Met O (APR) Turbulence and Diffusion Note No. 249

The parallelisation of the 3D Lagrangian global
Chemistry transport model (STOCHEM)

by
W.J.Collins, and C.E.Johnson
June 1998

Met O (PMSR) (Public Met. Services Research)
Meteorological Office

London Road

Bracknell

Berkshire, RG12 25Z

This work was supported through the Public Meteorological Service research and
development programme of the Meteorological Office as part of the research
programme of the Air and Environment Quality Division of the Department of the
Environment, Transport and Regions through contract number EPG 1/3/93, and as
part of the Climate Prediction programme of the Global Atmosphere Division of the
Department of the Environment, Transport and Regions through contract number
PECD 7/12/37.
Note:

This paper has not been published. Permission to quote from it should be obtained
from the Head of Public Met. Services Research Branch, MetO(PMSR).

ORGS UKMO T © Crown copyright 1998

4

! National Meteorological Library
FitzRoy Road, Exeter, Devon. EX1 3PB

NATIONAL

METEOROLOGICAL |

LIBRARY

L Bracknell RG12 287

—

|

vonss D

The parallelisation of the 3D Lagrangian global chemistry
transport model (STOCHEM)

W.J.Collins C.E.Johnson

June 1998

1 Introduction

In February 1998 the vector processing computer, the CRAY C90, was decomissioned. To
prepare for this the STOCHEM chemistry model (Collins et al. 1997; Stevenson et al. 1997) had
to be redesigned to run on the replacement machine, the CRAY T3E massively parallel computer.
STOCHEM is an offline chemistry transport model that reads in 6 hourly meteorological data
either from the operational archive, or from climate simulations. These data are used to control
the advection and chemistry of around 50,000 cells distributed around the globe, which hold the
concentration of 70 chemical species. In principle the FORTRAN code would still have run on
the new machine on one processing element (PE). However each PE on the T3E runs about a
factor of 5 slower than a CPU on the C90, which would have been an unacceptable decrease in
performance. Also, most of the PEs have only 128Mbytes of memory which would have been
insufficient to hold all the meteorological fields and species concentrations. Most importantly,
the switch to the new machine provided an opportunity to dramatically speed up the running
of the chemistry model by parallelising the code so that it runs on more than one processor.

Routine CPU time (s) percentage of total
Chemistry 2108 83

Photolysis 217 9

Advection 116 5

Reading files 1 0

Others 91 3

Total 2533 100

Table 1: CPU time and percentage CPU taken by the most CPU intensive routines for a 1 day
model run on one T3E processor. These are not the same percentages as when the model was
run on the CRAY C90, since for that machine the chemistry was optimised for vector processing.

" The two advantages of running a code on several processors are that the processing time and
data storage can be split between the processors, such that each processor needs to compute a
fraction of the calculations and hold a fraction of the data. In STOCHEM, the main computation
loads were in the integration of the chemical reactions, with calculation of the photolysis rates
and advection of the Lagrangian cells also important (see table 1). The advection and the
chemistry are decoupled, using a 3 hour timestep for the advection, and a 5 minute timestep
for the chemistry. Photolysis rates are calculated every 45 minutes. The largest amounts of

data needed were the arrays containing the meteorological data even at the climate resolution
of the UM (see table 2). Therefore the priority was to parallelise the chemistry as efficiently as
possible with optimum load balancing between processors, and to parallelise the photolysis and
advection with the loads as well balanced as was practical. The meteorological arrays needed to
be split between processors so they no longer dominated the data storage. This will become even
more important when we wish to add more meteorological fields, or use the higher resolution
old UM operational fields or even the very high resolution new operational fields. At the same
time as parallelising the code, we decided to convert the code from FORTRAN 77 to Fortran 90
in order to make use of its new features, especially the array processing facilities.

Arrays Number of elements Percentage of total
Meteorological fields 3945K 30
Cell information 3803K 28
Eulerian concentrations and fluxes 3033K 23
Photolysis rates 1586K 12
Others 944K 7
Total 13311K 100

Table 2: Number of elements in each array and percentage of total. The size of the meteorological
fields is for the climate resolution. For the operational resolution these numbers should be
multiplied by 5.

2 Division by region

It is possible to run on up to 180 PEs, with a requirement for the job scheduling that the number
of PEs used must be an integer multiple of 12. Initially we have chosen to run on 36 processors as
this seems a sensible compromise between spreading the load as widely as possible and reducing
the amount of data transfer between PEs. It will be useful to test whether increasing the number
of PE used reduces the run time without too large a penalty in the rate of job scheduling.

The most obvious way to divide the work between a set of PEs is for each PE to process a
different geographical region. Certain operations, such as mixing between cells, would become
very difficult if nearby cells were distributed among many different processors. The surface
of the globe is split into equal latitude bands. These bands are then split longitudinally into
varying numbers of columns so that each region covers approximately the same surface area (the
latitude bands containing the poles are not split). Each processor is then responsible for one
region, extending the full height of the model (see figure 1 for an example using 36 PEs).

In the model the definition of nearby is that the cells occupy the same Eulerian 5° x 5° grid
square. This is an unphysical definition since cells at the edge of a grid square may be nearer
to some cells in neighbouring grid squares than to those in their own grid square. If cells were
allowed to interact with those in other grid squares this would cause problems at the edges of
regions where the cells would be on different processors.

The meteorological data are split up into the same regions, but with overlapping latitude
bands. The overlaps are large enough (13.75°) so that cells are never advected to a point beyond
their originating latitude band in one timestep. There is no division in the longitude direction
since near the poles cells can be advected with a very large change in longitude. Regions further

from the poles could be split into longitude ranges, but it was thought to be easier to program if
all the meteorological arrays had the same latitude and longitude dimensions. This means that
several processors hold the same meteorological subarrays.

The other geographically based arrays (Eulerian concentrations/fluxes, photolysis frequen-
cies, emissions rates and deposition velocities) could also be split up between processors. However
reducing the size of the meteorological arrays was all that was necessary to fit the model onto
the T3E processors. While it would have been more elegant to reduce the memory requirements
still further, it was not a priority. Therefore in the initial version of the model (version 0) all
the processors hold Eulerian data arrays covering the globe. This means that on any processor
a large fraction of the elements of each array (those corresponding to regions not covered by the
processor) are undefined. Each processor runs the photolysis code only for the region which it
covers, and similarly accumulates Eulerian concentrations and fluxes only for this region. To
write out Eulerian arrays, for output data and program dumps, the arrays are first collected
together on one processor. This can result in the transfer of a lot of data between processors, so
it is important that this is only done when necessary. Data output is usually only done once a
month, but program dumping once a day proved too time consuming and it was decided to do
this once every ten days. This means however that there is less flexibility when restarting the
model from dump files.

Cells are allowed to move freely between all the regions. If cells move out of the geographical
region for a processor after advection, they are swapped to their new processor, passing over all
the information on cell position and species concentrations.

3 Balancing the computational load

The geographical division of cells gives roughly, but not exactly, equal numbers of cells on each
processor. Since over 80% of the computational load used to be in the chemistry integration, it
was thought essential to balance the load between processors as evenly as possible by pooling
the cells and redividing them. This is done by swapping extra cells on processors responsible for
more than the average number of cells onto processors responsible for less than the average, so
that all processors are responsible for the same number of cells (+1). Unfortunately this means
that the link between processors and geographical region is now broken, but the chemistry is
now computed more efficiently.

All the information needed to calculate the emission, deposition and photolysis is based
on geographical data arrays. Therefore it will not be available on a processor that has had
cells swapped in from outside its geographical region in order to balance the load. It would be
simplest to calculate this information before pooling the cells. Unfortunately, with the present
program structure, this would mean storing arrays of ~ 3500K elements each, bringing the total
storage required above the memory limit for each processor. Instead each time a cell is swapped
from one processor to another, the Eulerian data for the corresponding 5° x 5° grid square is
copied over too. For 3 dimensional arrays, the data for the whole vertical column is copied.

After the chemical integration, the cells have to be swapped back to their original proces-
sors (geographically allocated). The remaining routines (convective redistribution, interparcel
mixing, and collection of statistics) need the cells to be grouped geographically and are not very
computationally expensive. This conflict between routines that need nearby cells to be located
on the same processor, and routines than require cells to be as evenly divided between processors
as possible, means that cells frequently need to be moved between processors.

| -17.5 -> 16.25

| -92.5 -> -58.75 -57.5 -> -23.7
| i

| 22.5-> 56.25 55.0 -> 88.7
| Il

|
b Y B 4378 laaysss By Uisg.s a9l Vus gy T558
Latitude
b
o (>]
o T IJ)
[~ __/“a‘,,‘_/-/_
I ? L
B N —— ;
- \
o .
- 8
i \‘ i
2 { fi%
i [:ﬁ/:§>\
S } §‘. (,;A\ G"BF"?\J oS
1}
/

apnybuo
ove 081
l [

00¢€
I

€e

ve

81

0€

A

L

.

09¢

Figure 1: The PEs associated with each geographical region with for 9 rows and (1,3,5,6,6,6,5,3,1)
columns. The ranges on the left hand side show the latitudinal extents of the meteorological

data fields.

4 Other changes to the model

The array containing the Eulerian chemical concentrations at each timestep contains zeroes
where there are no cells occupying a particular grid volume. This occurs mostly in the high
latitudes, but also occasionally even in the tropics. This was overcome in the original model
by smoothing the Eulerian concentrations in 2 dimensions (longitude-latitude) with a Gaussian
weighting function. This is not so easy with parallel processing since different regions of the
array are defined on different processors. The zeroes in the arrays cause problems in accumu-
lating concentration statistics, and for the tropospheric ozone profile input to the photolysis
calculations. The first problem was solved by keeping track of the number of times a non-zero
concentration had been added to each grid volume. The ozone profile problem was solved by
keeping a running average of the ozone concentration, using the following algorithm to calculate
the new values after each timestep:

if Cije =0 then O35 =08
if Cijx # 0 then 035_;!;cAt =(1- 6)0351"]: + €Cijks

where C;ji is the instantaneous ozone concentration for grid volume (3, j, k), O3;;; the running
average ozone concentration, ¢ is the time at the previous timestep, At is the model advection
timestep, and ¢ is a constant equal to At/(10 days).

Some changes to the model unconnected with parallelisation were the addition of snow and
ice cover fields for use in calculating the surface deposition velocities and surface albedoes.

5 Timing and performance optimisation.

Additional run time is involved in transferring data between processors. We have used two rou-
tines GC_RSUM and GCG_RALLTOALLE to do this, taken from the GCOM library (Amundsen
and Skaglin 1996). GC_RSUM calculates the sum of a variable or array across all the processors
and distributes the result to all the processors. GCG_RALLTOALLE is much more flexible and
can send different subsections of an array to different processors. During the installation of the
T3E the number of array elements that could be sent between processors by these two routines
was increased from 2048 to 65536. We found that we could save substantial run time by taking
advantage of this increase through sending 3 dimensional arrays as single entities rather than
level by level.

A problem when timing routines in the parallel processing environment of the T3E is that
the CPU time taken by a routine on each processor can include idle time waiting for other
processors to have reached the same point in the calculation. Each time the program needs to
send data between processors it synchronises them so they can all continue from the same point.
If the computational load between processors is not balanced, this waiting time can become
significant as some processors finish long after others. There is little time lost if one processor
arrives at a synchronisation point much earlier than the rest. However if one processor arrives
much later than the rest, then all the others (35 processors in our case) have to waste valuable
processing time waiting for it.

We first timed the routines in the parallelised code for a 10 day run starting from hard-wired

initial conditions, for which the average CPU time per PE was 1424 seconds. It appeared that
a significant proportion of the time (22% on some PEs) was being taken up in the pooling of

the cells to balance the load for the chemistry, even though the amount of computation done
in the pooling was small. This seemed to be confirmed when we removed the pooling routines,
since the program then ran about 4% faster (50s faster for a 10 day run). Although we were
pleased at any increase in speed, in a way this was quite disheartening as a considerable amount
of effort had been put in to develop the load balancing and make it work.

Calculate Photolysis Rates

Pool Cells

Swap Cells to New Processors

(synchronize all processors)

Integrate Chemistry

Swap Cells back to original processors

(synchronize all processors)

Other routines

N

Advect Cells

Swap Cells to New Processors

(synchronize all processors)

N

Figure 2: Schematic flow diagram of main program loop

A schematic flow diagram of the main program loop is shown in figure 2. When pooling
was taken out, so too were the first two swapping routines and their synchronisation calls. This
meant that there was no processor synchronisation from before the photolysis calculations until
after the advection calculation. The conclusion was that the time saved by not having to wait
for the synchronisation more than made up for the time lost by not load balancing the chemistry.
The long wait for the synchronisation turned out to be mostly due to the difference in time taken
for the photolysis calculation (250 s). A smaller time penalty was incurred after the chemical
integration, since even though the same number of cells were processed on each PE, the time
taken in the calculation varied by up to 60 s.

Even though the two processors representing the poles cover the same surface area as the
other processors, they have to process the photolysis rates for four times more 5° x 5° grid squares
than the average. It is difficult to balance the load for the photolysis calculation exactly since
not only do different processors cover different numbers of grid squares, but the fraction of these
that are in light or darkness varies too. In theory some sort of pooling and redistribution could
be done to give each processor the same number of daylight grid squares to process. However it
is not clear that the time saved would make up for the extra computation needed. Given that
the greatest benefit can be gained by speeding up the few slowest processors, a simple fix to the
problem was to only calculate the photolysis rates for every sixth grid square in the longitudinal

direction for the polar regions. Intermediate points were filled in by linear interpolation. This
does degrade the longitudinal resolution of the polar photolysis rates, but only brings them into
line with the rest of the globe since divisions in longitude are much more closely spaced near
the poles compared with midlatitudes or the tropics. This change saved an extra 160 s for a 10
day run, bringing the CPU time down to 1215 s per processor.

Having made this change it still did not seem profitable to balance the loads for the chemistry
integration. In fact load balancing now added an extra 100 s to the run. This is still due to
the timing differences in the both the photolysis calculation and the chemistry. Although the
photolysis calculation has been speeded up at the poles, there are still differences between the
PE since at each timestep, some are processing regions entirely in daylight, some regions entirely
in the dark, and some partially lit. This causes most problems in the latitude bands one away
from the poles where the regions cover twice as many grid squares as the tropical ones.

The cells are initialised evenly with surface area in the model, so after 10 days the maximum
number of cells processed by one PE was 1498, compared with a mean of 1390 (an 8% difference).
This does not offer scope for large savings by load balancing, so it is not surprising that the load
balancing was inefficient. However for longer runs the story is different, since for some reason
that is not currently apparent, cells tend to accumulate in certain locations, in particular around
the South Hemisphere Jet Stream. To examine the effect of this, the model was run for 10 days
again, but this time starting from a model dump after a 10 month run. The maximum number
of cells processed by one PE was then 1906 (37% greater than the average). Without load
balancing the CPU time increased to 1465 s per processor for the 10 day run. Load balancing
brought this down to 1255 s, a saving of 210 s or 17%. A timing profile is shown in,figure 3.
Assuming these 10 days were typical, the CPU time required for each processor for a year’s
model run will be slightly under 13 hours which is about 7 times faster than the 90 hours per
year the previous model took on the CRAY C90. Scaling up the timings from the non-parallel
run in table 1 would give 257 hours for a year, a factor of 20 longer than using 36 processors.
That this factor is less than 36 shows that there are considerable inefficiencies associated with
parallelising the code. When job scheduling time is taken into account, the model will run for a
year in about 24 hours, which compares very favourably with other models such as the NCAR
model MOZART which with similarly detailed chemistry takes over 100 CPU hours per year
(Brasseur et al. 1996).

Routine CPU time (s) percentage of total
Chemistry 720 57

Photolysis 37 3

Advection 47 4

Reading files 135 11

Pooling and swapping 224 18

Others 92 T

Total 1255 100

Table 3: CPU time and percentage CPU taken by the most CPU intensive routines for a typical
processor in a 36 processor 10 day model run.

6 Improvements

6.1 Cell variables

After the meteorological data, the next largest data arrays are those containing the cell concen-
trations and positions. These are large enough to hold information on all the 50048 cells. Most
of this space is redundant since each processor is responsible for only a subset of all the cells.
This waste of space would prevent us from increasing the number of cells substantially (say to
100K or 200K).

For the next model version (version 1) the arrays holding cell information now have a di-
mension which is set to the average number of cells per processor plus 67%. The extra length
was found necessary to allow for an uneven number of cells on each processor and as storage
when swapping cells from one processor to another. Previously, when swapping elements of
cell arrays the elements were simply copied from one processor to the same position in another
processor. Now elements are taken from the middle of the array on one processor, leaving a
hole, and added to the end of the array on the destination processor. After all elements have
been swapped, the holes in each array are filled by taking elements from the end of the array.
Hence cells will no longer have an invariant cell number, but will change when swapped. This
will add a complication when trying to follow individual cells, which is a facility that we do not
use at present, but might like to in the future.

The treatment of all Eulerian data is the same as in version 0. The time penalty in version 1
compared with version 0, due to the extra computation involved in swapping cells is negligible.

6.2 FEulerian data

As mentioned in section 2 it was decided not to split the Eulerian data arrays into regions for
version 0 of the model. For consistency with the meteorological data and to remove the last
class of redundant array storage, it makes sense to create a new model version (version 2) where
the dimensions of the Eulerian data arrays are reduced to the sizes of the geographical regions
covered by each processor. This will allow us to store the 3 dimensional concentrations of more
of the chemical species and reaction fluxes, or to double the number of vertical levels in the
output.

As with the meteorological data, it is simplest if the arrays all have the same latitudinal and
longitudinal dimensions, so they are split into 9 (for a 36 processor run) latitude bands but not
split in the longitude direction. Splitting the arrays causes a slight complication when outputting
data fields as the data cannot be collected together on one processor. Instead all the data for
each latitude band have to be collected onto just one of the processors (the first) responsible for
that band. Data are then written from each of these 9 processors in turn, instead of just from
one. Our normal format for the output fields is to write out the full longitude-latitude grid one
level at a time and then loop over each chemical species or reaction flux. This becomes very
inefficient since the processors have to be synchronised before each latitude band is written out.
A more efficient way would be to write out from the first processor the first latitude band for all
the levels and all species/fluxes, and then the next latitude band from the next processor and
SO on.

The other complication is that, as before, when the cells are reallocated for optimum load

balancing they are no longer allocated on the basis of geographical location. Previously this was
overcome by copying data for individual grid squares or columns between processors. This is not
possible any more as the Eulerian data arrays no longer cover the whole globe. However, since
the size of the arrays containing cell information have been reduced (in version 1), emissions,
dry and wet depositions, and photolysis rates can now all be calculated before reallocating the
cells, and stored as cell information. Now all the data can be swapped on a cell basis which is
much neater than the previous method of swapping half on a cell basis and half on a Eulerian
grid basis.

7 Summary and status of the different versions

Version 0 has the processing split between 36 PEs, meteorological grids split into 9 latitude
bands according to PE, and each PE holding full sized cell and Eulerian data arrays with only
a subset of the elements defined. Version 1 is as version 0, but each PE holds smaller cell arrays
big enough to store information on all the cells processed by that PE. Version 2 is as version 1,
but the Eulerian data arrays are split into 9 latitude bands.

Versions 0 and 1 have been tested as fully as is practicable and have been used with climate
resolution meteorology. They give virtually identical results to each other and to the model that
was run on the CRAY C90. They should be easy to convert to run on the old operational grid.

Version 2 is in the process of being tested. At present the results are very similar, but not
identical, to the other versions.

Acknowledgements

This work was supported through the Public Meteorological Service research and development
programme of the Meteorological Office, as part of the research programme of the Air and
Environment Quality Division of the Department of the Environment, Transport and Regions
through contract number EPG 1/3/93 and as part of the Climate Prediction programme of the
Global Atmosphere Division of the Department of the Environment, Transport and Regions
through contract number PECD 7/12/37.

References

Amundsen, J. and Skgalin, R., 1996, GC User’s Guide, Release 1.0.4, SINTEF Applied Math-
ematics, Norway. :

Brasseur, G.P., Hauglustaine, D.A. and Walters, S., 1996, Chemical compounds in the remote
Pacific troposphere: Comparison between MLOPEX measurements and chemical transport
calculations. J. Geophys. Res., 101, 14795-14813.

Collins, W.J., Stevenson, D.S., Johnson, C.E. and Derwent, R.G., 1997, Tropospheric ozone in a
global-scale three-dimension Lagrangian model and its response to NO x emission controls.
J. Atmos. Chem., 26, 223-274.

Stevenson, D.S., Johnson, C.E., Collins, W.J. and Derwent, R.G., 1997, Changes to tropospheric
oxidants from aircraft nitrogen oxide emissions studied with a 3-D Lagrangian model. At-
mos. Environ., 31, 1837-1850.

10

