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Abstract -

Conventional inviscid theories of flow over smooth orogrpahy assume
that boundary streamlines do not separate and that, for steady solutions, fi
the orographic surface is isentropic. Cullen et al (1986) descriﬁe én
element model based on the Lagrangian form of the semi-geostrophic

equations which does exhibit separation even th ough viscous or boundary :

layer effects are absent.

-

Further examination of this type of solution is made here with a
two-fluid model giving particular emphasis to the implied orographic drag

and energy dissipation. Some simple analytic solutiops are included which f

show the onset of separation (usually described as the breakdown of

semi-geostrophic theory). It is suggested that a substantial proportion efa

thé measured orographic drag force on mountain ranges such as thg>£1psumay i ~':,A“ 

be associated with turbulent enebgy dis?ipﬁti°ﬂ_iﬂme§§até;y do treagféf”:,

the mogntain.,



1. Introduction - The 'breakdown' of semi-geostrophy

In recent years it has become evident that the treatment of orography
in numerical weather prediction and general circulation models requires
improvement. The use of sigma coordinates may have encouraged the view
that the dynamical effect of orography can be dealt with in the adiabatic
framework of large-scale models. In reality, mountains are not smooth and
small-scale orographic features can generate propagating gravity waves,
boundary layer separation, turbulent eddies, etc which must, depending on
model resolution, be treated as sub-grid scale irreversible physics. It is
well-known that the existence of radiating waves, eddy shedding or -other
transience is required for momentum to be exchanged between solid earth and
atmosphere through pressure forces (eg Bannon, 1985). Palmer et al (1986)
have suggested that conventional forecast models underestimate the
efficiency of this momentum exchange through their failure 56 represent
sub-grid scale gravity wave drag and that this omission is responsible for
the appearance of excessively westerly flow, particularly in long
integrations. Wallace et al (1983) have achieved a similar effect by
introducing an 'envelope orography' which involves using orographic heights

greater than that given by the grid-box mean.

At the root of these difficulties is the need to resolve or
parametrize the irreversible physical processes which lead to drag. Cullen
and Parrett (1986) have shown that even when high-resolution, limited area
models resolve the dynamics of flow ov;risteep orography the response is
frequently unrealistic. In particular, there is a tendency for the

mesoscale response (scale - 100 km) to be dominated by gravity wave

L
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propagation at unrealistically large horizontal wavelengths. 1In a
companion paper (Cullen et al, 1986) it is argued that the near-
discontinuous structures and separation predicted by semi-geostrophic
theory are difficult to realize in finite-difference primitive equation

models.

An interesting thought experiment sheds some light on these
difficulties. Consider a horizontally stratified, semi-infinite atmosphere
at rest and bounded below by a smooth flat surface. This lower surface is
now imagined to 'grow' a smooth symmetrical mountain quasi-statically (e.g.
a bell-shaped mountain with terrain height h(x) given by hm/1+(x/a)2 where
h, is the peak height and a is the half-width). Since the surface is
initially isentropic, it will remain so as hm increases until a critical
peak height hc is attained. When hp exceeds h,, the potential temperature
of 'a small region on the mountain top will exceed its initial value as the
isentropic 'skin' adhering to the mountain punctures allowing potentially
warmer interior air to make contact with the boundary. (see Purser and
Cullen 1986). Eliassen (1980) has also considered this problem and found
an indirect method for calculating the flow field for a particular
supercritical case. Some simple analytic solutions help to give a physical
picture of the onset of this separation effect for an incompressible
atmosphere of uniform potential vorticity. Gill (1981) put forward these
solutions as models of the balanced flow created by a homogeneous intrusion
in a rotating stratified fluid. Using the absolute momentum M = fx+vg as a

horizontal coordinate it can then be shown that the potential temperature 6

satisfies Laplace's equation:
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(NB capital Z is used to denote height when M is the other independent

variable)

and solutions may be found using classical potential flow theory (eg Lamb,
1932). Furthermore, Gill showed that the defining equation for the

potential vorticity:

and the thermal wind solution:

f gg =g §g£99 (using the equations of Hoskins (1975))

can be simplified to the Cauchy-Riemann form:

a8 gax- . 06 0
9Z M C e T

respectively after a suitable non-dimensionalization is made.
A complex potential F = x + i6 can be defined which is an analytic

function of Y = M+iZ. By choosing for instance the standard textbook

potential for flow past a circular cylinder

F(X) = % » A7y A

it is readily shown that:




X = M + W(M2+22)

and

Faebinkg

0 = 2 - 2/(\g%

thereby giving 6(x,z). (For more details see Gill (1981)). Fig 1a shows

this solution in (x,Nz) space where N is the (constant) Brunt-Vaisala
£ e : e
frequency of the undisturbed atmosphere. In this case the mountain ridge rpiuels

ey otV 3

has an elliptical cross-section with major axis equal to 2N/f times the

peak mountain height (H). The 6 contours (Fig 1a) squeeze ;ogether.at the

mountain top and the accompanying geostrophic wind (Fig 1b) has its g 7 5 l’:;lf
greatest speed at the foot of the ridge. If the half-widﬁhAis/reduéeé'theh :

the static stability at the mountain top increaées until the critical

half-width NH/p is reached (Figs 2a.b). At this pbint the:louﬁtéih

cross—section appears semi-circular and the statbe-sbabil&tyaisfintinite ae




Analytic solutions for smaller half-widths where the mountain surface
is not isentropic have not been found though inviscid piece-wise constant
solutions could in principle be obtained by the geometric method described

by Cullen et al (1986).

-:zu' 'E*.‘&'_
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A finite-difference, primitive equation model simulating the growing

RS

mountain problem would have great difficulty at the onset of separation

since thermal wind balance of the intense gradients near the mountain would

not be easily maintained and would lead to spurious inertia-gravity waves.

Numerical diffusion would also be required to control the integration and

thereby provide a spurious energy sink.

The solutions of Figs 1 and 2 are unaltered by the addition of a uniform

geostrophic wind across the ridge. The total flow then follows the

isentropes with a speed proportional to their gradient. Peak wind speeds

are attained at the mountain crest as noted by several authors (Merkine,

1975; Pierrehumbert, 1985 and Blumen and Gross, 1986). The infinite

mountain top wind speed predicted for the semi-e;reu;ar ridge case is

usually interpreted (Pierrehumbert, 1985) as the breakdeyn@pg§n§«g§§

the radius of ¢

&

semi-geostrophic theory, It appears tauaecng when

of the mountain surface measured in‘(;, szfa:apaeg»g 11s belos

radius of deromatiqn baaea enwthg)h@.
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not prevent one from constructing solutions in physical space which are
fully consistent with the equations of motion expressed as Lagrangian
conservation laws. Even so, for the supercritical mountain problem with

uniform geostrophic wind, the semi-geostrophic requirément D << f will in
Dt

general be invalid over a certain finite volume of fluid. We proceed on
the basis that if this volume is small compared to the mountain volume then

semi-geostrophic solutions will be physically relevant.

Breakdown of semi-geostrophic theory was also encountered in the
two-fluid density current model of Davies (1984). In this analytic study,
Davies was able to find an expression for the rate of advance of the
forward edge of a geostrophic density current as it encountered a smooth
mountain. Infinite propagation speeds were predicted if the current lost

stability at some point on the mountain. This paper tackles a rather

similar problem using a geometric method for solving the sémiégeOBﬁﬁoﬁﬁﬁéﬁ

equations in their Lagrangian conservation form. Solutions can still be i 
obtained after this 'slipping point' is reached. These imply an |
instantaneous transfer of fluid fron'the°s&£bpiﬂ§’pﬂiﬁ%*tésé%ﬂiﬁwﬁ< 7<5't7‘
equilibrium position downstream. We imagine that this extreme gin

geostrophic adjustment can be accomplished in reality by a

that the necessary energy loss can result from processes
substantially violate the bagig:Lagggﬁgigg'aeuaéﬁi

momentum, entropy and mass.




Consider an atmosphere composed of two isentropic fluids, such
that, in a Cartesian coordinate system, variations in the y-direction
may be ignored (two-dimensional assumption). If the atmosphere is
bounded from below by an infinite horizontal plane then a finite
volume of the potentially cooler of the two fluids will form a 'dome'
in cross-section (Fig 3). It will be assumed throughout that the
depth of the cold dome is always very much less than the finite depth
of the isentropic atmosphere (He) based on the potential temperture of
the ambient warmer air (typically about 30 km). The depth of the cold
air will also be assumed to be much less than the density scale height
based on the mean temperature of the cold air so that the flow can be
considered incompressible. In the geostrophic and hydrostatically
balanced equilibrium state with zero geostrophic wind in the warm
'environment', the dome will be supported by a geostrophic wind field
Vg (in the y-direction) in accordance with the Margules formula for
the slope of a front. The mean vorticity in the dome will be
anticyclonic with all the vertical shear concentrated in a vortex
sheet at tﬁe dome boundary. If the potential temperature of the
environment is 8, and that of the cold air dome is 8, — A8 (A8>0)

then:

- fLE (1)

where z(x) represents the dome interface profile, f is the Coriolis

parameter; g, the acceleration due to gravity and [M] kepresents the

difference in absolute momentum (M = vg+fx) measured across the




interface. Changes of Vg in the environmental flow due to vortex

compression over the depth of the atmosphere are small and are given
by the following scale argument. If the dome interface is lifted a

height hy over a horizontal scale Ly then the change in vorticity in

the atmospheric column above will be ~ fhy/Hg implying height-

independent) changes to Vg = Ldfhd/ﬂej

Taking hd ~1 km, £ ~ 10'" s", Ld ~ 300 km and Hg = 30 km consistent

with the model to be described, gives a change in vg above the dome of
1 ms~!. It can be verified a posteriori that M in the environment
fluid is well approximated by fx on the basis of these small

variations in v Alternatively, this model is exact if the two

8’
fluids are of constant density, incompressible and the environment

extends to infinity.

Each element in—Fig 3 will be considered io have a uniform

absolute momentum value, M;, (i = 1,N). The interface equation (1)

then becomes:

“the inidia iy ealiesad cOnaaant sreas. - Bainy

dz _ f8, (M;-fx)
dx ga
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element i. The right-hand corner of element i therefore satisfies the

equation:

e

z = +1 1 2
11 7 21 * 28 (de(xidix®) - My(xpeyxy)] =0 (3)

and so for the complete problem of N elements we may write this as:

Fi(X) =0 i=1, N (%)

where X = (x1,z1,x2,zz,x3 ...{.xN+1,ZN+1) and F; is the function

represented in eq. (3). ' :

Area conservtion of the fluid elements may be enforced by

requiring that:

£x1*1z(i)dx -vhil a1, N
g

= o

where Aj, 1 = 1,N are the initially defined constant areas. U

-x;)2 -

. £ 4. [
. Wem Brs zi(xiﬂ-xi) ".&-8{5"1.(11’1




Now (4) and (5) represent a total of 2N equations involving the

2(N+1) components of the vector X and, of course, the problem is not
correctly posed until two boundary conditions are included. These
simply require that (xq,2z4) and (xy4+1, 2zy+1) lie on the lower boundary
if the interface is to represent a dome. If the lower surface is a

horizontal plane then:

21 = 0
(6)
and ZN"’“ = 0

are the missing equations needed to define the problem.

Given the values of M; and A; at any time then the geometry of
the dome is uniquely determined by eqs. (4)-(6). Suppose now the
imposition of a uniform geostrophic current Ug in the the x-direction.
The y-component of the momentum equation can, under the

semi-geostrophic assumption, be written as:

DV 3¢ _
th + fu + 3y 0 (7)

where u is the wind speed (including agestrophic component) in the
x-direction and ¢ is the geopotential, (see Hoskins and Bretherton -

(1972))._ Furthermore, this may be simplified to:

DM 5
i ng ‘ (8)

Using the geostrophic wind relation and, because U8 is a constant, eq.

(8) can be integrated for each element to give:




Mj(t) = M§(0) + £ Ug t (9).

If the dome sits on a horizontal plane then the effect of this
linear increase of M in time is to cause a shape-preserving
translation of the interface at the speed of the geostrophic wind.
Changes in the dome interface profile will occur if there is

'orography' at the lower boundary.

(b) Flow over a rectangular block mountain

Consider the initial state indicated in Fig U4(a) with a
triangular wedge of cold air supported by a rectangular block
mountain. The cold air extends half-way up the 2 Km high mountain and
1000 km upstream. The absolute momentum distribution before

sub-division into elements is given by:

so that a constant difference AM along the interface implies that it
is straight. The cold air is then partitioned into 39 elements of
equal area A; and M; is set equal to 1/2 f(xi+xi+1) + AM using the

X;i's obtained from the sub-division. The boundary conditions (egs. 6)

now become:




so that the dome is forced to make contact with théféertiqéi mountain

side at x = 0. These conditions together with eqs. (4) and (5)

constitute a set of nonlinear algebraic equations for the vertex

coordinates (xj,z;) given Mj and Aj. Roots were obtained using a NAG
library routine (COS5PBF) which is based on a modification of the
Powell hybrid method (Powell, 1970). A first guess for (x5, zy) is

required though it was found that this does not have to be very

accurate in order to find a solution.

As M; increases linearly in time in accordance with eq. (9), sets

of (x;j,z;) are obtained, two of which are plotted in Figs 4(b) and

(¢). The cold air moves at a speed less than the geostrophic wind due
to the blocking influence of the mountain and the interface rises

until it becomes tangential to the top left-hand corner of the

Sl i

mountain. The tail-end of the cold wedge initially travels at a speed

1 only slightly less than the imposed 5 ms™! gébsﬁrdbhic'ﬁinﬂ”ﬂpéé&?

consistent with an upstream bloéking’1nflﬁenée?6f*o§ﬁ

(832 Zn+1) - 150 km. (Cullen et al, 1986).
o] % g

Since the element next to the mountain is un

vg increases in time leading to a trong (

sense without

point the ar




decreasing to zero, after which element N is assumed to have crossed

the ridge leaving N-1 elements. The process is continued so that one

by one the elements disappear from the upstream side of the ridge.

While elements are blocked by the mountain ridge they acquire
large absolute momentum values. When they are in the process of
'leaking' over the ridge, fluid jumps discontinuously to a new
equilibrium position downstream where M values are roughly the same as
the environmental absolute momentum, fx. As for the upstream cold
air, a new equilibrium dome may be calculated based on how many
elements have crossed the ridge and what fraction of the 'in-transit'
element has jumped over. Physically, air released at the mountain
crest has a Coriolis force f[M] acting on it which coupled with
buoyancy causes a 'weir-like' acceleration towards a new downstream
equilibrium position. Figs 4(d) and (e) show successive flow states
at later times. Shortly after the first element crosses the ridge the
downstream dome makes contact with the 100 Km wide mountain and the
boundary conditions have to be modified accordingly. Later the whole
dome moves away from the mountain as the subsequent mass transfer rate
across the ridge slows down. It moves with a speed close to the
geostrophic wind speed in the absence of any obstacle. Clearly, for
mountain ridges narrower than the 100 km chosen here the solution is
barely different. In fact the lee slope can take on any configuration

and give identical solutions (eg infinitely thin razor-blade ridge)

provided that it does not intersect the sequence of equilibrium




profiles of the downstream dome. The dominant mountain parameter is
the height of the vertical windward face which dictates how long the
air will be delayed in its transit.

Perhaps the most important aspect of this geometric solution is
the pressure force exerted on the mountain block. The pressure

difference Ap(z) cross the mountain corresponding to Fig 4(e) is given

by:

gABh

Sem (1 - 2

2z
Ap = =
p Po N hy

so that the net pressure force D per unit length along the ridge is:

2 2
gd8hgr, _ 22 in . oo 848 Mg

h
D=/mAp dz = poO
” e -, Fgs 28,

0

2

Using p, ~ 1 Kgm 3, g ~ 10 m s™1, A8 = 5°K, 8, = 300°K and hy ~ 2 Km

gives:
D~ 3.4 x 105 Nm!

or a total force of 3.4 N m~2 acting over the area of the mountain
which compares favourably with observed estimates made by Davies and

Phillips (1985) using ALPEX data.

Rather than dwell on the results obtained from this extreme
mountain problem it is more instructive to consider a standard, smooth
mountain model and make a more detailed analysis of the predicted drag

and energetics.
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(¢) The bell-shaped mountain

The principal complication introduced by considering smooth
orography such as the bell-shaped mountain (whose height h(x) =
hmaz/(a2+x2)) is that , unlike the rectangular block mountain case,
the point at which stability is lost is not known a priori and even
then it changes with time. Nevertheless, in practice, it turns out to
be little harder to use the element model in this case, particularly
since the orographic profile is specified by a single equation rather
than the five straight lines which represent the rectangular block
case. The Margules equations (4) are clearly independent of the shape
of the orography and it is the area conservation requirement egq. (5)
that must be modified. Since elements are raised.as they move towards
the mountain peak the area under the fluid interface between X; and

Xj4+q must include the area under the mountain profile ie.

241 z(x)dx
X4

where A (Xg,%X§41)

{5141 n(x)dx = ang[Tan™' (¥1+1/5)=Tan™! (¥1/5)]
1

for the bell-shaped mountain. Eq. (5) can then simply be adapted by

replacing Ai with Ai + K (xi,xi+1). The cold air is initially assumed
to take the form of a shallow, two-dimensional dome upstream of the
ridge. The boundary condition equations required in conjunction with
eq. (4) and the modified eq. (5) simply express that (x4, 2z¢q) and

(XN+1,zN+1) satisfy the orographic profile equations:

z1(a+x12) - hy a2 = 0

(10)

17




and  zy,q(a®+x%y4q) - hp a° = 0

The initial configuration of this dome together with its
associated Vg profile are shown in Fig 5(a) for a mountain of height
hy, = 2 Km and half-width a = 50 Km - typical of a smoothed
cross-section through the Swiss Alps. All other parameters are
identical to those chosen for the rectangular mountain case. If the
x-axis points eastwards then the peak value of Vg on the upstream side
of the dome corresponds to a southerly wind of 8 ms~!. Since the dome
is already some way up the mountain a smaller northerly wind occurs at
the leading edge. By increasing the M values for all elements
linearly in time, a sequence of dome configurations can be obtained
during the ascent of the mountain. When the interface slope at the
leading edge of the dome becomes equal to the mountain slope then
stability is lost and a weir begins. This is indicated when a
solution to the algebraic equations cannot be found under the boundary
conditions (10). For the physical parameters chosen here this happens
just before the cold air reaches the summit. At the onset of the weir
the area conservation equation GN(K) = 0 is replaced by an egquation

which expresses the tangency of the interface to the mountain surface

ie. i
i
dz| _ £8, (My - fxy+) _ db
dx gA® dxlx
or
2 2
228 MyTXN+1) = - 2a%hy xye1/(a%+x%.1) (11)
g

18
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using Margules' formula. Solution of the new algebraic equation set
then allows one to calculate the new area of the N th element and find
out how much fluid has been lost to the lee-side of the ridge. This
process can be continued for later times until the area is found to be
negative, at which point all of element N has escaped and the
configuration of the remaining N-1 elements is sought. At the instant
that an element completes its passage over the mountain the next
element will be below its 'slipping-point' and a short period of time
elapses before it too flows over the mountain. This is because the
interface slope is discontinuous at element boundaries and so the
tangency condition cannot be enforced continuously over the time
during which weir elements change. For most of the time integration
this short build-up phase was not encountered and the tangency
condition eq. (11) could be used at each timestep after the weir had
begun. Again, a lee-side dome could be constructed given a reasonable
first guess. This was obtained initially (when two elements had
crossed the ridge) by constructing the dome on a flat horizontal
surface by setting h, equal to zero and then repeatedly constructing
the geometry as the ridge was 'grown' to its correct height profile.
After this, first guesses where obtained from the previous timestep

coordinates (xi,zi).

Figs 5(b)-(f) show the resulting dome configurations at selected
times together with Vg profiles. The first cold air to cross the
mountain falls more or less to the foot of the lee slope and acquires

a northerly wind in contrast to the southerly jet developing on the

windward side, Fig 5(b). Note that for the element currently crossing
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the summit both portions of it making up the two domes have the same
absolute momentumf Since they are located at different positions
along the x-axis they are accompanied by different geostrophic
velocities, Vg. Therefore conservation of absolute momentum in the
implied weir between the upstream and downstream domes causes the
southerly wind at the summit to turn into a northerly at the foot of
the lee-slope. At later times the lee-side dome simultaneously
extends up the mountain and further downstream (Fig 5(ec)). Notice
that at all times the depth of cold air on the windward side is
greater than that on the lee-side giving a pressure force on the
mountain. As the supply of cold air crossing the mountain diminishes,
so it becomes more difficult to support the cold air in its passage.

Steep interface slopes implying large M are required to get the last

few elements across the mountain and this in turn produces a strong
southerly jet (-~ 20 ms~') along the ridge (Figs 5(d)-(f)). Finally,
when all the cold air has crossed the mountain and moved downstream
the shape of dome is identical to its original shape on the upstream
side since M;, 6; and Ay are conserved. During the intervening time
the dome obviously has a higher centre of mass and greater kinetic
energy so that work must have been done by the basic state pressure
field in association with Ug. An analysis of the energy

transformations implied by this sequence of equilibrium states will

now be shown to be consistent with the drag force on the mountain.
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3. Energetics and orographic pressure force

Since the mountain ridge can do no work on the flow, the energy
required to raise the centre of mass of the cold air must be provided by
the geostrophic flow in the x-direction. In this two-dimensional
formulation the basic state geostrophic wind does not change in time and
the energy is provided by cross-isobaric flow. To show this consider the

equation of motion for the y-direction in Eulerian form:

e+ udVg 4w

9% _
at 9% & 2 In-t ol ¥ 0 (12)

oy

il
N I<

the hydrostatic equation:

9%
0z

109
DID

(13)
o

and the incompressibility condition:

Ju oW
s e )
Multiplying eq. (12) by Vg and eq. (13) by w and then adding can be

shown>to give:

\

E. 9 {u(E_+¢)}, 3_ {w(E+¢)}, 3_(évy) _
R 8 wmE B ol E 08 om0 (15)

with Eg = % vg2 - %gz and where eq. (14) and the geostrophic wind
o

relation, fv, =

g o9 , have been used. Integrating eq. (15) over the whole

ax

21




domain with the assumption that the upper and lower Surfaces 5ﬁfﬁr

are unable to support an energy flux) and that u(E+¢)tx,; = u(é#&jf s

then gives:

dEg _ _ 2%V - fy

at 3y g'g (16)

where the overbar denotes an integral over the (x, z) plane. Theréfo;e;i
the existence of a net mass transport in the y-direction (down the basic
state pressure field) provides the energy source needed to allow the cold
air dome to cross the orographic ridge. Using the geostrophic wind

solution for vg it is easy to show that eq. (16) may be written as:

= Ug £ (¢ § ) dx = Ug x drag force. an

. (17) only applies in the absence of unbalanced motion where
ageostrophic eomponents to the kinetic energy are uegligible. ﬂhen the
weir has been set up.'ﬁé must be replaced by E- 1/2(u2+12*u2) in eq..{

Since the semi-geostrophiq nadel only represeﬁts sequeneea of halﬂ

RN RS
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Fig 6(b) The work done against the pbeaaure-rorca oﬁ;”f
equal to the increase in potential energy of the system until fluid ap‘

over Fig 6 (c). Kinetic energy released as fluid falls will in practice

set up surface gravity waves and turbulence which will ultimately be
dissipated by viscosityt A balanced model of this system would only 'see' :
static equilibria with horizontal liquid surfaces on either side of the

obstacle. Energy dissipation would be implicit and given by the differénce

between the rate of working of the obstacle and the rate of change of the

24
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potential energy in the system.

In the element model, the excess pressure 6P; at the surface due to

R

the overlying cold air in element i is given by:

8Py (x,t) = [z(x,t)]; - h(x)

which, on using the non-dimensional form

basdsnsbou gle

FEdov-non aalinle &



which using eq. (18) can be expanded 1"P°,=F54¢a?d.¥n§9sr919”;

force F on the mountain ridge is then simpiy given by:

N
F -~ z Fi
i=1 : o &

In order to express this in conveniional drag force units, F is
divided by 4 mountain half-widths which roughly represents the horizontal

extent of the ridge. The time evolution of this drag force is given in

Fig 7.

The peak value of ~ 1.3 N mfz occurs soon after the onset of the weir

decreasing thereafter as the cold air transfers to the lee-side of the

ridge. Note that this value does not depend on the speedﬂeh,thez;

geostrophic wind crossing the ridge. The area under the curve in Fig. 7 is

proportional to the total wqunex;raqted,rpgm:;hg basic state pressur

field and can be equated to the total energy dissipgted during ‘“&

of the cold dome over the ridge.



over all elements (i=1, N). Using the analjtie forn‘ofqh(x) it can

; -
i s 6 £ L2 0]

shown that K;j+P; are expressible analytically in terms of M;, x1;1, X
zy. 'Fig 8 shows the total work done by the drag force E(t) and the semi-

N : {
geostrophic energy Eg = 121(K1+P1), the former being defined to be equal to

Eg at t-Ot

The two energy curves more or less coincide (as they should do) up

until the onset of the weir. Thereafter the model energy Es levels off and

then falls back to its original value as the cold air dome reforms
downstream of the ridge. The drag force continues to do work until only
the last element remains to cross the ridge.
TN 8

: : e It is of some interest to relate the tota1;amount_otiener.g;§i§§1pateﬁ

during the dome's transit to a temperature change assuming thgg»the:

resulting heat energy uniformly warms the cold air.
(from Fig 8) is ~ 1.72 x 1073 Joules and can be shown to
Kg of a cold air making up the dome (based on a density of 1

£ 333 WA SR

0.034°K using a specific heat at constant presaure. |




How detrimental these assumptions are in practice can only be gaugéd

through observational comparison. In the discussion to follow ithis‘érgued
that these 'weir solutions' have many realistic properties: more so, in
fact, than the standard sub-critical solutions obtained using the

geostrophic momentum coordinate transformation.

4. - Glscuseloh

The main purpose of this paper so far has been to illustrate the
utility of a geometric method for solving the semi-geostrophic equations

deseribing the flow of a two-dimensional density current over

two-dimensional oroéraphy. Solutions can be obtained for mountain ridges

of super-critical height (in the sense defined by Eliassen (1980)) for

which semi-geostrophic theory is often thought to be inappliééﬁld’i gl o

-

primarily because of the failure of the geostrophic momentum ééoﬁdinéf&bhi

EOrY

transformation to give single valued sblutions; The Lagrangian soIﬁtions

described here involve instantaneous 'Jumps‘ between polnts In physica1~v_

r-<“'» 3 Y

i&»ﬁﬁﬁaﬂﬁ”x
space and can only make physieal sense if the propasation spee& of tﬁﬁ

':a? m"a&m %xwar £R13; ;
: implied downslope current can be nuch greater than“

geostrophic flow. “The mass tranaport rate in this
xnw;sv

control}ed by tﬁe Béianééh‘é&néﬁi@ﬁgaﬁhédie&

sy i #

equéti&ns; “The detaileyor the ueir

vy thess qummmamli%‘m printt




The existence of intense low-level jetstreams running paralléi to

mountain ridges has been reported by Schwerdtfeger (1975) and Parish

(1982), both being related to the damming of cold air. Parish found winds

of 15-30 ms~! along the Sierra Nevada Mountains at levels below 2.7 km,
particularly in association with the approach of cold fronts (Fig 9).

These barrier jets were typically of 100 km horizontal extent and compare

well with the semi-geostrophic solutions described here. Unfortunately,

lee-side observations were not available to confirm the existence of a

weir though primitive equation model results also in the paper showed

strong downslope winds. ] ; 3

Conversely, Reed (1981) and Mass and Allbright (1985) describe
lee-side windstorms in association with cold air dammed asatﬁst‘thereastern 0
side of the Cascade Mountains (Washington State, USA) though do not mention

barrier jetstreams explicitly. ngverbheleas,_tne~p0tenttal+§§nperatﬁrgt,;»

cross-sections they present are highly reminiscent dfwﬁh&a@ﬁ&ﬂ@ﬁ@ﬁ?%ﬁfiﬁ

b

distribution found in the semi-geostrophic model. Cold air

D Y s

windward side of the Cascade Mountains forming a very stable L

sountasn ridgs crest. Fotentianty vare air exists on the 3
"bora-like' downslope current of great intemsity. There is




environment and the cold air dome (5°K eompared~£o=a cross-ridge difference :

of - 10°K in Reed's study). A further contribution can come from the
11ift' force (see Smith (1979)) associated with geostrophic flow parallel
to the ridge but without cold air damming. For instance, in the

pell-shaped mountain model of section 2 (c¢) a uniform geostrophic wind v

g
could have been added to the solution without affecting the sequences of

equilibrium states calculated. An additional pressure force proportional

to the volume (area in this case) of the ridge would then act in the x

direction. 1In practice, it would be difficult to distinguish 1lift from

drag force though this difference is immaterial as far as their role,inm;he

momentum budget is concerned. Many other observational studies have found

large pressure forces to act on nountain ridges (eg Davies and Phillipa.

1985 and Smith, 1978). Hoinka (1985) noted a large diserepancy hetween the

17 fﬁvub*‘*

synoptic-scale pressure force acting on the Alps (1. 6 i 7 Nmz) in a

south-Foehn event and the mid-tropospheric vertieal momentum flux measureé



e

The importance of these large drag forces in the atmospheric momentum
budget cannot be over-emphasised (Palmer et al, 1985). Without some kind
of representation of the mesoscale momentum sink they constitute, numerical
models appear to exhibit a pronounced westerly wind bias in middle
latitudes. In this respect the semi-geostrophic equations have, in
principle, the ability to represent this physically important barrier
effect without parametrization and implicitly account for the energy
dissipation of unbalanced motion close to mountains. These 'weiring'

solutions only occur when the radius of curvature of the mountain surface

in (x, Nz) space is typically less than the Rossby radius of deformation
£

based on the height of the mountain. Analytic models of uniform potential
vorticity flow over sub-critical mountain ridges which have no drag force
are therefore to be regarded as a rather restrictive class of solutions.

An interesting finding arising from the ALPEX project is the existence
of very intense wind shears at the level of the mountain tops and upstream
of the Alps during orographic blocking episodes. A pronounced (~ 90°)
veering of the wind is often observed to occur in a layer little more than
a 100 m deep and is accompanied by a marked inversion, (Pierrehumbert and
HYman, 1985). These phenomena have their direct counterparts in the model
since the wind speed, direction and the potential temperature are all
discontinuous at the dome interface. The directional shear is particularly
noticeable close to the ridge where the barrier jet (almost parallel to the
ridge) gives way to the uniform geostrophic basic state current in the warm
air above. Of course, the agreement is to some extent 'built into' the
model formulation by assuming two isentropic fluids. Even so it is

possible to imagine the upwelling of dammed cold air in a continuously

29
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stratified fluid leading to a layer of high static stability near and

upstream of the point at which 'weiring' begins on the ridge. Such

questions could be addressed by integrating a fully stratified,

two-dimensional element model of the type described by Cullen et al (1986)

though of considerably higher resolution.

Another obvious simplification of the model is that of

two-dimensionality. Air parcels may be held up in their ascent of the

windward side of the ridge for sufficient time to travel the length of a

real mountain range and therefore go around rather than over the ridge.

Rapid ageostrophic accelerations may then take place at the edge of the

ridge as air becomes free to respond to the excess Coriolis force.
Although three-dimensional element model solutions of the semi-geostrophic
equations are possible in principle they would be very difficult to obtain

in practice due mainly to the formidable computer-logic required.

In summary, it has been found that the simple two-fluid

semi-geostrophic model described here is capable of deaeribing a claas af

physically interesting solutions whleh are outslde the donatn.of i§l:d‘Ey

of the geostrophic momentum coordinate transfbruation. Theaa '

pressure differences. 'SelutianVOSgﬁbé"§3115'”"
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Uniform flow over a two-dimensional ridge with elliptical

cross-section.

(a) Potential temperature field. Contour interval, 2°K.

(b) Along-ridge geostrophic wind, Vg Contour interval,
0.5 ms™'.

Uniform flow over a two-dimensional ridge of semi-circular

cross—section.

(a) Potential temperature field. CpntOur=interva1;‘0f53K2”:

(b) Along-ridge geostrophic wind, vg- Contour interval, 1 ms™!

Fig.

block mountain corresponding tO'tiﬂésfﬁ, 253‘”§Q°._f

minutes respectively. '4‘,1 .




Figs. 6 (a)-(c) Two-dimensional tank of .lifquid’éénﬁém_i};g ‘recta b

obstacle. (a)-(c) give three equilibrium states when tﬁéiﬁlénﬁ

is moved to the left. The system is non-rotating.

Fig. 7 The drag force on the bell-shaped mountain during the passage of

a cold air dome.

Fig. 8  Plots of the work done by the drag force (E) and the model's i

e S i W et S A SR g

semi- geostrophic energy (Eg) corresponding to Fig. 7.

‘Fig. 9  Observed barrier jet along the Sierra Nevada range from Parrish
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