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INTRODUCTION TO MINIMUM VARIANCE RETRIEVAL METHODS

This notc tries to agive a aentle introduction to the usze of
minimum variance techniagues for retrievina atmospheric vertical
profiles from satellite soundina data. It is intended to suprlement
the more riacrocus treatments of the subiect agiven for example bv
Rodgers (197¢) and Menke (1984).

We star: from the premise that, for the satellite measursments we
are 1interested in, it is nct possible to obtain an adecuate retrieval
of the atmosvheric variables of interezt uwusina the satellite data
alone:; we need to supplement this with scme “first-guess" or "a
priori" information on the atmozpheric state. Also we have to take
proper account of errors, both in the measurements and in the first
Juess. We are not szeekina an exact answer, but we are locking for the
best estimate given the measurements and the a priori information.
Our problem has a fundamentallv statistical nature since we are
seekina the "best" estimate in the minimum variance sense, i.e. the

solution which minimises the variance cf the =srror in the estimate
when averaced over a large number of cases.

Consider first the usual experimental chnigue for combininag two
a@stimates of a variable x to obtain the bes V"Lue. >iven independ=nt
measurements:

. 2
X, (with expected error variance o; )
and x, (with expected error variance &,%),
the ‘"Lest" (i.e. minimum variance and. for normallv distributed

errors, maximum probabilitv) estimate of x is given bv
b ¢ X a4
A '/o."u. + /01
x d , : (1)
6'1 + /‘L‘L

with expected error variance,

’~ \

’/6'\— + '/&L T
Equations 1 and 2 mav also be written

2 0
(- 2% 1| + 6, ’LZ

I = (3)
; 6'1. . 0’:.
A T
and o = 6“ o} .
& £ o (4)

The proof that these equations represent the minimum variance solution
is given in the Appendix.

Now consider the same calculation from a different p01nt of view:
we start with an (a priori) measurement x (w1th error 0’) and later we
obtain a second measurement x, (with error o;) How does X change
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our: previous, ‘bestiiestimate’ (il.eiixX,li 7 Equations 3 and 4 can be
re-arranged to agive
%
(of Aq=-X
i st t oyt
|
9 ¢
" th 0'1 — 6‘1 e 6' .
0,'1 o 6‘1' (6}

e

’ ; A N " . 1
ese equations give x and o' in terms of adiustments to Xy and o; .

So far we have considered onlv scalar guantities. Now con
and X as vectors (of dimension N). Their
xpressed in the form of covariances matrices (dimen

respectivelv.

N M W

Y 5 m
ion NxN
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It can be shown that the exrressions equivalent to equations S
and 6 are:

A
x = Xy + Soo (S + &N s (11 *Xl) (7)
~ ~ ~ L= S
and oy -
S — S' -— S. > ( v S ) . S'
where ™ denotes matrix inverse.

. In our case, the first measurement (first aquess) .9 is .our
knowledage of the atmosvheric profile in advance of anv satellite
measurement. If our first guess 1is from a forecast., then ;i

- represents the error covariance of the forecast. 1t Xy is. a
climatoloagical mean profile, then §¢ represents the covariance of
climatoloay (i.e. the expected variation about the mean profile).

Equations 7 and 8 cannot be used directly because our second
measurement 1is not a measurement of the atmospheric profile but is a
measurement of radiation (radiance or brightness temperature) usually
at a number of wavelenaths or ‘"channels". We therefore have two
problems:

- to "map" the radiances from "measurement space" into "atmospheric
profile space", and

- to combine the mapped measurement with the a priori profile.
Again let us l6ok first at the scalar version of the problem:

: ; : 2
our first quess is x; ., with error Oy,
our measurement is y with error q;.

Let a perfect measurement v be related to the true value of x through
the equation

3=kx+c (9)

where k and c are assumed constant and known (and so dv/dx = k).
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From our imperfect measurement, vy, ., we can therefore estimate x,:

-l
4% = ;iijz____ e

with 6, = &y} Ak
(11}

Substituting equations 10 and 11 into $ and 6 we obtain

2 o\ %
X - 2 + <, .(6‘1'*'_2). Yo -¢ .—x.)
k* k
= -1
- Ay -8 K ek 4 5) 7 (4 - {exd) o
and > = o’,l - &' k. (ko"lk + 63’*)" - kgt .
(1.3}
Furthermore, we can write equation 12 as
A 2 =}
where v{x,} = k.x;+ ¢, i.e. the value of y correspondinga the first

quess value x,.

When equations 13 and 14 are generalised toc combine a first-quess

vector x (dimension N) of error covariance g’ with a measurement
vector v, (dimension M) of error covariance Sy, we obtain
2 B ( ! -l ( (15)
2 =+ K. (K-S K+ )7 (g - 3())
A T 7 -
e i ( :
2 = 2 2K (K-S '*Sg) M 5 (16

where X{X‘} is the measurement vector corresponding to the first guess
VecCtor .

and K contains the partial derivations of the elements of y with
respect to the elements of x,

and T represents matrix transpose.

Equations 15 and 16 represent the minimum variance ("best")
estimate of x and the estimate of its error covariance. They are the
forms of the minimum variance solution most commonly used in the
retrieval problem 'for atmospheric profile remote sensinag. They look
complicated but they are only the multi-dimensional, two-space
equivalents to eguations 1 and 2, i.e. the usual equations for

obtaining the best estimate given two independent measurements and
their respective errors.

We can also write equation 15 as
2 - = = ",:l-(iz'i{i‘)l). (17)

This is a more general form of the retrieval equation which shows how
the “"inverse matrix" W maps differences between real measurements v,
oo o~



and those which would have been calculated from the first guess into

the differences between the retrieval x and the first aquess x, . For
the minimum variance solution W takes the particular form,
- T St
=t R (e

Also., equation 1lé mav be written as
A

N = S - W.oK.

= (L- WK

where L,is a unit matrix.

(19)
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APPENDIX. Proof of minimum variance solution.

An individual measurement X, has error ex.. such that over many
cases the error variance 1is a;':

' I 2
2
o = —— € J
X EE ( lu\ 3
T =, L R
sy ¥ 2 2
Similarlv, measurement x; has error éx,. with error variance 0Oy,. and
we assume €x, and é&x, uncorrelated. Our best estimate of x is some
linear combinaticn of x, and x,:
A
X = oy X e WX, o Ri2

Our problem is to find the weights w, and w, which minimise the error
in X, which is given by

ei‘ —] N|' 61' o Wl 6—;;,1 . K2

Averaging over many cases, we obtain

o Z e,\ 7 Huies + M EN e

!
! I =1

We minimise A.4 with respect to w, (or w%) under the constraint

W, + oWy ow= | A.S



[This is obtained by considerina A.2: if X, =Xy . then fﬁx.=xz. and so

W) twa=1.1

Therefore
T

N
st = T" Z { W €x,; * (l-wa) ex;;)l = miniemuwm

|

or A ) r
dc* ' 2 ‘ 45 B
d " 2 | I z‘:. ( ezu ol ) I e 2
3 l N| (o-‘l + “‘) e 2 d" = o) .
Therefore e
w' T .
o-ltfdgl
Similarl b
imilarly iy, i S-. .
g ttot
Therefore

>
]

A.10 (cf. Equ.
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