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RELATIVE PHASE SPEEDS ON STAGGERED GRIDS

1. INTRODUCTION

Relative phase speeds are computed for the two-dimensional shallow water
equations using the time and space centred leapfrog scheme. Various grids
staggered in space and time are considered and the explicit, implicit and semi-

implicit cases are all treated.

2. EQUATIONS AND GRIDS

The two dimensional shallow water equations are considered in the form

“uy + U-u,,‘ "‘VM? + 2,")4 0O
ve + Vv, +Vwv, ¢ }A, = 0 (2.1)
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Often it is sufficient to consider only the advection equations

Uy + Un, + \/1¢7 = O
Alg o M MV Ny e O
hy + Vh, + Vvh, )
or the gravity wave equations
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In the explicit case advection, gravity wave and shallow water equations are
considered. In the implicit case only advection and gravity wave equations are
considered. In the semi-implicit case (where the advection terms are treated explicitl

and the gravity wave terms implicitly) only the shallow water equations are

considered.




The grids considered are shown in Fig (1). Grids A, C, E, G, I, K are -

unstaggered in time. Grids B, D, F, H, J, L are staggered in time (and use gridd
A, C, E, G, I, K respectively at alternate time-steps). The grid length
dx ( = 52 ) is the distance between two adjacent h points in the horizontal

or vertical (not diagonal).

Grids A, C, E, G, I have been discussed by various authors (see Mesinger and
Arakawa, 1976 and Savijarvi, 1976). Elvius and Sundstrom (1973) have discussed the
barotropic model using grids J and D for the semi-implicit case and grids J and E

for the explicit case.

Grid A (the unstaggered grid) is used by most general circulation models, incltdin

the Met O 20 11-level model. 8
Grid C is extensively used e.g. the semi-implicit Lax-Wendroff model, the

Met O 11 semi-implicit centred model, the Met O 11 semi-implicit mesoscale model,'the

ECMWF centred model,Recently the UCLA GCM has been changed from grid A to gridC.,

Grid D is used in the Met O 11 semi-implicit time staggered centred model.

Grid E was used in the explicit Lax-Wendroff model.

Grid G is used in the currently operational split explicit model.

Note that grids I, J, K, L are simply grids G, H, A, B respectively rotated

through 45° with dx redefined.
Grids A-H admit wave numbers n, m satisfying o s an, ”\‘z &M :

(This is shown in diagram D, of Fig (2)). Grids I-L admit wave numbers n, m

satisfying 0 ¢ wndx, mcf? £ 270 w & + mJa ¢ 277 (D, of Fig (2)).
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To see this latter point note that grid I is obtained from grid G by rotating
through N5° and letting Sxx =.ri'33¢, « Thus rotating the wave space domain D1
of Fig (2) through 45° and changing the scale by a factor of [2 , one obtains the

domain D.,. Now, if one assumes that U=V then there is a symmetry about the line n

3

and only half the domains (shown shaded) need be considered.

D, is the same as D.. The case U#ZV is considered in section 6.

2 2

U or V can be effected by changing the sign of n or m respectively.

The finite difference forms of the explicit equations are given for each grid

in the Appendix.

3. RELATIVE PHASE SPEEDS

Assume that the variables u, v, h can be expanded as a finite fourier series,

~a typical term being

£

-
b
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where
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is the amplification factor.
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It is clear then that

(3.1)

On all 12 grids the finite difference approximations to the shallow water

equations (2.1) reduce to the following equations with appropriate expressions

for Xy, >\V, >\cl, ) PR

o

Changing the sign of
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On making the assumption 3.1 these equations give rise to a quadratic:

explicit case
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This scheme is stable if and only if Wy

(b) implicit case

I -3+ A
I + 2+ XN

#(1=31 %)
w = —_—
. ’,.4.)\‘

. where X\ 1is the same as in the explicit case.
} ~ This scheme is always stable.

: (c) semi-implicit case
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Consider now the differential equations 2.1 and expand u, v, h as infinite

series, a typical term being proportional to

inx  Awmy  ied

One obtains - = mU +mV

or ' - = ntVU + mV <+ c}n‘-rm‘

Now the relative phase speed is g. —
f

where (assuming {a = 53()

- = vt P} v & g -y C.{_{- )Y+ m[)i
oSt = ko Ve sk &= ,/(*‘ %) "+ (wmdx

(3.2)

and O&% is obtained by solving the simultaneous equations

Ra () ;

cn (0854) = ot
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Jwl

It turns out that only four expressions for Au, Av, Ae, Xiéx need
be considered. The results for all grids A-L (and possibly others) can be generated
from these few cases. One is thus led to a natural classification into 4 groups :
referred to as 1, 2, 3, 4. The expressions for >~v, )sv, )\ca, Nea for the’

L groups are given in Table 1. Throughout this report frequent reference will be

made to these groups as well as to the grids themselves.

Considering advection and gravity waves separately, one need only compute the

results for the 4 groups. Table 2 then indicates which grids belong to which group.



The shallow water equations on a particular grid can be regarded as a

combination of advection from one group and gravity waves from another group.

Table 3 indicates the combinations for each grid. There are 16 possible combinations

but only 12 grids have been considered.

Note that in the explicit case grids K and I (unstaggered in time) are in
the same classifications as grids B and F (staggered in time) respectively, though

the domain in wave space admitted by these grids is different.

Note also that grids D, B, J are interchanged with grids F, H, L respectively

on making the transition from explicit to semi-implicit.

It has already been noted (see Table 2) that there is a great deal of
degeneracy as far as advection and gravity waves are separately concerned. In fact

there is even more degeneracy than is immediately apparent from Table 2.

It is easy to see that Group 3 is the same as Group 1 if 1~Sk, h~32- are

doubled and U, V, ¢ are halved. Thus, for example, the explicit graphs for grid L

<

(0 & ndx, W‘;a € 2T ) are identical to those for grid A (O £ *‘-XX, mfa & ),

Note, however, that grid L admits only the triangular domain D, whereas grid A

2

admits the square domain D1.

Another type of degeneracy (this time accidental and not obvious from the
grids) is the rotational degeneracy of the results for grids A and B. The
explicit phase speed graphs for grid B are obtained from those for grid A by

rotating through 450 and scaling the winds and axes by a factor of 2 viz

(u,v)a = ;l(u-v,u+v)ﬂ ot~ fé" €a

(7\{7(, mS; )8 = (n;u ;mJy ondxh mf? )A

This can be seen by consideration of the expressions for Ao 7 )“,, b Y A Aez -

Both of the above remarks apply also to the shallow water waves.
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Connected with the above remarks is the fact that grids A, B, G, H when
rotated through hSo are the same as grids K, L, I, J, respectively apart from a

change in scale of §x .

L4, RESULTS

The relative phase speeds have been computed for

(i) advection and gravity waves separately for each of the four groups in both

the explicit and implicit cases.

(ii) shallow water waves for each of the 12 grids in both the explicit

and semi-implicit cases.

The graphs display contours of constant relative phase speed in the wave ¢

space (axes ndx and n~:7 ) of the appropriate domain for various values of the
gt v it

parameters o = € g ’ dv * ’ dy =
in the graph titles). The explicit and semi-implicit schemes are conditionally
stable and some of the graphs display regions of instability indicated by +. The *
relative phase speed contours are plotted even in these unstable regions, the wave in
the finite difference scheme being amplified. (In fact w is pure imaginary and so
the wave is a 4 41 wave). Several graphs are shown for each group or grid,

corresponding to different values of dt . The first graph on each page has a small

value of 4% and mainly represents the effect of the space truncation error.

Decreasing 4 further makes little significant change to the graphs. The other

graphs represent the combined effects of space and time truncation as %t is

increased.

Consider, firstly, the results of (i). Graphs 1, 2, 3, 4, 5, 6 display the .
results for the explicit scheme. Groups 2 and 3 are given on the 0= 7 wave
domain (graphs 2, 3) and then repeated on the @= 2T domain (graphs 5, 6).

Graphs 7, 8, 9, 10 display the results for the implicit scheme.



The maximum values of . and oy (assuming U=V) for stability in the

explicit case are given in Table 4.

Considering the explicit results on domain D1 (0 & 115x, n‘J? ¢ T,
it is immediately apparent that for both advection and gravity waves Group 3 is
superior to the others in phase speed accuracy, though the maximum timestep for

computational stability is somewhat smaller than in the other groups.

Since none of the grids A-J discussed by Mesinger and Arakawa (1976) have
the same X 's as Group 3 for both advection and gravity waves, grid L was
constructed with this in mind. However, grid L admits waves on domain D2 so is worse
than expected. Moreover, grid L is identical to grid B being merely rotated through
450. Since the finite difference schemes used here for grids L and B are equivalent,
then the results must be equivalent. Thus grid L is just an alternative way of looking
at grid B. The same remarks apply to grids I, J, K (equivalent to G, H, A respectively)
However, éspecially in the case of the non-linear equations, it is possible that
some finite difference schemes might be more conveniently applied to grid L than

to grid B for example.

Considering now the other groups for both advection and gravity waves, Group 2

is second best, Group 1 is third and Group 4 is worst.

In the implicit case the effect of time truncation is always to worsen the
phase speeds, and as d% vecomes large the graphs for the different groups become

very similar.

Note that time truncation becomes negligible in the limit of small L's
i.e. small d* or slow waves. Thus time truncation is almost certainly negligible
in any realistic model for all but the fastest gravity and advection waves.

As can be seen from the graphs, the errors due to explicit time truncation (in this

case the leapfrog scheme) tend to cancel out the errors due to space truncation.

Use of the largest possible Jd& for each wave would give better results.

=9
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In a semi-implicit model the fast gravity waves (which are treated .
implicitly) are inaccurately represented and, of the explicitly treated
gravity waves, those most accurately represented are the fastest ones. In an

explicit model all gravity waves except the fastest are inaccurately represented.

Now consider the results of (ii). Graphs were obtained for all 12 grids for
various values of dc, dg:, dy . For simplicity it was decided to choose
odo = dy (but see section 6 for the case du F olv ) and consider only the

three values Ju/xc = l, 2, Y3 .

Only the explicit graphs for 1‘0/Qc = | are included in this report (graphs 11 -

22);the other two values give very similar results, the exact form of the shallow

water wave graphs depending on whether advection or gravity waves dominate.
The graphs corresponding to small dt+ (space truncation only) apply also
to the semi-implicit case provided the time staggered grids D, B, J are

interchanged with F, H, L respectively.

Among the grids A-H it is clear that

(a) B is better than A
(v) D is better than C
(c) F is better than E

(a) G is similar to H
(e) F is best overall
(f) B is a close second best

(g) In order of decreasing accuracy, the remaining grids come roughly

¢, Gs B DiEA

Turning now to grids I-L

(h) I is similar to J
(i) L is better than K




. Because of the relationship between grids I, J, K, L and G, H, A, B respectively

comment (h) is the same as (d) and comment (i) is the same as (a).

Note that the ordering of the grids given in (g) above may be slightly variable
depending on the ratio ‘0@ « One finds that the graphs for grids A, B, E, K, L
are almost independent of U/c y for grids C, F, G, I are slightly better when
gravity waves dominate (e.g. Y/¢ = '/3)and for grids D, H, J are slightly better

when advection dominates (eg U/c s A ) . This can be inferred from Table 2

and the results of (i).

In conclusion, of the 12 grids considered in this report, the grid to give
the best phase speed accuracy for an explicit model is grid F and for a semi-implicit
model is grid D. However, grid B gives almost as good results for the explicit
scheme and grid H for the semi-implicit scheme. Grids L, K are useful alternatives

to grids B, A respectively.

S. MAXIMUM TIMESTEP FOR COMPUTATIONAL STABILITY

The condition [wl €| for computational stability is now investigated to obtain
the maximum timestep 3 permitted over the whole domain of wave numbers n, m for
given ¢, VY,V « To obtain the result it is necessary to vary the direction of the
advection wind keeping /U'#-V“ constant. The results are given in Table 5 for the

explicit case and Table 6 for the semi-implicit case.

The maximum value of the quantity ’U"“'V‘;:I (varying n, m over the appropriate
X

domain) is given for various values of s/h).+vx for the 12 grids. In the case
sz

% ’U‘-f v' = 0 (denoted 7/u"+v_‘ S oo ) the maximum value of ¢ e is given.

n

Firstly, in the explicit case, the condition is }\‘

Av T Aw TN,

vhere N
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Writing Xu = du Qy )\v = °‘V QV AC - d‘ QC

where do = Ug dvrvg s 2 cﬁ:

the condition becomes

| oy Qu +°z,,@v+azc0.-_] £ -

Now allowing the direction of the advection wind to vary, keeping vrtv

constant, one finds that the condition reduces to

lo( /o.,”+ Ry. + de Gcl

h
‘w ere - - ££

L Ll &%

In

Secondly, in the semi-implicit case, the condition is

a 2

Doy N gk

Introducing the same notation as before, and varying the direction of the advection

wind one finds

. * l

dr(as e ) i G ¢ ,

Note that if the left hand side of this inequality is zero or negative for all

n, m then the scheme is unconditionally stable (for these particular values of <

and Iu‘+v" ¥

Notice from Table 6 that if 3/h)‘+v‘ % 10  the semi-implicit scheme is

unconditionally stable on grids A, C, D, G, H, I, J, K but is still only

conditionally stable on grids B, E, F, L if ,u‘+\/‘ # © however large ¢ may be.

o



+It is however only certain wave numbers which may become unstable - all other wave
numbers are stable for c/,u‘-fv" 21-2, For example, for ‘/’u‘-(-v" FARre

the unstable wave numbers are:-

grids B and F (nFx, mJ;) = (m, 0) or (o, 17)
grid E = (7, Th) e+ (77'/1_,77)
rid L

¢ = (w, )

Notice also that for fixed vtv? , as € increases Jtqu

decreases in the explicit case, but increases (or remains constant) in the semi-
implicit case. Thus in a multi-level model in which some waves are treated
explicitly and others implicitly, the maximum time-step is always determined by the

speed of the fastest explicit wave. If all the waves are treated implicitly, then the

time-step is determined by the speed of the slowest wave.

For an explicit model with e = 300 ms~' or ¢ = 100 ms"' and
.’U'*V‘ = 50 ms "~ to 100 ms ™' the largest time-step is permitted on grids D

and E (grids A and H are next). For an explicit model with ¢ = 50 ms and

the same JL"*\'l y, grids D and E still permit the largest time-step, but grids

A, C, G, H allow almost as large time-steps.

For a semi-implicit model with ¢ = 300 ms~' or ¢ = 100 ms"~ and
, Y - 32
vty = 50 ms . to 100 ms™' -grids A, C, D, G, H are unconditionally stable,
but grids B, E, F have a maximum time-step. With ¢ = 50 ms ™' and

J h)”*v1' = 100 ms~' all grids have a maximum timestep.

6. THE CASE U#V

In section 4 it was, for convenience, always assumed that U=V. Since this is
obviously hardly ever true in an actual model, it is important to consider the effect
on the phase speeds of varying the direction of the wind. An analysis similar to that
given in section 5 for investigating the maximum time-step for stability seems not

to be possible when analysing the phase speeds or relative phase speeds for the

following reason.

_____%__ﬁ__%_ff,,, i



From equation 3,2 (taking ¢ =0 here) it is clear that 064 may vanish

when U and V have opposite signs. It is also clear that &% will vanish along
some curve when U and V have opposite signs. However, this curve ®dt = O does
not coincide with the curve odt = 0 except in the special case U=-V.

Thus, in general, the relative phase speed 9/0-' will have a singularity along the

1ins odb = 0,

Tt is more instructive therefore to plot the phases 644+ and sk .

in wave space rather than the relative phase 9/0.. .

-

The 4 groups have been examined for advection with U#AV for small ot

on the wave domain D,‘ (o ¢ ‘né‘x, MJ7 ¢ 77 ) The quantity ut+v’® ii:: "

was kept constant (= O-OI,H ) and V/U was varied from +1 to -1.

As V/U is varied, the phase of the longer waves changes rather slowly compared
with the phase of the shorter waves, and the longer waves maintain roughly the
same relative accuracy whereas the shorter waves may not e.g. in group 1 with U=-V

the relative phase is -1.0 for (24, “-2)waves.

In fact the behaviour is slightly different for the different groups 1, 2, 3, b,
For groups 1 and 3 the phase speeds with V/U = -1 are worse than those with
V/U = +1. For group 2,V/U = -1 is better than V/U = +1. For group L V/U = -1 is

slightly worse than V/U = +1.

The curves ¢ Jd& =0 and & d4 = 0 and the region between them present

no problem.

e | T
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APPENDIX

EXPLICIT FINITE DIFFERENCE EQUATIONS FOR THE GRIDS & - L
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Group 1
Group 2
Group ¥

Group 4

Moximum o, and@ o,

S PE

MAXIMUM € — MAXDIUM UV
& I
for gravity waves for advection with
U=V
067071 0.5
0.5 005
043536 0625
0491 0.65.
TABLE L4

(assuning U=V) for computational

stability of gravity waves and advections
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NOTES ON GRAPHS

The following graphs display contours of constant relative phase speed in

wave space, the axes being ndx and MJ?- , for various values of the
J it
dimensionless parameters c )%f-. J v }"f p) \4 j’;

(labelled ¢, VY, V  in the graph titles). In some of the graphs regions of

instability appear indicated by +.

Since only the case U=V is considered, all the graphs are symmetrical about

nox = 'W\Ja .

Graphs 5, 6 and 19-22 which refer to grids I-L cover wave numbers in the
range ©O-=2Tr . However, only the triangular region ndx + MJZ £ AT is

relevant. All other graphs cover wave numbers in the range o~
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