232

METEOROLOGICAL OFFICE

X 4 kR ' L/ ] :
Vi [ | ) Al BOUNDARY LAYER RESEARCH BRANCH
e SRR o \ I o :

TURBULENCE & DIFFUSION NOTE

_ MEIEGROLOGICAL  OFFICE

1 O MAY 1984

LIBRARY

T.D.N. No. 157

Solutions of the integral equation of diffusion and the random
walk model for continuous plumes and instantaneous puffs in

the atmospheric boundary layere

by FeB¢ Smith and D. Thomson

Presented at the 29th Oholo Conference,
Israely March 1984.

MARCH 1984,

Please note: Permission to quote from this .wnpublished note should be

obtained from the Head of Met. 0,14, Bracknell Berks, UK,

=R




SOLUTIONS OF THE INTEGRAL EQUATION OF DIFFUSION AND THE RANDOM WALK
MODEL FOR CONTINUOUS PLUMES AND INSTANTANEOUS PUFFS IN THE ATMOSPHERIC
BOUNDARY LAYER

by F.B. Smith and D. Thomson
Meteorological Office (Met.0.14)
London Road, Bracknell,
Berkshire, England.

ABSTRACT

The integral equation method is related to the random walk modelling
that has proved so effective and popular in recent years. The I.E.
method, by using simple probability techniques, avoids the inefricient
determination of thousands of trajectories in order to build up
concentration profiles. In fact it is so simple and efficient it can
be run on a conventional programmable calculator. The method is
applied to passive material being released from an elevated source
within a neutrally stable surface layer over a uniform surface, and
also to an instantaneous release when the effect of wind shear is
examined. The latter scenario is also studied using random walk
techniques and a comparison of the solutions obtained. Agreement is
very good, although downwind spread is shown to be quite sensitive to
gridlength size in the I.E. method.

INTRODUCTION

Most, but not all, experimental studies of how material injected
into the atmosphere is dispersed have, for very practical reasons, been
within the surface layer (see Pasquill and Smith, 1983). Paralleling
these have been the development of theoretical techniques for predicting
vertical and crosswind plume growth. The concepts of an eddy diffusivi!.
K(z) and the parabolic differential equation of eddy diffusion are very
familiar. Except in neutral stability conditions the definition of K(z)
requires a large measure of empiricism in which diffusion experiments
have to be carried out in order to define K(z), which when generalised in
terms of basic meteorological surface layer parameters can then be
inserted back into the diffusion equation to yield plume behaviour in
more general conditions. When the source is very close to the ground,
the solutions of the diffusion equation are considered to yield a
satisfactory description of vertical plume growth. But when the source
is elevated or when considering crosswind dispersion the solutions are
theoretically dubious.
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A second very familiar technique, similarity theory, is based on
dimensional considerations, but is strictly applicable only to ground-
level sources, and yields only limited information on the distribution
of concentration within the plume.

Higher—-order closure techniques applied to the basic conservation
equations of momentum, heat and injected material are in principle
capable of giving considerable detail in a wide variety of conditions,
but the method is complex, partially empirical, and laborious.

In recent years the relative simplicity of so-called random walk
techniques has been widely exploited very successfully with the ready
availability of computers. The basic ideas of the method are presented
briefly in the next section. Above all it is a highly versatile method
capable of yielding considerable detail of plume behaviour, given the
spatial distribution of turbulence and details of the boundaries.

In the third section, we present a development of a rather new
technique which is closely related in principle to the random walk
method. It has been called the integral equation method (Smith, 1982),
since it involves a step by step summing up (or integration) of all
possible random motions of the particles in the plume through the
definition of probabilities. It is almost as simple to formulate as the
solutions have the virtue of being substantially easier and quicker to
compute. In some simple situations the method can be programmed and
solved using a hand-held programmable calculator.

In the fourth section the results of the integral equation method
and the random walk method are applied to diffusion from an elevated -
crosswind line source in the neutral surface layer. The solutions
using the two methods are in close.agreement. Solutions are obtained
for a continuous release, and for an instantaneous release in which the
chief interest is in the particle distribution in the xz plane (i.e.
alongwind and in the vertical) at given times. These distributions
show the interaction of vertical diffusion and the shear of the
horizontal wind.

2. THE RANDOM WALK MODEL.

The random walk method of modelling dispersion consists of
simulating numerically the motion of many particles of the pollutant,
in order to build up a picture of the concentration distribution. The
method has been used previously by many authors, for example Reid (1979)
and Ley (1982). The trajectory of each particle is simulated by
modelling the evolution of the particle's vertical and downwind
velocities over a succession of time-steps. The crosswind motion is no%
modelled here and so all concentrations from the model must be inter-
preted as crosswind integrated values. (xj, zj) will be used to denote
the coordinates of the particle before the ith time step, and (uj, wy) *
will represent the particle's velocity components during the step.



The vertical motion of each particle is modelled by

Wigq =¥ (1= At/T(z, ) + py (2.1)

vhere At is the length of the time-step, T(z) is the Lagrangian time-
scale for the particle's motion and p. is a Gaussian random number.
The physical interpretation of this eguation is that over a time At
the particle loses a small fraction At/w of its momentum to the
surrounding air and in return receives a random impulse‘pi+1.

In homogeneous turbulence the mean and mean saquare vertical
velocity of a particle of tracer over an ensemble of realisations is
equal to zero and 0@2 respectively at all times, where 0°2 is the
Eulerian mean square vertical velocity. If we force our model particles

to satisfy this condition, ie if we force w.= W. = 0,W =W = 0,
] i i+1 i i+1 W
we obtain y
i=0 (2.2a)
;? e 2At oF + O(At2)

for the mean and variance of the random variable p+ In inhomogeneous
turbulence this derivation is no longer strictly valid; however if

O, 1is constant, as in the neutral surface layer comsidered in this
paper, the result is still correct (for a full explanation of this and
of how to proceed when O, does vary, see Thomson 1933)

There are two assumptions in (2.1). The first is that w. 1

depends linearly on w, as postulated by Smith (1968), and the Second i
that W depends onl§ on w. and is not influenced by'pi, Py_so

. s (j % 1) except through Wi. Hanna (1979) has presented s8me
exegimental evidence in support of the first assumption. These
assumptions connot be exactly true since (2.1) implies a discontinuous
acceleration whose size |=w. At/T +n /At tends to infinitely as

At —0. However atmospﬁ%ric accelerations are large and are
significantly correlated only over very short times. (of the order of
the Kolmogorov time-scale - Monin and Yaglom 1975 p 370, pp 548-549).

The horizontal velocity of the particle is taken to be egual to
the mean wind at the particle's height:

u, = u(zi) (2.3)
Horizontal turbulence could be easily included in this equation. However,
Ley (1982) showed that in models of this type it has only a small effect
on the results.

u(z), o, and T are taken to be the standard similarity forms
appropriate to a neutral surface layer:




u 2
u(z) = = 1n = (2.4a)
k z.
o, = 131, | (2.4b)
B ‘E"gfrg' (2.4c)
W

where u, is the friction velocity and 2z, is the roughness length.

The time-step At must be chosen to be short in comparison to
so that the particle motions are well resolved. Of course this is not
possible at all heights if the profile of @ is as given by (2.4c).
To solve this problem a modified profile is used in the model:

1.(_1_1_*2-2 z > 0elm,
U " O‘W
ku*O.‘l
o~ Oeim, DA >/ 0

By keeping T constant belgw Oedim, the difficulty is avoided. The
particles are perfectly reflected at the ground. To avoid using a very
small time-step when it is not necessary, At is allowed to vary as
the particle moves. In the simulations presented in this paper
%}:0.05 was used.

In a real cloud of pcllution, the velocities of the fluid elements
within the cloud are correlated.:In the model however, each particle is
assumed to move independently. Hence the concentrations obtained from
the model must be regarded as ensemble average values.

The random walk approach has several advantages over the more
classical diffusion equation approach. Firstly, and most importantly
from a theoretical point of view, the velocities of the particles
change smoothly in time, in line with Taylor's (1921) ideas about
diffusion. In contrast the diffusion equation assumes very large
velocities and very short time-scales and so is only strictly valid for
molecular diffusion. Secondly, the method is very flexible and can be
adapted to any turbulent flow provided the mean flow and turbulence
statistics are known. Finally, because the method does not need an
Eulerian grid, there are no problems with artificial diffusion when the
cloud width is of the same order as the grid spacing.

A drawback of the technicue is that the Lagrangian correlogram is °*
fixed by the model (in homogeneous turbulence it is eaqual to exp(=t/T )
where t is the time-lag between velocity measurements) and does not
necessarily agree with the true correlogram. However Pasquill and
smith (1983 §£3.5) have shown that dispersion characteristics depend



mainly on o, and T and are only weakly dependant on the shape of
the correlogram.

THE INTEGRAL EQUATION OF DIFFUSION

The I.E. method is strongly related to the random walk method that
has just been described. By introducing probability functions and

summing up (or integrating) over all possibilities, considerable
computational saving can be achieved, since it is no longer necessary
to simulate dispersion by following thousands of distinct particle
trajectories one after the other.

The general idea of the method can be best understood by considerng
its application to the simple case of dispersion in homogeneous
turbulence. Later the technique will be applied to the main study of
this paper, dispersion within the neutrally-stratified surface layer of
the atmosphere.

The method, in one sense, is more primitive than the random walk
method as it has been described above, which strictly could be referred
to more accurately (but more pedantically) as a Markov chain simulation
technique, since it describes turbulent motion correctly as a continuous
process. The I.E. method is more akin to the original random walk, or
drunkard's walk, concept. It describes diffusion as a collision process
in which elements of marked fluid, originating from the source, undergo
collisions with other elements, of unspecified origin, totally lose
correlation with their previous motion and then travel with constant
velocity until they collide again. In this sense the method is
strictly analogous to Brownian diffusion of elemental particles. An
element will experience collision at a point with a probability that in
general depends on the location of the point. The probability is
proportional to the local Lagrangian timescale « . In stationary
homogeneous turbulence T is, of course, an absolute constant, whereas
in other situations & may vary in time or in. space. The inherent
difficulty of specifying ¢ 1is common to all theories of diffusion
(even though the difficulty may be implicit since ¢ may not appear
explicity in the theory), and represents the greatest barrier to
specifying dispersion in terms of an Eulerian fixed-point description
of turbulence, without recourse to empiricism, no matter what theory
or technique is used. In this respect the I.E. method is no harder or
easier than any other.

The method can recognise in a rational way the statistical
properties of the turbulence at every location; in particular it can
reflect the probability distribution of the velocity fluctuations, its
variance, skewness and finite range.

Before describing the method, it should be noted that it has been
simplified quite significantly from its earliest form which has been
described by Smith (1982) and by Pasquill and Smith (1983).



(1)

(ii)

(iii)

(iv)
(v)

(vi)

(vii)

The basic ideas of the method can be summarised as follows:

calculations are performed on a grid of equal squares
(or rectangles) of sides Az and Ax .

collisions occur only at the mid-line of each square:
atAx in from the side of the gridsquare.
2

some elements (or '"particles'") will collide whilst passing
through a given square, others will not. Greater accuracy is

achieved when the squares are sufficiently small that only a
few percent undergo collision in a single square.

between collisions, elements travel with constant velocity.

in the simpler forms described here, the turbulence is
considered in the cross-flow z~direction only. In the along-

flow x~-direction, the velocity is given by the mean windspeed u.

the probability that an element will undergo a collision in a
gridsquare is given by a = A%/y¢

if w is the turbulent velocity fluctuation in the z-direction,
then the probability P(w) can be assumed zero for lwl > w , a
specified maximum velocity. For |w| < w , P(w) is suppose
given. In many cases it will be close to a Gaussian
distribution and may be approximated by the analytical

~ 3 . 2 \2
expression: P(W) = 11§w (1 6 %1 ) lw] € w :
This satisfies the following: "
P(=w) = P(w), P(wm) = 0,
W
S P(w) aw =1,
0‘;" = 0.37790 Wmo

In the homogeneous turbulence case, in which u and w, are
constant, the gridlengths Az and Ax are chosen so that
uAz= w Ax , and elements cannot diffuse further than one
gridsquaﬂ% either way in the z direction in the time taken to
advance Ax in the x~direction.

(viii) Consider the gridsquare labelled (M,N) in Figure 1 . M indicates

that the gridsquare is M sauares up in the z-direction from some
arbitrarily selected origin. Similarly N indicates it is N
squares along in the x direction from the same origin; which
could be the source gridsguare, or could be the square adjacent
to the surface immediately below the source in the case of
diffusion in the atmospheric surface layer. In general let the
source be at (Ms’ 0), where Ms might be chosen to be zero.
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Figure 1. Definition of grid square notation

(ix) Define Q(M,m) as the probability that a "particle" undergoing
collision within gridsquare (M,N) will subequently move to grid- .
square (M+m,N+1), where m can take the value -1, O or 1.

Furthermore, define R(M,N,m) as the probability that a marked
"particle" originating from the source, arriving at (M,N) will move to
(M+m,N+1), regardless of whether or not it undergoes collision in
(M,N).

If D(M,N) is the number of marked particles in (M,N), then the
basic equations that govern this diffusion process are

D(M,N)R(M,N,m)=D(M,N).a.QM,N)+ 2 f D(M-n,N-1).(1-a). R(M-n,N=1,n)

nh==~i,C,1

and D(M,N+1)= 2. R(Mtn,N,-n). D(Men,N)
nz-1,0,1
vhere in the first of these equations, the left-hand-side is the number
of marked particles moving from (M,N) to (M+m,N+1), the first term on
the right-hand-side is the number of particles which undergoing
collision in (M,N) then move to (M+m,N+1) whereas the second term
represents the sum of those marked particles in (M,N) that do not
experience collision there and have come from (M-n,N-1) and proceed to
(M+m,N+1). The factor f takes the following values:
f =0.6 if |n-ml=0

b4 if {n-ml= 1 and |n|
2 if f{n-ml= 1 and |n|

if |n-m)= 2 or if |

QD

=]
0
nl-> ¥ or-inl- > 1.

These values can be seen to preserve a uniform concentration
distribution. The second eguation sums up all the marked particles
arriving in (M,N+1) from (M+1,N), (M,N) and (M-1,N).




In homogeneous turbulence, when P(w) given above is a good
approximation,

3 fwl) 15 w2 : 11 68
Q(M 90) = J ( 1 = T TG‘_:E*- ( 1 o= ';:'9_ ) dy = -1-3 = 0. 75
“Wp, m m m

and Q(M,+ 1) = 0.15625
!
At the source D(MS,O) = number of particles released, say 10°.

and R(MS,O,n) = Q(Ms,m),z Q(m) in homogeneous turbulence.

The choice of a, and hence A z and A x, is arbitrary, but to achieve
reasonable smoothness it should be at most O.1. Smaller values will

give smoother solutions at the expense of more computing time.

Concentration is obtained by dividing D(M,N) by the wind speed
u(M). The resulting concentration distribution for homogeneous
turbulence is very quickly derived, and has moments in very close
agreement with analytically - derived moments (see Smith 1982). Thus
the second moment is in virtually complete agreement with Taylor's
statistical theory result with an exponential Lagrangian correlogram
with the same timescale s

27T Oy
u

0‘2(x) = (z + uT (exp(=x/ut ) = 1))

The me*kod gives more than just the moments of course: the ensemble
average concentration distribution results, and in this case the
distribution is very close indeed to being Gaussian.

Diffusion in the atmospheric neutral surface layer

(i) A continuous source

The formulation is very similar to that outlined above, the onl
basic difference is that both u and T are now functions of z (or Mg.

A log-law is assumed for u: u = %% 1n 2

A z
k 0 .
and a linear variation for T : T = ku,z /cr
W

Since a = Ax/uvit follows that a also varies with z:
2
a=4Ax O';/(u*z lnz/zo) "

It is assumed that G = 1.%us following the evidence from surface
layer studies in the field (Pasquill & Smith, 1983). Furthermore it

will be assumed that a = 0.1 at z = 2, = 1000 z, (where z, is the

e



surface roughness).

Consequently Ax = ' auvT =[1000 zo 1n 1000 x 0.1}= Lo8.743 zo
1.3
and Az =[_‘1m.é_f} = a wm[k Ve 2y ] = 81.4083 z,.
u(z,) Ay

The midpoint of the first gridsquare (M=0) above the surface is at a
height;%i and that of the gridsguare M is at a height (M+%) Az.

Thus a = [ (M+3)x.11785056 x 1n(81.4083(M+3)) ] il practise if
a exceeds 1 in the very lowest layers, then a is put equal to 1.

Q) =22 - et

+ Bc5 ) for M » 1 and m= -1,0,1
m m
where C = 0.144765 1n (81.4083(M+3)) ,
B=g andA=g ifm=0
and if m =+ 1:  Q(M,m) = 3 (1-Q(M,0))

For M = 0 put Q(0,1) = 0.2603

Q(0,0) = 1"Q(Oy1) = 0-7397
and Q(0,-1) = 0, so that particles are fully reflected

at the surface.

Note that except for Q(0,m): Q(M, -1) = Q(M,1)
The solution can now proceed using the two basic equations given in

the previous section. Results are given later.

(ii) An instantaneous release (or puff)

The method can also be applied to an instantaneous release from a
source near the ground in the neutral surface-stress layer. The aim is
to learn something about the spatial distribution of particles in such
a puff, as a function of time, resulting from the interaction of
vertical turbulent spreading and the logarithmic wind shear.

It is suggested that because the diffusive spread is governed by
small-scale eddies which are largely controlled and influenced by the
proximity of the ground, there is relatively very little difference
between the particle distribution for any single realisation of a
release and that for the ensemble mean distribution. However if
horizontal turbulence were to be taken into account, (which is no
problem in principle), then the assumption would be less acceptable
since variable larger-scale eddies would create significant differences
from one realisation to the next.



Let Az remain as before. Since we are concerned with spréad at
a given time, rather than a given distance, Ax will be replaced by At.
The probability of collision a = At/tr is again put equal to 0.1 at
Z'—'—Z....

Thus At = 81.4087 zo
W

and a(M) = 1.22837 He1, al0) = 1.
: M+ %)

Q(M,m) takes the same two values found for homogeneous turbulence

i.e. Q(M,0) = 0.6875 and Q(M, + 1) = 0.15625
Let the suffix k denote the kth package which contains particles that
after a specified time N At have travelled the same distance x .
Suppose this package has moved from (M-m,N-1) to (M,N). Part of this
package (ie a sub-package) now moves from (M,N) to (M+m,N+1). The laws
governing this are:

Dk(M,N).Rk(M,N,m)sz(M,N).a(M).Q(m)+Dk(M-n,N-1).(1-a(M))hR(M-n,N-1,n);f

with meanings the same as those described earlier. f(m,n) values are
also identical to their previous values.

Furthermore Dk(M,N) = Dk(Mon,N~1). R(M-n,N-1,n)
so that Rk(M,N.m) = a(M)Q(m)+ (1-a(y))f(m,n)
Now xk(N+1) = xk(N) + u((M+3(me1)) Az) = At.

Since u = u, In z , if X is defined as x/zo, then:
k %5

X (N+1) = X (N) + 59.1719 1n / 81.4087 (M+3(ms1)) 7
At each new timestep the number of packages trebles and the number
would soon become unmanageable if some sort of grouping was not imposed.
Various options are available. The follow'ng was selected for its
relative simplicity:

Y

Af N, find the maximum X(N) « X and the minimum X(N) = X . ,
max min

over all packages regardless of M. Then define § = (Xmax - Xmin)/25.

At each level (each M) group together all vackages which have
lying between (X . +r & ) and (X . + (r +1) § ) where r runs from
0 to 2k. i bt



In this grouping together, the following rules are to be observed:
(i) if more than one package lies in an interval then
D(M,r) = 2 D, (M,r), ie the new package conserves the number
of particles from all the contributing packages, and

(ii) D(M,r) R(M,N,m) = ZDk(M,;’.) R (M,N,m), and

(iii) X(M,r) = Z;Dkxk , averages the values of Xk.

D(M,r)

If the packages are kept in order of X at each level, then in
marching forward one timestep, the order will be preserved for those
with m = O, and those additional subpackages entering the level from
levels immediately above and below (corresponding to m = -1 and +1)
can be inserted quickly if their X's are tested against the X's
(for m = o) with the same r. Results will now be presented.

Results

(a) The continuous source

Solutions of both the integral equation (I.E.) and random walk
(R.W.) methods have been obtained for an elevated source Sq at a
height 2.5 Az and for a near ground level source S at 0.5Az. The
gridsives, Az and Ax, are as given in the previous section.
Concentration profiles for a continuous release at S4 are given in
Figure 2 in non-dimensional form and in equivalent dimensional form for
the following particular values of the parameters:

zo = 0.02m, Az = 1.628m, Ax = 8.175m, hg = - height of §q = 4.07n,
u, = s~ ! and ulhg) = 13.29ms™7

The profiles are given at four downwind distances; N = 2
corresponds to x = 2Ax, N = 6 to x = 6 Ax, and so on. By N = 19 the
profile is virtually identical to that from the near-groundlevel source
S° under the same conditions but the latter taken at a greater distance
downwind (at approximately N = 30). The shape of the vertical profile
is by then closely consistent with a simple form:

C(o) exp ZTL azs_J7

where the value of s is found to be 5/4.

C(z)

In general the solutions from the two methods are in very close
agreement, although small but observable differences are often evident
very close to the ground where the I.E. method, because it obtains its
solutions on the basis of a grid, reflects the details of the rapid
u(z) and T (2z) variations there rather too simplistically. The two
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Figure 2. Concentration profiles at four vaiues of N downwind from a source at z=25 4z
for a release rate of 1 gs™'m’'
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Figure 3. Contours of concentration c/c max within a cloud released instantaneously from *
a groundlevel source.



solutions are shown at N = 2 by a series of point values. Away from
the lowest gridsquares the differences are very small, especially for
larger values of N.

Table 1 gives values of o@&o for continuous releases from S and
S, for different values of?é%, and it can be seen that Oz grows almost
parabolically for small x, where wind shear is dominant, but approaches
a more linear variation at greater x when the linear form of T
predominates over the wind shear.

N | o A e
*/ 2 0 b9 817 1635 3270 L5 6540 7766
Pafee oS )R LY 067,17 85,0 D5 o168 1216 - 25905 88G

%%/z, (S4) | 203.5 207 216 238 281 320 357 284

Table 1. Plume growth from sources $o at 7 A z and S, at 2.5 Az in a

neutrally-stratified surface layer. o3 is the root mean
square particle elevation above ground.

(b) An instantaneous release

Solutions have been obtained using both methods for an instantaneous
release from S, at a height h_ = 0.5 A z. They show the marked inter-

action of vertical diffusion and the shear of the horizontal wind u(z).
An example is given in Figure 3 which shows contours of concentration

after 100 seconds, obtained from the R.W. model. Table 2 compares the
basic statistics at three different times from the two methods. The
differences are small except for Cx, the overall alongwind root-mean-
square spread of all the particles in the cloud. As before the reason
for the difference appears to be the relatively limited resolution in
the lowest grid layer used in the I.E. method. A particle diffusing
into this layer in the random walk model can closely approach the
surface, move downwind very slowly (since u(z) is very small there) and
and remain there for some time since T is also very small. In
contrast in the I.E. method the values of u and T are defined by the
values at z = 0.5Az and therefore may under-estimate the alongwind
shearing effect in the single layer, which the R.W. method captures.

The error is largely a matter of gridsize, of course, and reducing

Az and Ax to a fifth of their previous values gives the value of
0% in column 6 in Table 2, which is in much better agreement with the
R.W. value, albeit at the expense of an increase in computational
effort. These differences in Ox are much less apparent if O x is
calculated, not for the whole plume, but for a given value of z away
from the lowest grid layer. For example at N = 19, M = 10,

Cx (R.W.) = 33 metres and 9x (I.E.) = 32.4m with the original
grid sizes, for B 05 0, = 1ms=1 and hg = 4.07m




Units : metres: zo=0.1, u,=1.0ms-1, h5:4.07m

N Method z Oz (taken) X 0x  9%/x Plume tidf
about
R.W. 6.0 4.35 65.3 10.4 0.16 ~ 1 :
2 isme{orig Ag) NV 5,56 0.3 6. 0.095
I.E.(zx origAz) 6.0 4.68 - DL =
6 R.W. 8.5 7.16 134 25,95 20,19 }~1
I.E.(origdz) 10.9 8.79 147 - 96.1 0.11
19 R.W. 20 19 Lok 9 0.19 } 20
I.E.(orighz) 22 19 510 64 0.13

Table 2. Values of the main statistical parameters describing the
cloud originating from an instantaneous release at N = 0, z = % Az.
Plume tilt is defined as the tangent of the best eye-fit linear
regression line through the cloud.

The variation of x with time is rather faster than linear, as shown

in Table 2, due to the increase in average windspeed as the cloud
deepens. The variation of OT@GZ, shown in the same Table, is almost
constant beyond N = 6 at approximately 0.2, but below 6 increases with
increasing N. Similarly the plume tilt abgve the very lowest grid-
layers appears to be almost constant at 45° (tangent = 1) out to N = 19.
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