become singular in finite time the rate of
increase of the Ly norms of vorticity must be greater than an
exponential increase. Hence by considering

Li(w,t) = L1(w,0) exp (t/1) (45)

where 1t is constant

AL (w,t) - L1(w,t)
Mo Ll (46)
R _ o AL (w,t) / Li(w,t) = - = constant (u7)

If the ratio.BL. of the rate of change of the L1 norm to the L1 norm
increases with time the vorticity is increasing at a rate faster than
exponential. By considering table V it seems that for the standard
integration of Chorin's method the ratio increases until about t = 0.26,
when it becomes roughly.constant until approximately t = 0.36. Then it
begins increasing again. The results are confirmed when the full
resolution of the 0.001 timestep is used.

A similar analysis of the L, norms shows that

Ry, - 2200 /o, (48)

increases until t = 0.22 and then begins decreasing.

Thus the rate of increase of the vorticity norms are greater than
exponential until about t = 0.2 and the solution is tending to a
singularity. However after that the behaviour alters and the rates of

increase decline.
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The changes in rates of increase of Lq(w) and Lp(w) are confirmed
by studying the convergence properties of the series of doubling
incremental times.

Now consider the convergence properties of the series of time
increments for equal intervals of Lq(w) or_gg(w) for the standard
integration. The indications from the first two studies of a change in

behaviour at times greater than t = 0.2 suggests that we consider only

the interval before t = 0.2. Since Lj(w) = 3.2 at t = 0.2 we use ALj

0.1 and the results are shown in table VI. These suggest that from t
0.104 up to t = 0.196 the ratio of consecutive time increments could be
considered constant, to within the accuracy of the method, at a value of
0.8. This indicates a converging series from the ratio test. After t =
0.196 the ratio starts tending towards 1 which indicates a diverging
series. However, by this time the time resolution is insufficient to
provide reasonably accurate values of the ratios. Also, since the
solutions in section 4.4 diverged after about t = 0.18 when different
forms of smoothing function were used the results after this time are
unreliable. In particular the effect of using a constant width smoothing
function reduced the amount and rate of stretching by limiting the
magnitudes of strain in the flow.

If we assume that the series of time increments for constant ALg
can be continued with a constant ratio of 0.8 beyond E = 0.18 we obtain
a geometric series with a finite limit Ef as the time of the singularity

ol

S e L (49)
— -0 -1 2
n=0

-—

with t, = 0.104, tq = 0.024, q = 0.8
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‘E* - Po * _t;‘l L 0-224 (50)
e
This receives support in the results of the variable § calculation where
the Ly norm increases very rapidly in a short period before this time.

Further insight can be obtained by using Eq (49)

Lo+ (1) oL
where the increments tqiqR = f(L) dL (51)
) fo ¥ WAL
with Lo = Ly(w) at time to
aL = 8Ly
L = Iy (w) at time t

we find that f(L) = tqlog(q) |- qn(L) (52)
ik _m_ﬁL_A_ o q

where n(L) = (L-Lg)/AL

so that t = t, + tilog(q) qn(E) dL (53)
ALTq-1) i S =
» P Vs e &
é giving t = to + tq * AL dt, (54)
T-q Tog(q) | —dL_

Hence a geometric series for the time increments implies an inverse
‘linear relationship between time and dLj(w)/dt with t¥* being defined as

the point where dt/dlL;(w) = 0. Fig. 9 shows t against At/ALj,At/ALp fo

§ = const and At/ALp for variable 6,Ap and F = 0.002. We find that for




increases rapidly. Straight lines drawn through the data for t = 0.08

to 0.18 give t* = 0.19 and 0.2 respectively for the Lj(w) and Lp(w)
curves.

In the case of variable § the gradient decreases after t = 0.1
until t = 0.18, when it begins to increase rapidly. An asymoptic
continuation of the decreasing gradient would give E* = 0.183.

These results again indicate a change in the nature of the solution
after t = 0.18.

5. DISCUSSION

5.1 Dependence of the solution on the smoothing function

The results of the integrations using Chorin's method show that the

evolution of the flow is dependent on the form of the function g(a/é§).

— —

The solutions diverge markedly after about t = 0.18 by which time the
separation of some non-consecutive segments has become less than § and
the details of the interactions between the vortices have become
important. The forms of these motions are very dependent on the
smoothing function used in the velocity integral and, in reality, on the
core structure of the filaments.

Chorin [4] using g(a/§) = a2/82 states that when & was allowed to
vary, as in section 4.4 the_&1(m),_}2(w) relationship was unaltered.
The results reported here do not confirm Chorin's result. The non
conservation of kinetic energy in the variable § solution is a puzzling
feature as the solution appears accurate and the dipole pairs are very
close. It is possible that the use of a cutoff § varying with local
segment stretching is not consistent with the conservation of energy in
single filament calculations. The changes in core shape and vorticity

distribution, that cannot be représénted, méy be important in
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determining the exact amount of stretching consistent with energy

conservation. Obviously the calculation of energy on a grid may not be
accurate enough to cope with the fine scale structure and localized high
velocities of the variable § solution. But the energies calculated on
both a 203 and 803 grid show the increase in energy. It is also
possible that a varying but uniform value of § should be used for the
whole filament if internal waves smooth out variations along the length
(18] and this may improve the conservation of energy.

The results of the integrations of Beale and Majda's method
described in section 4.2 imply that for single filament calculations the
solution is solely determined by the circulation of the filaments and
the width of the smoothing function. The effective cross—section
resolution only seems to determine the accuracy of the solution. This,
plus the results of sections 4.1 and 4.4 support the conclusions of
Greengard [14] that we are studying the convergence of solutions to the
Es equations. This is backed by further comparison integrations to_E -
0.2 using differing §(3/6) in both Chorin's and Beale and Majda's
methods. It was found that the evolution was very dependent on § and to
a smaller extent on the form of the function §(§/6). Also large values
of §, much greater than 2 or Ap, produced smoother solutions, perhaps
inhibiting the production of short wavelength features along the length
of the filaments. Small values of &, less than h or Ay gave
instabilities. Thus we conclude that for single filament calculations
the solutions converge to those of the Eg equations as resolution is
improved, the form of the solution depending on the form of the
smoothing function §(a/6) and the value of §. Trials were run with a

vortex ring configuration, with non periodic boundaries and using
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different values of § and g(i/é) = tanh (§§/63). The results indicate
that if the resolution is sufficiently high, the resultant velocities of
translation of the ring approximate those of a ring with uniform
vorticity distribution in a cross-section of radius §. We conclude that
for all single filament calculations the function~§(3/6) should be
considered as representing the internal structure of a vortex tube, with
§ related to the cross—section of the core, so that the initial data is
well defined. Single filament calculations should not be considered as
the low resolution limit of filament bundle or discrete vortex methods
but as very different methods.

From the results of the variable § calculation we conclude that the
use of a constant width smoothing function results in smoothing of
interactions so that small scale structure is removed and hence the
rates of increase of Lj(w) and Lp(w) are reduced. Thus the amount of
vortex stretching can be underestimated and the properties of the flow
such as intermittency misrepresented. Thus the solution of the Eg
equations for single filaments may be smoothed forms of the Euler
equations as the second order effects of compression and stretching
along the lengths of filaments are mistreated. The solutions are
probably only accurate whilst the separations of filaments and their
radii of curvature are greater than §.

Obviously the accuracy of the variable § calculations as solutions
of the Euler equations has not been proved and multiple filament
calculations are probably required to study the effects of the deatils

of the core dynamics on the vortex interations.
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Once the structure of the core can be resolved by bundles of

filaments or arrays of discrete vortices, the individual elements can
represent velocity gradients and structures below the resolution of the
cutoff length §. & can then remain constant and purely provide
stability.

Initial trials with a bundle of five or seven filaments per vortex
produced extra vorticity, due to twisting of the outer filaments around
one on the axis of the vortex, when § was about 1.5 times the spacing of
the filaments. When § was four times the spacing the twisting was
suppressed. Solutions were very sensitive to the spacing of the

filaments and the relationship between that and the value of §.

5.2 Vortex Dipole Pairing

Despite the variations in the solutions obtained for the evolution
of this vortex lattice they all showed that vortex dipole pairing
occurred in the region of the cross over of two filaments. Two
different situations here have produced dipole pairing and rapid vortex
stretching. In the case of variable § it is simply a mutual interaction
between the two filaments. In the case of constant § it is a self
interaction on each of the filaments as a result of folding of one
filament as it twists around the other. The dipole pairing can be
considered to be a necessary feature of the flow if vorticity is to
increase whilst conserving energy.

This feature suggests a plausible method of parametrizing the
effects of viscosity in vortex filament calculations by removing any
dipole paired sections of filaments and relinking the remainder. This
can be justified because in these regions the diffusive effects of

viscosity will be most effective since the vorticity density and hence
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velocity gradients are very high. The two cores of opposite signed
vorticity can be expected to diffuse into each other and result in zero
net vorticity. They are also associated with highly stretched vorticity
and hence the smallest scales of motion. The cancellation of velocity
fields means that the large scale flow and evolution of unpaired
vorticity should be largely unaffected by the details of the evolution
of the highly stretched, tangled or dipole paired vorticity.

This mechanism is consistent with the observations of the
interactions of trailing vortices and vortex rings (21, 22]. These
suggest that vorticity can merge and relink. The need to change the
topology of interacting vortex filaments has been widely recognised and
Leonard [2, 3] implemented a reconnection method as did Schwarz [24] in
the collisions of vortex filaments is superfluid helium.

Feynman [25] suggested that annihilation of lengths of filaments
and relinking should occur if situations equivalent to dipole pairing
arise in the fluid. Schwarz [24] implements a scheme for relinking
filaments if vortex lines cut across each other in his use of the local
induction approximation [26]. This method does not allow for
interactions between filaments and so cannot produce the interactions
seen in the solutions here. The results reported here for variable §
reconcile the two different schemes of Feynman and Schwarz since the
vortex lattice starts as vortex lines crossing and the mutual
interactions result in dipole pairing of vorticity.

Obviously further numerical, theoretical or analytical calculations
are required to produce a vigorous verification of dipole pairing and
its importance in the process of rapid stretching of vorticity whilst

conserving energy. This work was completed before the paper by Siggia




(27) was brought to our attention. His integrations provide additional,
independent evidence for the collapse of vortex filaments to a
singularity as a result of vortex dipole pairing.

5.3 Singularity of the Euler Equations

Unfortunately the investigations reported in section 4,5 could not
provide a conclusive result. The findings indicate a change in the
nature of the solutions after t = 0.18 when the separations of
non-consecutive segments become less than the cutoff parameter § = 0.05.

We can suggest two possible explanations. One is that the true
solution of the Euler equatons does become singular in finite time at
about E* = 0.2 The numerical solutions losing accuracy and not able to
reproduce the rapid rate of stretching after about t = 0.18.

A second suggestion is that we are seeing intermittency in the flow
and the singularity does not occur. There ié no reason why we should
expect the flow to follow a smooth easily defined solution.

We feel that, since the character of the solution changes once the
approximations and smoothing become important, the results are
consistent with the presence of é singularity.

Chorin [3] used rescaling in order to investigate the properties of
the flow resulting from intersecting vortex loops. Thus although a
constant value of § was used in each rescaled flow the value was
effectively reduced by each rescaling. Hence he was concentrating on
ever decreasing scales of motion and probably provided a solution

intermediate between a constant and variable § solution.
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6. CONCLUSION

The results from the integrations using Chorin's three dimensional
vortex method produce a solution that is only weakly dependent on the
time integration scheme, time step, resolution of the initial data,
maximum segment length and distant contributions to the velocity
integral. The comparison with the solutions obtained using Beale and
Majdas method illustrate the similarity of the two schemes.

The solutions were found to be very dependent on the form and
width, §, of the smoothing function used in the velocity integral. In
particular solutions diverged once the separations of different sections
of the filaments becomes less than the cutoff width §, illustrating the
fact that the detailed interactions become important for the correct
modelling of vortex stretching. Thus any deduced properties of
turbulent flow are likely to be dependent on the form of the smoothing
function used. In particular use of constant cutoff width
underestimated the rate of increase of vorticity assuming that the
solution for variable § is closer to the true solution. Short
wavelength features and second order effects due to changes in the
cross—section radius of a real vortex are smoothed out. This may not be
the same as the effects of viscosity in that it is not dispersive but it
certainly removes small scale structure. The calculations need to be
extended to increase resolution in the cross—section of the vortices so
that a single vortex is represented by a bundle of filaments or array of
vortex elements. This will aid understanding of the situation being

modelled by a single filament with a given smoothing function and width. i
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| It is then important to ensure thaﬁ a bundle does not act as separate

vortices and great care is required in the choice of the smooihing
function and its width to ensure stability and convergence.

The evolution of the periodic lattice of vortex filaments shows a 2
rapid increase with time of the Ly and L, norms of vorticity. This
indicates the presence of a singularity in finite time but the results
are not conclusive as discussed in section 5.3.

Possibly the most important product of this study is that the
mechanism of a vortex dipole pairing, identified by Chorin [4] as being
necessary in order to conserve energy, may in fact be responsible for
the rapid increase in vorticity. This also suggests a method for the
parametrization of the effects of viscosity by removing the cancelling

sections and relinking the remainder.
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Figure Legends

Evolution of the configuration of the vortex filaments from the
standard integration of Chorin's method. a) P_ = 0.0, b) t;=
0.2, ¢) t = 0.25, d) t = 0.3
o initial nodes on filament A.
A initial nodes on filament B.
Evolution of the Lq norm of vorticity. Curves A to D are
Chorin's method. Curve A is the standard integration, Curve B
has & = RadjJ, Curve C has A\p = § = RadjJ and F = 0.002 and
Curve D uses g(a/s) = a2/62. Curves E to H are Beale and
Majda's method with p_ = 0.003125, 0.0125, 0.025 and 0.05
respectively.
Comparison of the plan views of the configuration of the
filaments at t = 0.2 from integrations of Beale and Majda's
method with different resolutions. —» Magnitude and direction
of vorticity vector in X-Y plane scaled so that the initial
magnitude = h. |
For h = 0.05 to 0.0125 o vorticity component into paper

+ vorticity component out of paper.

Plan views of the configuﬁat.ion of the filaments at t = 0.25

and t = 0.3 from the integration of Beale and Madja's method

With h - 0.003125. - Magnitude and direction of vorticity




FIG. 5.

FIG. 6.

FIG. T.

3-D representation of the configuration of the vortex filaments
at t = 0.3 for standard integration using Chorin's method

showing vortex dipole pairing.

Filament A ~ = = Filament B
+ direction of vorticity vector.
Histograms of enstrophy and volume per 0.2 interval of log1o(§)
at E = 0.398 for the standard integration of Chorin's method.
S = stretching factor = \idnro2/Void and enstrophy = L2(w)
= === ‘yolume

enstrophy.
Plan and side views and 3-D representation of the configuration
of the vortex filaments atlg = 0.18871 after 200 steps from the
integration using Chorin's method with variable § = Ay = Radi{
and F = 0.002.

0 initial nodes on filament A

A initial nodes on filament B

Filament A - - - - Filament B

+ direction of vorticity vector.

Evolution of the configuration of the vortex filaments from the
integration using Chorin's method with 3(3/6) = 3?/62.

a) t =0.2, b)t=0.25 c) t=0.3

x initial nodes on filament A

o0 initial nodes on filament B

Eiliament: Av i fi= =i= e Filament B
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FIG. 9. Relationship between time and At/ALj(w) and At/ALj(w). Curve A
is At/ALj(w) for the standard integration, Curve B is AP/AQZ(”)
for the standard integration and Curve C is At/ALp(w) for the

integration using variable § = Ap = RadjJ.
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Chorin's method using different time integration schemes?@

TABLE II

Evolution of Lq(w) and energy from

4th order Centred Centred Difference Euler forward

Runge-Kutta Difference with filteringb Difference
Time,t L1(w) Energy®© L1(w) Energy€ L1(w) Energyc L1(w) Energy®
0.0 2.0 0.35 2.0 0.35 2.0 0.35 2.0 0.35
0.1 2+2 0.34 2.2 0.34 2w 0.34 2.2 0.34
0.2 32 0:33 3.2 Of33 32 0.33 3.2 0.33
0.3 132 0.34 13.3 0.34 12.9 0.33 12,5 0.34
0.35 28.4 0.33 36.4 0.55 28.5 0.34 29.9 0.35
0.36 33.2 0.33 51.0 0.82 38.2 = 36.3 =
0.39 55.8 0.34 56..1 0.35 65.4 0.38
0.398 | 64.8 0.34 64.7

@ All integrations used g(a/é§) = a3/63, 6§ = 0.05, unequal Agjd, Ap = 0.05,

F

1}

t

0.03, Rmax

0.398.

= 0.495 and dt = 0.001. Not all integrations were run to

D weighting factor ¢ =

001

C calculated on a 203 grid at selected times.
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TABLE V
Evolution of dLj(w) / L1(w) @

at
Time, t L1 (w) AL (w)P AL1(w) / Lq(w)€
At
0.02 2.008 0.032 0.398
0.04 2.032 0.06Y4 0.787
0.06 2.072 0.088 1.06
0.08 5,98 0.118 1.39
0.1 2.19 0.14 1.60
0.12 2.26 0.17 1.88
0.14 2.36 0.2U 2.54
0.16 2.5 0.38 3.8
0.18 2.74 0.72 6.57
0.2 3.22 1.4 10.8
0.22 N1l 2.16 13.0
0.24 5.38 2.92 13.6
0.26 7.06 4,32 15.3
0.28 9.7 6.14 15.8
0.3 802 8.2 15.5
0.32 17.9 11.0 15.4
0.34 24,2 15.3 15.8
0.36 3%:2 22.3 16.8
0.38 46.5 32.8d 18.1€

a

dLy (w) /Lq(w) i

dt

s approximated by ALj(w) /Lj(w)
5 At S




TABLE VI

Convergence test for series At @

L1(w)n Time,tD Atp ratio = Atn+1 Error in
Atn Li(w) @
2.0 0.0 0.0
0.071
B 0.071 0.46 5.6 x 1074
i 0.033
2.2 0.104 0.73 1.4 x 1073
‘ ~ 0.024 -
2.3 0.128 0.79 -1.1 x 1073
0.019 o :
2.4 0.147 - 0.68 2.1 % 1673
2 0.013 ' B ;
2.5 0.160 - 0. TF -1.7 x 1073
' i 0.010 - - -
2.6 0.170 : 0.80 -3.4 x 1073
' ~ 0.008 : :
2.7 0.178 ' 0.75 1.4 x 1073
- i 0.006 :
2.8 0.184 0.83 3.3 x 1073
- 0.005 y
2.9 0.189 - 0.80 9.1 x 1073
' ' 0.004 : i ~
3.0 0.193 ' 0.75 1.0 x 1072
) > 0.003 . o .
3.1 0.196 P -4.6 x 1073
B : 0.003 : : -
3.2 0.199 :

-1.0 x 1072

Results from the standard integration of Chorin's method with time

resolution dt = 0.001.

Times,'t, are those that had Li(w,t) closest to the stated value

’ L1 b('(l))‘n

Error = Lq(w,t) = Li(w)n




Symbol as
g shown in paper:

List of Symbols

In text vectors are shown using arrow notation but should be replaced by
bold characters and characters that should be italic are underlined.

Phonetic description for appearance in journal

Lq or Li(w)

L2 or Lo(w)

=

]
I
e
»¥

Italic capital L, subscript figure one, small omega in
parentheses.

As above but subscript figure two.

Italic small d above time, Italic small d, small italic
t below line.

Small delta above line, small delta, small italic t
below line.

bold small omega

bold small u

del

figure zero

del, superscript figure two.
small pi

bold small x

bold small x, superscript dash.

Integral sign, small italic d, bold small x, superscript
dash.

small italic t.
Capital gamma
small sigma
Capital italic A

Integral sign, subscript capital italic A, dot, small
italic d, bold capital A.

Capital italic M

Capital gamma, subscript small italic i.

Small italic g, small italic a, slash, small italic
delta in parenthesis.
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=

(1h,mh,nh)
-
Xi, %y, 0f

.9
ulb(E)

small italic a
small delta
small bold a.
small italic s

small italic d, small italic s

bold small r, subscript small italic i, small italic s
in parentheses.

small lamda, subscript small italic m.

bold small x, subscript small italic m, superscript
small italic n.

small bold a, subcript small italic i, superscript small
italic j, subcript small italic m, superscript n.

Capital italic N, subcript small italic i or m.

Capital delta, small bold s, subscript small italic i,
superscript small italic j

small italic j, superscript dash

bold small alpha

bold small x, subscript small alpha.

small alpha, subscript figure one, two or three.
Capital del, subscript small alpha

Small italic h

all small italic letters

all bold small letters, subscript small italic i or j.

small bold u, subscript small italic i, superscript
small italic h, small italic t in parentheses.

del, subscript small alpha, superscript small italic h
Capital italic T

Bold capital K

small psi, subscript small delta

all bold letters with subscript small delta.
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|=

{2

N

X1, X2, X3

wp, wB

.

..

..

.

..

.

small italic

small italic

star

d, bold small x.

X

Capital italic R

small italic

q

Capital E, subscript small delta

small italic
small italic
small italic
small italic
small italic
bold capital
bold capital

small italic

Z

X, subscript figure one, two or three.

r, subscript figure zero
X, subscript capital A.
X, subscript capital B.

u, subscript figure one, two or three

Capital italic R, small italic max.

small italic

d, small italic t

Capital italic P

small italic

umax

Capital italic F

Small lamda,

subscript figure zero, subcript small

italic i, superscript small italie j.

Bold small omega, subscript capital A or B.

small omega

aubscript rigure zero T L ffjffaffg?”‘

capital italic N



l’](w:.t_')) E] (woo)

Capital italic L, subscript figure one or two, . |
superscript small c.

small lamda, subscript small italic i, superscript small
italie J.

Capital italic V, subscript small italic i, superscript
small italic j

Capital italic S, subscript small italic i, superscript
small italic j.

Capital delta, small italic t.

Capital italic R, small italic 'ad', subcript i,
superscript j.

Capital italic L, subscript figure one or two,
small omega and small italic t or figure zero in
parentheses.

small tau

Capital italic R, subscript capital italic L with
subscript figure one or two.

Capital delta, capital italic L subscript figure one.
small italic t, superscript star.

small italic t, subcript figures zero or one.
Capital italic L subscript figure zero.

Capital delta, capital italic L.

Small italic f, capital italic L in parentheses.
small italic d, capital italic L

Capital italic L, superscript dash.

small italic q, superscript small italic n

small letters log, small italic q in parentheses.
small eta, capital italic L in parentheses.

small italic q, superscript n(L).
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Plan view

Side view

3-D projection
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