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Dispersion in convective and neutral boundary
layers using a random walk model

by B.Hudson and D.J.Thomson

31st January 1994

Abstract

A series of random walk simulations of the dispersion of passive particles has been per-
formed for a range of atmospheric stability conditions from free convection to neutral.
The boundary layer was characterised using profiles of w?, w? and ¢, the rate of energy
dissipation, from Mason’s (1992) large eddy simulation (L.E.S.) studies. The particle tra-
jectories were calculated numerically and were confined to the boundary layer by imposing
reflections at the ground and at the boundary layer top. The resulting concentration fields
and particle statistics were compared with the L.E.S. results and with the Willis and Dear-
dorff (1976, 1978 and 1981) laboratory water tank experiments. Estimates of the optimum
value of Cp, the coefficient relating the size of the random velocity increments to ¢, were
made for the different stability conditions by comparing the random walk simulations
with the large-eddy simulations and with the tank experiments.

1 Introduction

Random walk models have proved to be valuable tools in the investigation of dispersion in
the atmospheric boundary layer. Their flexibility means that dispersion can, in principle,
be calculated in arbitrarily complex flows provided the mean flow, the turbulence statistics
and the Lagrangian time scale are known.

The basis of the random walk approach consists of simulating numerically the trajec-
tories of a large number of particles whose position and velocity are assumed to evolve
in a Markovian manner. Each particle is envisaged as moving independently of the rest
through a turbulent flow characterised by the relevant mean flow, turbulent statistics and
Lagrangian time scale; one realisation of the flow is associated with each particle which is
assumed to travel with the local fluid velocity, i.e. as a fluid element. The model ignores
the correlation between the velocities of dispersing particles found in the real atmosphere
and so cannot be used to calculate concentration fluctuations which depend on such cor-
relations. The model can however be used to calculate ensemble mean concentrations




since these depend only on one-particle statistics. The ensemble mean concentration field
is obtained by averaging over the ensemble of realisations and in stationary conditions is
equivalent to a time-averaged concentration field. Because of the high Reynolds number
in the atmospheric boundary layer, molecular diffusion can be ignored in the calculation
of mean concentrations.

These ideas are expressed mathematically by a Langevin-type equation in which the
particle’s velocity increment is written as the sum of a deterministic term and a Gaussian
random term. The condition that once a distribution of particles becomes well-mixed it
must remain so is used in conjunction with the Fokker-Plank equation to constrain the
form of the increments once P(z,w), the vertical velocity probability density function
for velocity w at height z, has been specified. Following Weil (1989), Luhar and Britter
(1989) and others, P(z,w) is written in terms of 0, (= w?) and w? as the sum of two
Gaussian distributions. The random walk models produced by these authors simulate
dispersion only in convective conditions; in this paper we extend this approach to derive
a random walk model which can be used to simulate dispersion in a range of atmospheric
stability conditions from free convection to neutral. This flexibility is achieved by relaxing
the usual closure condition used in determining P(z,w) that equates the modulus of the
mean to the standard deviation in each of the two Gaussian distributions which make
up P(z,w); instead, in this paper use is made of a proportionality factor related to the
vertical velocity skewness.

The model is tested against both L.E.S. model output and laboratory experimental
results. The L.E.S. output comes from the recent work of Mason (1992) and provides
both profiles of various turbulence statistics for input to the random walk model and
concentration profiles to be compared with the random walk output for a range of atmo-
spheric stabilities from free convective to neutral. Using the L.E.S. profiles in the random
walk model allows direct comparisons to be made between the L.E.S. and random walk
concentration fields. The model is also compared with the results of the laboratory disper-
sion studies of Willis and Deardorff (1976, 1978, 1981) which were performed to simulate
dispersion in free convective conditions.

In order that the large scale features of the dispersion process were correctly simulated
by the random walk model, the constant Cp, which relates the Lagrangian time scale to
w? and ¢, was taken as a tunable parameter. The best value of C, for each of the stability
categories and release heights was assessed by eye by comparing the plume characteristics
with those obtained in the L.E.S. and in the water tank experiments.

2 Stochastic Model

The theory of random walk models is now well established and only a brief outline will be
presented here; for more details see for example Legg and Raupach (1982), Van Dop et al
(1985) and Thomson (1987). The approach adopted in this work follows that of Thomson

(1987), Luhar and Britter (1989) and Weil(1989). Considering dispersion in the vertical

direction only, the equations for the vertical velocity, w, and vertical displacement, z,

.



a fluid element are given by

dw = a(z,w)dt + b(z,w)d¢ } (1)

dz = wdt

where d{ is the increment of a Wiener process — a Gaussian random forcing with zero
mean and variance dt - and a and b are determined below.

To help in determining a and b it is useful to know the fixed point distribution of
vertical velocities, P(z,w). The updrafts and downdrafts that characterise the convective
boundary layer result in the vertical velocity distribution at a fixed point being positively
skewed (Lamb 1978; Willis and Deardorff 1978, 1981). A function P(z,w) with this
characteristic can be constructed as a sum of two Gaussian distributions,

P = AP, + BF,, (2)
where :
P, = (V2r0,)  exp (l — wa] )
2 o,
and

P, = (vV270,) " exp (1 ["’ % “"’]2) .

2 Oy

In order to specify P, the six parameters A, B, w,, ws, 0, and o need to be determined.
Four constraints on the values of these parameters are provided by ensuring that the first
four moments of the distribution are correct, i.e.

/_: w"P(w, z)dw = w"(z)

where w9 = 1, w! = 0 and w? and w? are to be specified. More explicitly we have

% P(w,z)dw =1 = A+B=1

e WP(w,z)dw =0 = Aw,— Bwy =0 o (3)
' w?P(w,z)dw = w? = A(0? + wl) + B(of + wi) = w?

J2 wP(w,2)dw = w® = A(30%w, + wl) — B(30fw, + w}) = vl.

An extra constraint is needed for the solution of these equations and is usually taken to
be w, = 0, and w;, = 0 (Luhar and Britter, 1989 and Weil, 1989). In this work we use
w, = ao, and w, = aoy; a is allowed to vary to enable P to become close to Gaussian
when the skewness is small (as in the neutral conditions). The equations (3) then become

A+B=1

Ad’,—Bdb=9_

Ac?+ Bo} = w?/(1+ a) =, say
Ac® — Bop = w¥/(3a +a®) =, say

These equations can be solved to give

A= 2l(0ut 08)y - B cul(dath av);

ol g ’.=gb + 7/@1 i TG et A M* iy ;,_‘V;z»‘f ;
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oy = -;-{\/7’/162 +48 - v/B}.

In neutral conditions P is observed to be close to Gaussian. In order to use the model
to simulate dispersion in neutral conditions P must become Gaussian as S — 0 where
S is the skewness, w3/02. This happens provided o, — o3 and w,,wy — 0 as S — 0
and can be ensured in the model by adopting a = §'/3. In free convective conditions the
resulting value of a is close to 1 (£ 20%) and so gives a P function very similar to that
used in other work. Figure 1 shows the function P in neutral and convective stabilities.

The function a(z,w) can be expressed in terms of b and P by the application of the
‘well-mixed condition’, i.e. the requirement that the model supports a steady distribution
of particles in (z,w)-space with density proportional to P(z,w). The distribution of
particles in the model obeys the Fokker-Plank equation corresponding to the system (1)
and so P is required to be a steady solution of this equation. Hence it is necessary that

O(wP) T 8(aP).. 1,8
0z ow ~ 20u?

(bP).

a is then given by

8 (1
aP = = (EbzP) +¢ (4)
where ¢ satisfies
6(wP) g 8¢ 5)
bz ow’

Equation (5) and the requirement that ¢ — 0 as |w| — oo are sufficient to determine ¢.

To complete the model b needs to be specified. b can be written either in terms of
the Lagrangian time scale 7 — a measure of the time taken for particles to lose their
memory of previous velocities — as b = (/202 /7 or in terms of ¢ as b = {/Coe. The
expression for b in terms of € can be regarded either as an indirect way of estimating 7 as
7 = 202 /Coe or as an attempt to ensure (w(t + 6t) — w(t))’ o et as predicted by inertial
subrange theory, where w(t) is the velocity following a particle. From the latter viewpoint
Cy should be a universal constant while in the former view there is no special reason to
expect this. The former view point is perhaps more appropriate. for the prediction of
mean concentrations while the latter would give a more accurate description of the short
time scale structure of particle trajectories. With the former view there is evidence to
suggest C, varies according to the stability conditions being modelled. C; is usually taken
equal to 2.0 in the simulation of convective boundary layers (Weil, 1989 and Luhar and
Britter, 1989) while higher values are found to be necessary for neutral conditions. For
example Sawford and Guest (1988) find values of 5 to 10 are necessary to give agreement
with experimental measurements of dispersion. Also the theory of Rodean (1991) for Co

in neutral conditions gives Cp = 2(0/u.)* which, assuming o,, = 1.3u,, gives Cp = 5.7.

Using Rodean’s approach it is possible to obtain a theoretical prediction of how Cp
may vary with stability. Co can be written as Co = 202 /er and, by expressing 7 in
terms of an eddy diffusivity Ky via Ky = o7 and adopting standard surface layer
forms for o, € and Ky, it is possible to estimate Cp. Using the surface layer forms
adopted in the UK Atmospheric Dispersion Modelling System (Carruthers et al 1992),

4
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ie. o2 = u2[1.69 + 3.25(z/|L|)*/], € = u(1/kz + 1/|L|) and Ky = ku.2(1 + 162/|L|)'/?,
C, is found to vary as

2(1.69 + 3.25(z/|L|)*/3)? (6

(1 + k=/IL)(1 + 16/IL)72° :

In the neutral case the terms involving |L| tend to zero giving Rodean’s value. As |L|
becomes small and the flow becomes more convective the expression will tend to zero,
although this limit is almost certainly incorrect (being caused by the failure of our ex-
pression for Ky to follow free convective scaling). For realistic values of z/|L| (in the
range 0 to 400) equation (6) increases from 5.7 at z/|L| = 0 to 2 maximum of 9.3 at z/|L|
= 3.9 before decreasing to 4.9 at z/|L| = 400. The expression does not predict a gradual
decrease in Cj to the value 2.0 generally used in free convective simulations. In this work
Co is taken as an adjustable parameter and the values found necessary for good dispersion
results will be compared with equation (6).

Using b = /202 /7 in equation (4) gives

where Q is defined as

(w—wa) | oo (w+w)
Q=AF, 2 + BPF, o

and ¢ is defined as

1 iX 8
= =5 (1 + erf%) -B—Z(Awa) + % (1 + erf%) %(Bwb)

8 WA Ow, Ow, weAOdlo, 8o, ,
a0 { (E(A%) = o, Oz ) pi (A 0z i o, 0z ) b 4 AEva}
2 wy B 8w, Ow, wyB 8oy doy ,
+Pbab{(0z(Bab) G oy 0z ) (B 5 T o 0z) " B bz ®
with
va_(w_wd)’ mdv =.(-u-iw—b).
Oa Tp i
This reduces to the free convective expression given by Luhar and Britter (1989) and Weil
(1989) when w, = 0, and w; = 03. 2

3 Application of the Model

The application of equations (1) requires the specification of the profiles of the turbu-
lence quantities w?, w3 and 7 in the boundary layer. In the work presented here use is
made of profiles obtained from Mason’s (1992) recent simulations of dispersion using the
L.E.S. technique. These simulations were performed to simulate the dispersion of parti-
cles in a range of atmospheric stabilities from free convective to neutral - seven runs were
performed in total with each one corresponding to a different stability condition.




The L.E.S. w? statistic has both a resolved and a subgrid component; the value of w?
used in the random walk model was generally taken to be the sum of these although a few
runs were carried out with w? taken to be just the resolved component. At the ground the
turbulent eddies are small and so the resolved component, but not the sub-grid component,
is zero. The L.E.S. w?3 statistic also involves resolved and subgrid components and is given
as w3 = w}+3wrwl; +3wiwse+wi; where wp and wgg denote the resolved and subgrid
vertical velocities. The third term in this expression is equal to zero while the fourth term
is difficult to estimate and is set equal to zero leaving the L.E.S. w? as the sum of the first
two terms, i.e. the third moment of the resolved motions and the correlation between the
resolved w and the local subgrid velocity variance. At the ground both of these terms are
zero. In the L.E.S. model the eddy viscosity and diffusivity remove kinetic energy from
the resolved motions and potential energy from the resolved buoyancy field. In reality this
energy would appear as small scale subgrid motions and would eventually be dissipated.
Here, consistent with the assumptions in the subgrid model, we assume local equilibrium
and estimate the energy dissipation rate directly as the sum of the energy lost through
eddy viscosity and diffusivity. The Lagrangian time scale 7 is calculated using ¢ through
the relation 7 = 202 /Coe. T is set equal to zero at the ground and increases to a maximum
in the middle of the boundary layer before falling to a minimum close to the boundary
layer top. Except in the neutral case where the domain lid and the boundary layer top
coincide, above this minimum 7 increases very rapidly with height. In comparisons with
experimental data the L.E.S. turbulence profiles for convective conditions have proved
successful in that they are able to give a good measure of these statistics over a range
of stabilities; the profiles for the neutral case are not as successful, probably because of
insufficient resolution.

The boundary layer in the random walk model is defined between the heights z = 0,
the ground, and z = z;, the boundary layer top. In order to prevent 7 (and thus At,
the time step in the random walk model) from becoming too small and also to prevent
particles escaping out of the model domain, particles within 1m of either of these limits
are perfectly reflected to put them back into the model boundary layer. The value of z; for
the six convective simulations was taken as the height of the L.E.S. heat flux minimum.
The L.E.S. concentration profiles show that only a few particles reach higher than this
and only at very large times; also at this height the turbulence has fallen to low levels.
Defined in this way, z; is within 10% of Mason’s Z., which is defined as twice the mean
particle height at 4000 seconds. In principle an upper boundary should not be needed
for the random walk model since particles should be prevented from moving too high
by 02 becoming small. However, using a value of z; based on the height at which the
subgrid component of 02 becomes negligible, allowed particles to travel to a much greater
height in the random walk model than in the L.E.S. model. This is possibly due to o2 at
high levels being the result of waves which do not disperse particles in the L.E.S. model.
For the single neutral simulation the boundary layer depth was limited by the domain
depth (1200m), with the turbulence extending to the top of the domain. For this case the

particles are not well mixed by 4000s.

Table 1 gives details of the seven L.E.S. runs used in this work. All runs used z =
0.1m. The number in the title of each run refers to the wind speed in the run, for
example, LES7 is the L.E.S. model run which had a geostrophic wind speed of 7ms™'.

The corresponding random walk run is titled RW7.

-
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The random walk particles’ trajectories were recorded on a 50 x 500 grid, the coordi-
nates being height and time respectively. The grid spacing in the vertical was z;/50 and
in the horizontal it was 8 seconds. The data are collected in the form of vertical profiles
at 8 second intervals. All the particles were allowed to move for a total of 4000 seconds
with no limit being put on their possible downwind distance. In the least convective case
with a geostrophic wind speed of 20ms™~ the particles were able to travel up to 80km.

The time step At was taken as the minimum of the four expressions: (a) 0.057, (b)
0.10,,/|802 /82|, (c) 0.05P0, /|- (¢c2Q/7)+¢|, and (d) 0.05z;/|w|. Restriction (a) ensures
that the particle velocity cannot change by a large fraction of o,, due to bd{. Restriction
(b) attempts to ensure that o, at the location of a particle cannot change by a large
fraction due to changes in the particle’s position while (c) prevents the velocity changing
by a large fraction of o,, due to adt. Restriction (d) prevents the particle moving by a
large fraction of the boundary layer depth (note (b) may not be sufficient to prevent o,,
changing by a large fraction when 802 /8z ~ 0 at the particle’s location at the start of
the time-step). Tests with constants smaller than those shown in these expressions (a) to
(d) above made little difference to the model results, suggesting that our choice of At is
sufficiently small to give time-step independent results. :

It was found that reasonably stable dispersion statistics were obtained using 50000
particles in the L.E.S. but only 15000 were needed in the random walk model. The need
for more particles in the L.E.S. is presumably a consequence of the fact that the particle
motions in the L.E.S. are not independent.

4 Model results

Random walk simulations were performed for each of the seven L.E.S. stability categories
and for four release heights (25m, 100m, 200m and 400m). The results are discussed in
detail for two release heights, 100m and 400m, and for three stability categories, free con-
vection (runs RWO0 and LES0), moderate convection (runs RW7 and LES7), and neutral
conditions (runs RW20N and LES20N). Because of the considerable uncertainty about
the appropriate value of Cp, one of the main aims was to discover the value of Co which
gives best results in comparison to the L.E.S. results and the Willis and Deardorff tank
experiments. We start with the random walk and large eddy simulations of dispersion
in free convective conditions. Many of these results are presented in terms of the non-
dimensional travel time X = w,t/z;, but dimensional results are given too in order to
make comparisons with the results obtained in other stabilities easier.

Figures 2a and 2b show the horizontally integrated concentration profiles from the
random walk and L.E.S. models for the 100m release of the free convective run (z;/L =
—00). The profiles are normalised so that they equal unity when the material is well
mixed in the vertical up to z;. Each graph consists of four curves each one representing
the particle concentration profile at a specified time after release. The models are seen
to predict the same general dispersion evolution with a large surface concentration after
500s (corresponding to a non-dimensional time X of 0.6) and uniform mixing after 4000s
(X = 4.8). The 1000s and 20005 curves in both graphs show the characteristic lift-off effect




where the horizontally integrated concentration increases near the top of the boundary
layer. The L.E.S. model predicts a corresponding decrease near the surface which the
random walk model does not show. The random walk results were obtained using a value
of Co = 2.0 as used in previous convective boundary layer simulations (Luhar and Britter
1989; Weil 1989); using C, values from 2.0 to 6.0 gave results not very different from
those shown in figure 2a although for the larger C; values there was less ‘lift off” with
the height of maximum concentration remaining at ground level for longer and with lower
concentrations at the boundary layer top after 1000s.

Figures 2c and 2d show the RW0 and LESO concentration curves for the 400m release
with the random walk model using Cp = 2.0. The models agree only on the very general
features of the evolution of the dispersion. For example, by 500s after release the random
walk model shows a much wider plume and a significantly greater ground level concentra-
tion than the L.E.S. model. The rate of dispersion of particles in the random walk model is
proportional to the total w? which was taken as the sum of a resolved and a subgrid term,
as described above. However, except in the lowest 100m of the boundary layer where the
L.E.S. model includes random increments in the particles’ positions to represent subgrid
turbulent motions, the L.E.S. results are based on trajectories calculated using only the
resolved velocity field. The particles in the random walk model thus experience a greater
velocity variance and disperse faster than those in the L.E.S. model. The contribution
of the subgrid term to the total variance varies with stability and height but generally
represents between 20% and 30% of the total. To investigate this, some experiments were
done with the random walk model using only the resolved part of w? (but with w3 and
r as before). For the 400m release with Cp = 2.0, this gave better agreement with the
L.E.S. although it still overestimated the plume width somewhat. In this case the ratio
of resolved w? to total w? in the corresponding L.E.S. run (LESO) is approximately 60%
at 100m and 80% at 400m. If the total w? is used in the random walk model, it is pos-
sible, by using a much higher value of Cy (5.0 or 6.0), to obtain a better correspondence
between the two models than that shown in figures 2c and 2d, although this change in
C, has only a small effect on the plume spread after 500s. Co = 2.0 is the only value able
to give the enhanced ground level concentration shown by the L.E.S. model after 1000s,
although even with this value it underestimates the enhancement. Taken together these
results suggest that Co values of about 2.0 may be best for the 400m release, with the
main observed discrepancy (the much wider plume in the random walk simulations) being
partly explained by the neglect of the subgrid motions in the L.E.S. dispersion calculation.

Figure 3a shows the development of the mean particle height corresponding to figure
2. The models make almost identical predictions for the development of the mean height
of the lower release but disagree on the higher release with the L.E.S. model predicting 2
marked dip in the average height at 1000s. Two other large eddy studies (Nieuwstadt and
De Valk, 1987 and Van Haren and Nieuwstadt, 1989) predict a much shallower dip more
consistent with the random walk results. In runs using a range of Co values from 2.0 to 6.0
a trend emerges of a decreasing peak in the curve for the 100m release and a shallowing
of the dip for the 400m release height, i.e. the dispersion becomes more diffusion-like as
expected. Figure 3b shows the corresponding standard deviation of the particle heights.
Again increasing the Co values from 2.0 to 6.0 leads to a smoothing of the curves with the
initial slope being constant and the subsequent peaks becoming less pronounced, though
the minimum at 1200s in the 400m curve persists. For both release heights the random
walk model shows faster dispersion of particles than the L.E.S., the difference in spread




at 500s being partly explained by the difference between the total w? and the resolved
w?, the latter being 60% and 80% of the former at 100m and 400m respectively.

The tank experiments of Willis and Deardorff (1976, 1978 and 1981) provide a second
test of the models in free convective conditions. The three experiments of interest here
involved the release of particles (neutrally buoyant oil droplets) at 0.067z;, 0.24z; and
0.49z,. To allow closer comparison between the tank experiments and the random walk
model, three additional random walk runs were performed using the L.E.S. profiles and
particle release heights of 53m, 192m and 387m (z; = 762m). The C; value used was the
same as used in the comparisons presented above (i.e. 2.0).

Figures 4a, 4b and 4c show how the model and experimental mean particle heights
compare. The agreement is excellent for the 0.067z; and 0.492z; release heights particularly
in the first half of the simulations. For the 0.242; release the random walk curve appears to
stay ahead of the tank data by a non-dimensional time interval (i.e. X interval) of about
0.3 but both predict the same general development of the dispersion. Also on the graphs
are points from the L.E.S. simulations for similar release heights; only the mid-boundary
layer L.E.S. release differs significantly from the tank and random walk results with the
large dip in the mean height at X = 1. The random walk curves are very similar to those
of Luhar and Britter (1989) and Weil (1989).

Figures 5a, 5b and 5c show the model and experimental vertical standard deviation.
The general shapes of the 0.067z; curve and data are the same but the random walk model
predicts the faster dispersion; the L.E.S. data points support the experimental predictions
at small times. In figure 5b for the 0.24z; release, the initial slopes of the random walk
model, the experimental data and the L.E.S. data are in agreement but the experiments
then predict a slowing down in the dispersion process. Again the random walk model
predicts the more rapid dispersion development. At this height the resolved w? represents
about 75% of the total w?. Figure 5c for the 0.49z; release shows the random walk model
and experiments to be in almost complete agreement on the rate and general structure of
the dispersion. The L.E.S. data does not to show the maximum at X ~ 1 but the lack of
data points may partly disguise this.

Figure 6 shows contours of the dimensionless cross-wind integrated particle concentra-
tion from the random walk runs corresponding to the Willis and Deardorff experiments.
For the near surface release (figure 6a) the experiments (see Willis and Deardorff 1976)
and random walk model both show an initial high ground level concentration which de-
creases relatively quickly as the material is transported to the top of the boundary layer.
In common with Luhar and Britter (1989), the random walk model fails to show the con-
centration increasing away from the ground at X values between 0.5 and 1.0 as is observed
in the experiments. The concentration gradient is however close to zero and much smaller
than that obtained with Cy = 3.5; it seems likely that a value a little less than 2.0 (which
will cause less diffusion-like behaviour) would give the observed counter-gradient trans-
port near the ground. For the 0.24z; release (figure 6b and Willis and Deardorff 1978)
the height of the concentration maximum initially descends to the ground. By X = 2 the
height of maximum concentration has lifted off to the upper part of the boundary layer,
but is rather higher in the random walk simulations than in the experiment. For the
mid-boundary-layer release (figure 6c and Willis and Deardorff 1981) the correspondence
is very good with both the spatial details of the concentration distribution and its mag-
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nitude in agreement. Overall the comparisons with Willis and Deardorff tend to support
the value Cp = 2 adopted in previous studies and supported by the comparisons between
the large-eddy and random walk simulations discussed above.

The moderately convective case (runs RW7 and LES7) will now be considered. Figures
7a and 7b show the concentration profiles for the 100m release using Co = 2.0. The
models predict similar dispersion development with large surface concentrations after 500s
and 1000s. Higher values of C, give a better correspondence between the ground level
concentrations after 1000s. As before, this is probably at least partly due to the fact that
only the resolved w? contributes to the L.E.S. dispersion, although this is not confirmed
by the standard deviation of particle heights (see figure 8b below) for which, with Cy = 2,
the random walk gives slightly smaller values than the L.E.S. A simple interpretation here
seems difficult due to the strongly inhomogeneous nature of the turbulence (in particular
the resolved turbulence) around the source height. By 2000s both models show enhanced
high level concentrations (only very slightly in the random walk). At 4000s the random
walk model predicts a uniform concentration but the L.E.S. profile still shows signs of
lift-off with slightly lower concentrations at the surface than higher up. Higher Cp values
(5.0 or 6.0) suppress any enhanced high level concentrations (consistent with the more
diffusive behaviour expected) and tend to slow down the random walk model too much
so that even at 4000s the distribution still has a larger concentration in the lower half of
the boundary layer than in the upper half. On balance Cy = 2.0 gives best results.

Figures 7c and 7d are the corresponding profiles for the 400m release with the random
walk model using Cy = 3.5, the value we judged to give best results. The models show
similar dispersion development and give a uniform distribution at 4000s. Higher values
of Cy again lead to concentration profiles that match slightly better those of the L.E.S.
model at small times (for example the maximum concentration agrees better). Note
however that o, (see figure 8b below) is about right for Co = 3.5. Using the parameters of
this run in the extension of Rodean’s theory given above (equation (6)) leads to a value
of Cop = 8.2 at 100m and 9.3 at 400m. These values are not supported by the comparisons
presented here. This might be because the value of C, does not depend on surface layer
characteristics. Also the concept of an eddy diffusivity (which forms a central part of
Rodean’s argument) is less valid in this situation because of the larger turbulent length
scales which occur (relative to the neutral case).

Figure 8a shows the mean plume heights corresponding to figure 7. Again the models
agree on the development of the lower release but the L.E.S. predicts a significantly lower
average height for the higher release. Co = 2.0 was by far the best value for the 100m
release, larger values reduced the gradient of the curve quite significantly. The value of
C, did not have a large effect on the 400m curve - Cp = 3.5 was just slightly better
than other values in the range 2.0 to 6.0. Figure 8b shows the standard deviation; here
the model curves match fairly well at small times although the L.E.S. model does show
slightly faster development for the 100m release and slightly slower development for the
400m release. The resolved w? at 400m is 60% of the total leading to the expectation
that the random walk plume would grow faster in relation to the L.E.S. than it does and
that the best value of Cp may be a little less than 3.5.

Figures 9 show the concentration profiles for the neutral runs RW20N and LES20N
using Co = 8.0 in the random walk model. Figures 9a and 9b show the profiles for the
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100m release while figures 9c and 9d show those for the 400m release. The L.E.S. profiles
are slightly unreliable as some of the slow moving particles near the ground were lost from
the three dimensional grid of boxes in which the particle positions were recorded; this grid
moved downwind centred on the particles’ centre of mass. The result of this is that the
ground level concentrations in particular may be less than expected. We have normalised
these curves so that the area under them is unity despite the loss of particles. For these
simulations it was found that agreement between the models could only be obtained using
a much larger value of C, than in the convective cases. The value 8.0 was found to give
reasonable agreement for both release heights, consistent with the range 5 to 10 given by
Sawford and Guest (1988). Random walk simulations with Co = 6.0 show faster plume
growth than the L.E.S., but this may be due to the lack of subgrid influence on the L.E.S.
dispersion (w? resolved is 77% of the total at 400m). Hence Rodean’s value of 5.7 is
compatible with the results. Lower values (4.0 or less) allowed the random walk model to
diffuse the particles too quickly while higher values (10.0 to 12.0) slow down the diffusion
too much. The roughly uniform distribution obtained in the random walk model at 4000s
for the 400m release is not mirrored by the L.E.S. model, probably because of the loss of
particles at large times as mentioned above.

The evolution of particle mean height and standard deviation showed the same de-
pendence on Cj as in the other runs. Low values allowed too rapid a diffusion while high
values slowed it down too much. Figure 10 shows the mean and standard deviation of the
particle heights corresponding to figure 9. Figure 10a shows good agreement between the
particles’ mean height from the two models. The mismatch at large times shown in figure
10b for the standard deviation is significant and could not be much reduced even with
very large C values (around 12.0); it is probably associated with the loss of particles in
the L.E.S. model.

The comparisons of the results of the random walk and L.E.S. model runs for three
stability conditions and two release heights, described above, illustrate the more general
results shown in figure 11. These figures give our assessment of the best value of Cq for the
run and release height in question. Generally, the random walk model is able to give good
correspondence with the L.E.S. results for a range of values from 2.0 to 5.0 in convective
conditions and from 7.0 to 10.0 in neutral conditions. This is consistent with previous
results.

5 Summary

Considering the comparisons over the range of stabilities and release heights, it seems that
the random walk model is able to reproduce many aspects of the L.E.S. and experimental
results. It proved difficult to identify a single best value of Co for each stability category’
and release height, due partly to the complication caused by the fact that dispersion in the
L.E.S. is not affected by subgrid motions above the lowest 100m. Our best estimates of Co
show no clear relation between the optimum value of C; and release height, but the results
do show a clear dependence of Cj on stability. - This dependence is consistent with the
results of previous work which indicate that a much larger value is appropriate in neutral
conditions than in convective conditions. A straightforward extension of Rodean’s (1991)




argument to account for stability effects does not appear to give the correct behaviour for

Co.
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Table 1

z; Z. TR T L z/L
LESo [ 762 790 0.00 0.92 -0.0 -o0
LES2 820 885 0.17 0.96 -13  -68
LES4 876 900 0.29 097 -59 -15
LES7 858 :010::+0.38: 087 .:-132 ..
LES10 |108 970 0.55 0.99 -420 -2
LES20 | 934 940 0.85 0.98 -1544 -0.6
LES20N | 1200 1104 0.72 0.00 oo 0.0

Table 1: Parameters of L.E.S. Model Runs.

Figure Captions

Figure 1: Probability density function for vertical velocities, P(z,w), for heights of 100m
and 400m in a convective boundary layer and in a neutral boundary layer as given by
equation (2) using w? and w® from the large-eddy simulations of Mason (1992). The
dashed/dotted line and the dashed line show the free convective 100m and 400m curves
respectively while the pecked line and the dotted line show the neutral 100m and 400m

results. :

Figure 2: Vertical profiles of crosswind integrated concentration for free convective runs
RWO and LES0. The dashed line, the dotted line, the pecked line and the dashed/dotted
line give results for 500s, 1000s, 2000s and 4000s (i.e. X = 0.6, 1.2, 2.4 and 4.8) re-
spectively. (2) Random walk 100m release. (b) Large eddy simulation 100m release. (<)
Random walk 400m release. (d) Large eddy simulation 400m release.

Figure 3: Statistics for free convective runs RW0 and LES0. The dotted line and the
pecked line show the random walk results for the 100m and 400m releases respectively,
while the crosses and squares show the large eddy results for the same release heights. (a)
Mean height of particles. (b) Standard deviation of particle heights.

Figure 4: Mean height of particles for the free convective random walk and large-eddy
' and the Willis and Deardorff experiments. The solid line shows thi




data, the dotted line the random walk results and the circles the Willis and Deardorff
observations. The L.E.S. release heights were not chosen to match the experiments and
so differ a little from the values in the random walk simulations and in the experiments.
(a) Release at z/z; = 0.067. (b) Release at z/2z; = 0.24. (c) Release at z/z; = 0.49.

Figure 5: Standard deviations of particle heights for the free convective random walk
and large-eddy simulations and the Willis and Deardorff experiments. The various lines
and symbols are as in figure 4. The L.E.S. release heights were not chosen to match the
experiments and so differ a little from the values in the random walk simulations and in
tl;e experiments. (a) Release at z/z; = 0.067. (b) Release at z/z; = 0.24. (c) Release at
z/z; = 0.49.

Figure 6: Contours of crosswind integrated concentration from the free convective
random walk simulations. (a) Release at z/z; = 0.067. (b) Release at z/z; = 0.24. (c)
Release at z/z; = 0.49.

Figure 7: Vertical profiles of crosswind integrated concentration for moderately con-
vective runs RW7 and LES7. The various lines and symbols are as in figure 2. (a)
Random walk 100m release. (b) Large eddy simulation 100m release. (c) Random walk

400m release. (d) Large eddy simulation 400m release.

Figure 8: Statistics for moderately convective runs RW7 and LES7. The various lines
and symbols are as in figure 3. (a) Mean height of particles. (b) Standard deviation of
particle heights.

Figure 9: Vertical profiles of crosswind integrated concentration for neutral runs
RW20N and LES20N. The various lines and symbols are as in figure 2. (a) Random
walk 100m release. (b) Large eddy simulation 100m release. (c) Random walk 400m
release. (d) Large eddy simulation 400m release.

Figure 10: Statistics for neutral runs RW20N and LES20N. The various lines and
symbols are as in figure 3. (2) Mean height of particles. (b) Standard deviation of
particle heights.

Figure 11: Best estimates of the optimum value of Cp in the random walk model for
each of the various runs. Circles, plus signs, crosses and squares indicate values for the
25m, 100m, 200m and 400m releases respectively.
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