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1o TIntroduction

This report investigaten the characteristics of the tracking algorithms used
by Beukers Labs Inc in their LOCATE windfinding equipment. The need for this
investigation arises from the projected use of LOCATE equipment in the MEF C,130
to track the lict.0.15 dropsonde through re-transmitted Loran C. The analysis is
carried out specifically for Joran C but the general conclusions have a wider

application.

Loran C transmissions consist of groups of 8 pulses of 100 KHz carrier (9 in the
case of the master transmission in & given chaih). The pulses within a group are
1 millisecond apart and the group repitition rate is approximately 10 Hz but the '
sctual rate is specific to each Loran C chain. The positional information required
to track an object is derived from the difference in time of arrival at the object
of some identifiable feature of the transmissions from at least 3 Loran C sources
taken in pairs. The identifiable feature used in IOCATE equipment is the zero
crossing of a negative going edge of a square wave derived from the Loran C

carrier by amplification to limiting after band pass filtering around 100 KHz.

o

The basic problom ic to maintain idcatification of the chosen zero cressings
and to measure their times of arrival (TOAs) against a stable time base. Beukers
use a dedicated digital computer under software contircl to sample signal polarity
at the chosen zero crossing and use the measured average polarity to correct the
sample time. This time is then the best estimate of the TOA. One zero cressing
is sampled in each of the 8 pulsesproviding 8 polarily measurements peir group.

If a negative polarity is assigned a value =1 and a positive polarity is assigned
+1 then the sum for the grovp (designated SRA) mey be any even number in the range
~8 to +8 with an expected value of O if the sample time coincides with the TOA of
the zere crossing. The basic tracking equations are

VEL: = VEL: "% Wy 8RA: ' —

ToA; = ToA,., + Kp. SRA; + VEL; —_—- @)

where the subscript i denotes the element in the group time series.

By using the zero crossing on & negative going edge a consistently late
estimate of TOA will produce a net negative for SRA to drive the TOA tc earlier

times. The coefficient XKp governs the response of TOA to this error signal.

The term VEL can best be understood as an integral of SRA up to the cwrrernt
sample time and is designed to correct for a consisiently increasing TOA as
experienced by the receiver moving at constant velecity for example. The
coefficient ¥ governs the response of VEL to SRA.
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The remainder of this report describes the quantitative role of Kp and Ky
in the presence of noise on the received signal both analytically and by

simulation.

2.1 The phase jitter exemplified by a constant frequency signal with super-

imposed narrow band noise.

The hard limited signal upon which puﬂurity samples are made contains the
signal and superimposed noise within the relatively narrow frequency band of the
receiver. If it is assumed that this noise is a random variable whose phase and
amplitude are relatively slowly varying functions of time compared with the
signal frequency (from the action of the narrow band pass filter) then the basic
theory of the narrow band Gaussian Random process as described by Davenport and
Root (1958) for example may be followed. This approach has been used by Poppe
(1974) in his analysis of Omega Signal algorithms as applied to LO-CATE equipment.

The probability that a zero crossing will occur at © radians displaced from

its zero noise position is given by
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where SNR is the ratio of the signal to noise power.

Thus SNR = A’  where A is the amplitude of the signal and N° is the
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variance of the noise amplitude.
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This is e¢: '1ated for SNR in the range + 10 to - 14 dB in figure 1.

The probaLility of an error of @ or less is given by:
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P(<@) =2 f ?(9)0(9 and is shown in figure 2.
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The RS phase error appropriate to a given SNR may be evaluated from

Pras

W ’I
- [ 2 S' () 4.9] ? and this is listed in table 1. ‘
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By eveluating the integral normalised distribution Z g. e©)de  and
C
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comparing this with the normalised Gaussian distribution - see figure 3, we sgee
that, for large SNR at least, the probability of a given error may be approximated
to by a Gaussian distribution with mean zero and standard deviation as listed in
table 1 for the appropriate SNR., This approximation is used in the simulation
described in section 3. The expected average value of SRA as a function of error

q may also be calculated as follows:

If the expected TOA is displaced ¢ from the true zero crossing then the
probability of the sample experiencing a polarity + 1 is ¢
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Thus the expected value of SRA for the given @ and SNR is
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This has been evaluated for a range of SNRs and the results are shown in figure 4,
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for the positive half cycle.
The gradient %ﬂ SeR) is a measure of the sensitivity of the polarity error to

phase error §. This quantity is clearly a function of ¢ and SNR. Thus at large
signal to noise ratios a small error = ﬂ will give an average SRA close to the
maximun i.B but at low SNRs quite large errors in phase will give average SRAs
considerably less than % 8. Nevertheless if we assume that the phase jitter is
largely due to noise (and we shall see in section 3 that this is a reasonable
approximation) then the probability of achieving an error ¢ in the knee region of
any of the curves Shov shown in figure 4 is quite small and we may calculate an average

sensitivity (scA)] from
SNR
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The results are listed in table 2, and it is clear that the average
sensitivity is close to the initial slope of the curves in figure 4. This
approximation is useful as it allows pseudo = linearisation of the tracking
equations. Its validity is tested by comparing theory and simulation in section 3.

202 Response of the tracking equations.

Equations (1) and (2) can be combined to give 3

i
- - K_. SRA
T0A; - T0A;_, = K .SRA; + K .22 SRA,

If the TOA in the absence of noise is varying with time as TOA- = f (%) and
the measured TOA is TOA; then

TOAL = f (t) + ¢ (t)
and TOAi-t= £ (t - At)+ ¢ (t -=At) where At is the time between
groups of the 8 Loran C pulses (typically 4t = 0,1 sec)

then  TOAL = T0Aj—q = £ (t) =f (t-At) + ¢ (t)+ ¢ (t -A%)

and recalling that the negative going slope zero crossing is used so that [C( (sR4)
sug

is less than zero.
t
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Assuming f = 0 for the moment so that the system response under steady but
noisy conditions may be investigated
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This has solutionsof the form
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i.e. the solutions are underdamped, critically damped and overdamped
respectively.

Thus to optimise the speed of response and to prevent instability as

exemplified by an oscillatory response we should set
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Obviously this condition can only be met for one particular SNR as I E{'{_(SER),
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is a function of SNR. The response will be overdamped or underdamped depending
upon whether the actual SNR is greater or less than that used to set up equation 8.

We can also identify 2 = _Z2.4t = ¥, as the time constant of the
o kt,'g._’(scﬂ\l&c

critically damped solution. Z  clearly decreases with increasing SNR.
It is instructive to esctimate the response in the vicinity of the critical

condition 4 ﬁ = ot , In the oscillatory case periodicities much longer than the

damping time constant will be greatly attenuated.

Let TP = 2"'/urﬁ’ %‘ — the oscillation period.

and . T = 2/1
then if adequate damping is achieved for Tp =2 nZ where o0 > h > O

we find the condition
2 2
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In the overdamped case a similar analysis can be performed if we identify
Tone = 2/~ J¥48) and again T = 2/ . Thus with the condition @ max < wmT

where m>1 we find
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Thus if m = 105 F; > 0.8 x*
m
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Therefore we may express the composite condition

(L2 4 n? i 2M") where in the limit n—>ew K m— |
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Possible choices of n and m are investigated in section 3.

Rewriting equation 4 assuming «'= 4@ and using the parameter 7T = 2/

we have A8 o 244+ L @ - -
aet Tak T° e

Now if £ (t) =% & t2 i.e. the tracked object experiences a constant
acceleration of a , then with the boundary condition ¢ = 0 when ¥ = 0 we find
& = iLaT‘(c“/r—l) (6)
Thus if a = 10 m/rsec2 =1g and ¥ = 5 seconds we find that the estimated
TOA will lag by the equivalent of 125 m after the transient response has died away.
If I is 2 seconds this steady state lag falls to 20 metres.

During accelerations the system response may be inadequate to maintain
acquisition of the chosen zero crossing. For example, if the sample time
continually lags behind the true TOA then a point may be reached when, because the
polarity signals are periodic (see equation 7), the system is driven backwards to
the previous negative going zero crossing. This is known as 'loss of lock' or in

navigational terms 'lane skipping'.

The analysis based on equation (4) is valid only if noise provides the major
contribution to the error signal. Specifically the use of the error @ in this
equation is possible only because of our pseudo-~linearisation through the use of

(.é_‘(;aa) swe + This is becoming increasingly invalid as @ — 2.5 p secs

(see figure 4) and for @ > 2.5 n secs 3’-_’(:“) changes sign to drive the sample

time in the wrong direction. However, we may estimate the limiting condition.
In the vicinity of @ = 2.5 p sec SRA will assume a maximum value so that the
velocity and acceleration terms equivalent to #% and ¢ will tend to zero.
: et ot

Therefore the remaining term must be capable alone of matching the imposed

acceleration. Thus Kv. SRA > Af" where ¥’ is the acceleration of the
Atl max Zél dtl
true TOA., Hence if the maximum likely acceleration is 10 m/sec2 then

052};’ = 0,033 p secs/secz. For SNR = 0 dB the expected average maximum value of
SRA is ~ 6.7 (see figure 4) and hence KVSNR 2P 4.9 10-5. A list of minimum




values of Kv for vﬁrious maximum eccelerations is given in table 3 as a
| function of SWR. These are tested in section 3.
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3« Tracking simulation,
A computer program has been written to simulate the tracking equations.

The object to be tracked is constrained to be on & line between two transmittexrs
so that only two TOAs are computed and the geometery is optimised to that of a
Loran C baseline. A time step of 0.1 second is used to coincide with the nomiral
Loran C repetition rate. The simulated signals from the two transmitters are
treated entirely separately. At each time step for each signal, the true TOA
(ATOAC) is calculated from the imposed body velocity, acceleration and previous
position. Each measured TOA (AMIOA) is calculated by adding an error (DT) to ATOAC,
The error is generated by sampling a Gaussian distribution with mean zero and
standard deviation as given in table 1 for the assumed signal to noise ratio. The

Gaussian distribution is generated from the standard IBM FORTRAN sub-routine 'GAUSS!

driven by the pseudo-random number generator 'RANDU'. The errors for the two signals

are of course drawn separately from their respective populations. A parameter
DTOA = AMTOA =~ ATOAj-q1 dis then calculated where ATOAj_q4 is the last estimate
of the appropriate TOA (i.e. the simulated zero crossing sampling time). A

signal polarity measurement is generated from

RA= DIoA x ( -1 )N where N = lDTOA, oo (7)
| proa] 5.0

(the units of TOA etc are p seconds)

This procedure of deriving DI'OA and RA, is repeated eight times, keeping ATOAC
and ATOAj_q constant, but using a new sample of DT each time from the respective
error populations of the two signals. The sum of the eight polarity samples gives
ASRA which is used to generate the new estimated value of ATOA from 3

AVELi = AVELi-1 + Kv x ASRA
ATOA; = ATOAj—q + Kp x ASRA + AVELj
The two signals produce ATOAj and BTOA; by the above procedure.

These are averaged over one second ( ATOAj and BTOAj; )

and the time difference is formed from TIE = ATOA =~ BTOA

this is used to form an estimated body position using the scale factor of 150 méb sec
appropriate to the assumed base line operation. This is compared with the true bedy

position as are estimated and true body velocities.

This program has been used to test the validity of the theory developed in
section 2, In the ensuing discussion the tracked body is at rest wntil & = 200
- seconds and then accelerates at 10 m/'sec2 to a velocity of 300m/ée02 and remains at
that velocity until t = 600 seconds at which time the simulation ceases. It is
appreciated that this velocity is somewhat unrealistic but it does allow a
significent period at constant acceleration to test the theory.



A typical result of a tracking simulation is shown in figure 5 for SNR = 0
¥ =5sec n= (critical damping). True and estimated positions are the
average of the 10 values available each second and the error is obtained by
subtracting this 1 second mean true position from the 1 second mean estimatef
The acceleration lag is very apparent,as is a 30 metre offset during the constant
high velocity phase. This latter arises because the effective servo mechanism
of equations 1 and 2 attempts to stabilise the TOA estimate to be correct for the
next sample time 0.1 second hence. Thus the estimate of position is Vx At in
error under steady conditions,in addition to the superimposed noise effect. This
is a small error at low velocities but is quite well defined at 300 m/sec. If
necessary in a particular application, this can be allowed for by correcting the
time of the position estimates by Ak . :

The first test of theory consists of a comparison of the T0A lag during the
constant acceleration ,8s exemplified by simulation ,7ith that predicted by equation 6.
The results are shown in figure 6. The error bars denote the spread in lag during
a simulation. Equation 6 underestimates the error as Kv decreases towards the
limits defined in table 3 but there is a broad agreement between numerical
experiment and theory, over the range + 10 > SNR > - 10 dB.

Ve next verify the lower limits on Kv given in table 3. In this test Kp was
set to a value appropriate to & = 10 seconds and Kv was decreased wntil lock was
lost. An acceleration of 10 m/sec:2 was used in all simulations. The results
suggest that the figures in table 3 are, as expected from the simple analysis of
section 2, rather conservative estimates of the lower limit. Iock was lost at
approximately 80% of the limits suggested in table 3 for SNR = O or 10 dB and at
50% of the' limit for SNR = = 10 dB. Nevertheless, the analysis certainly provides
adequate design criteria. The phenomena of 'lane skipping' or 'loss of lock'! is
exemplified in figure 7 for SNR = 0 dB Kp = 4.4 1073, Kv = 4.0 10~9. Note the
increased error scale in this figure compared with that of figure 6,

The prediction of oscillating behaviour was verified by setting Ep = Te33 10“4,
Ev = 9.7 10-5 during a simulation run in which no acceleration was imposed.
This choice of coefficients produces an underdamped response of T = 60 secs and
oscillating period Tp = 30 secs for SNR = 0,according to theory. The results are
shown in figure 8. 4An oscillation with an average period of 30.8 secs is clearly
identifiable.

The system response in the vicinity of the critical condition 4 F = ocz was

established by setting T = 5 seconds, SNR = O dB and calculating the RMS position
error during the first 200 seconds and during the acceleration rhase of simulation




for Kv sel according to the various criteric m=2, n=e0 , n=3, n= 2,
n = 1. The results are listed in table 4. As n decreases,the error during the

acceleration phase decreases quite considerably,but the error during the steady
prhase does not show any marked increase until n falls to 2 or 1. Setting m = 2
(overdamping) produces an insignificant improvement in the steady state error but a
significant increase in the acceleration lag. Thus if the tracked body exzperiences
significant acceleration there is a worthwhile gain to be achieved from setting up
a slightly overdamped response. For design purposes the criterion n 2 3 appears

reasonable,

From the above comparisons it appears that the pseudo-linearisation described

in section 2 does.allow a reasonable analytical description of the system

performance as verified by the numerical simulation,and that its limitations
(e.g. minimun value of Kv) are quantifiable. We are now in a position to generate

design criteria for the system response i.e. reasoned optimisation of Kp and Kv.




4. Optimisation of Kp and Kv.

Any optimisation scheme depends upon an adequate definition of the environment
in which the system is to be optimised and upon a statement of the required system
performance. Therefore before considering some Specific examples it is necessary
to consider in more detail than in the preceding sections how the environment and
performance should be defined.

(a) The effects of acceleration.

We have identified the effects of acceleration of the tracked body on the TOAs
and the analysis in section 2 is of direct application to a self tracked object such
as an aircraft for example. We are also concerned with the problem of tracking a
remote sonde by the retransmission of Ioran C on a UHF link to a mobile receiver,

In this case the time of arrival is & function of both the LF transmitter - sonde
distance and the sonde = receiver distance. In a simple one dimensional model of
an aircraft dropping a sonde on the baseline between two transmitters such that at
some time ¢, the sonde is D1 from transmitter 1 and P2 from transmitter 2 while

the aircraft is a distance d from the sonde then

TOA, = (p_1 +d)/c
TOA> = (2? +d)/c

where any phase shifts in the sonde, which should certainly be constant, have
been neglected. At first sight it appears that the sonde aircraft distance é;is
unimportant as it cancels in the formation of time differences. However, the TOAs
are ihdependently tracked so that for example a sonde moving towards transmitter 1
along the base line will produce an essentially constant TOA; at a static receiver
and TOA2 will increase because of an increase in both.gg and é:. Even in g situation
where acceleration in d far exceeds acceleyation in if (due to movement of the UHF
receiver) cancellation will not be exact unless both tracking algorithms exhibit
the same response to acceleration. In section 2 we showed that a constant lag of
% a.Tr'z was eventually achieved under constant acceleration a y for critical
damping. Thus to remove dependence ongL in the time difference, T should be
identical for both algorithms. Figure 9 demonstrates that this cannot be achieved
for a particular choice of Kp if the two SNRs are different from one another.

Thus the accelerations likely to be experienced by both the tracked and UHF
_receiving/hnalysing bodies are of importance in any optimisation scheme.




(b) The effeocts of cignal to noise ratio.

Vie have established the dependence of the constants « and ﬁ upon ths signal
to noise ratio. This arises directly from the use of a polarity detection
servo-mechanism and is not a feature of a linear servo for example. Optimisation
depends upon a knowledge of the SNRs likely to be experienced as we have seen above.
We should, however, note that the dependence of x and fB on SNR does serve to
reduce the range of RS position errors experienced for a given choice of Kp and Kv
over a renge of SNRs. The fact that T increases with decreasing SNR in figure 9
(leading to increased smoothing as the noise increases)demonstrates this feature.

We must therefore be aware of the likely range of SNRs in the operating area and
expect, in genexal, to set up the tracking algorithms through Kp and Kv for each’
signal separately.

(¢) System performance.

In the preceeding sections of this report we have used position errors as a
means of defining the performance of the system. In practice it is the time
derivative of position error which is most relevant to wind finding, and we should
seek to optimise for minimum error in the band of the error frequency spectrum
which contains the meteorologically significant data. This in turn impinges upon a
range of problems not suited to this report such as optimum sonde fall speed,
representivity of measurements at a point, significance of features as a function
of their scale, etc. It does, however, seem clear that we should (a) not over-
smooth the data so that possibly significant data are removed or large isolated
errors are aliased into the output time series (b) not allow motion of the
aircraft (for example) to influence the tracking data. This approach allows the
problem of filtering the time series to be solved at a later stage.

We may now define a set of general design criteria as follows 3

1) To avoid poor response under acceleration of the tracked body‘and/br to
avoid the insertion of errors into the data from acceleration of the tracking body
(e.g. aircraft) the effective time constant should be maintained at as low a
value as is necessary to achieve a lag err&r (3 aT for critical damping = sce
equation 6) which is comparable with the RMS error under steady state conditions.
The HIS position errors obtained during simulation runs for a stationary body are
shovmn in figure 10 as a function of SNR, and time constant Z~ for both critical
and underdamping (n = 3). Comparing these data with figure 6, we see that &
should be 2 to 3 seconde fora ~ 10 m sec:”2 and -10 <SNR < 10 dB.




1 (~“ , . .
‘Tij’ [ %L‘“’w& > Ky (lm = with n = 3 for the minimum expected value of
' ’a;&kq, » i.e. for the lowest expected SNR.

Thus Kv < 1.347 sz ”%_;ER}'W with the equality used for the lowest

likely SNR. This criterion must however be subject to the condition that ,given the
¢ meximum likely TOA acceleration,Kv should not be significantly lower than the limits
given in table 3, to avoid 'lane skipping'.

Figure 11 is a useful optimisation nomogram showing the relationship between
Kp and Kv for critical damping at a range of SNRs. An operating point to the right
of a constant SNR locus corresponds to underdamping for that SNR and a point to the
left produces over damping. Thus Kp = 2,2 10—2, Kv = 5.5 10'-4 corresponds to
critical damping with a time constant of 2 seconds for signals with SNR = O dB;
to underdamping with T = 7.5, na 4 for SNR = =10 dB and to overdamping with
X =0.68ecy, m=6 for SNR= + 10 dB.

Example 1. It is required to track an aircraft travelling at a true air speed of
. 150 m/sec, capable of executing up to rate 2 turns (6°/sec) where the minimum
expected SNR i =10 4B and the average for both signals is O dB. The quoted
rate of turn implies that the one dimensional velocity of the aircraft can reduce
from 150 m/sec to zero in 15 seconds (the time taken to turn through 90°).

This is an average deceleration of 10 m/secz. Thus the displacement error
will be ~ § Tl for critical damping., From figure 10 the average SNR of O 4B
will produce, under constant velocity conditions, RIS errors of 20 to 30 m. To
maeintain a comparable acceleration error T~ 2 seconds and Kp = 2,2 10-2.

We may now determine Kv from the requirement that n = 3 for the minimum

SNR  ~10 4B, giving Kv= 8,06 10”4, Inspection of figure 11 shows that the
working point so defined gives slight underdamping for SNR = 0, and slight
overdamping for SNR = + 10 dB and that Kv exceeds the minimum required to
maintain lock at the stated maximum acceleration. The RUS errors during the
static phase of the simulation were 61, 30 and 11 metres and 91, 41 and 14 metres

. during and shortly after the acceleration phase for =10, O and + 10 4B
respectively. Note that the matio of the static RUS errors for * 10 dB is
. approximately 5.5, .A‘'comparable linear servo, in which 7~ is independent of SNR,

ig expected, from the daia of figure 10, to produce a ratio of ~10. (see discussion
in 4(b) abvove)

’




Example 2 To track a balloon borne sonde rising at 6 m/sec when the

re-transmitted data are received at a static site. It is known that maximum likely
wind shear in the atmosphere is 0,05 taec-1 and that the signal to noise ratios of the
two transmitters used are =4 dB and +6 dB. JFor simplicity we will assume that tho
receiving site is on the baseline at the launch point and that all motion is along
the baseline. The ascent rate and maximum shear imply a maximum horizontal
acceleration of 0.3 m sec-z. However, there is an additional acceleration at lsunch
as the sonde vertical velocity increases from O to 6 m/sec. Simple mechanics
suggest (a) an initial acceleration of 0.5 g for a 4 Kgm payload + balloon
with a typical free 1lift of 2 Kgm and (b) that 90% of the 'terminal! vertical
velocity will be achieved within ~ 2 seconds. Therefore for computational purposes
we will assume an average acceleration of 3m tsec-2 lasting for 2 seconds after
launch.,

Initially at least we will ignore this short diration acceleration and design
for a maximum error of 0.3 m sec_z. ~From figure 10 a time constant, 7 = 10
seconds is compatable with such an acceleration. Despite the implication that
the SNRs are constant)in practice we design for a slight amount of underdamping
so that small changes in signal strength maintain our design criterion of n z 3.
Accordingly we set up Kp and Kv for n = 5 thus 3

SNR = =4 &B Kp = 7.35 1073, Kv = 9.5 107
SNR = +6 dB Kp = 2,13 1073, Kv = 2.7 1072

A flight was simulated by setting a vertical acceleration of 3 m sec 2 for
the first 2 seconds and horizontal acceleration of O3 m sec-z from + = 100
to 200 seconds and =0.3 m sec > from t = 300 to 500 seconds. (Positive
acceleration, wvelocity etc. are towards the transmitter of the 6 dB signal).
The time series of position error is shown in figure 12. There is very little
evidence of any of the accelerations mapping through into this time series.

Example 3 To track an aircraft dropsonde falling in still air from & manouvering
aircraft. We will assume that the aircraft drops the sonde while travelling along |
the baseline at 150 m/sec, and that 100 secs later it makes a 180° turn at 3°/éec |
onto a reciprocal track (neglecting the movement off the baseline). We will further |
aseume that the sonde is 60 m beneath the aircraft falling vertically at the moment
of acquisition, Initially we will use the aircraft tracking data at 6 secs after
launch for the starting point of sonde tracking but will suhsequently investigate




methods of improving the starting point. We will assume that Loran C transmissions

are received at the aircraft after the re-transmission from the sonde with average
SNRs of + 6 dB from station 1 and = 4 dB from station 2 but also investigate the

effects of changing these.

The stated rate of turn is equivalent to a linear acceleration of ~ 5 m sec“Z

so figure 10 suggests ZT = 3 seconds. If we suspect the possibility of a
decreasing SNR through the sonde drop then it is sensible to set Kp and Kv for

critical damping initially. Thus for
SNR = + 6 dB Kp = To1 1073 Kv = 1.18 1074

SNR = = 4 dB Kp

2,45 1072 Xv = 4,08 1074

During the first simulation run of the above example it was found that lock was
lost, during transfer from the aircraft TOAs to those from the sonde, on the signal
from the transmitter shead of the aircraft. In the six seconds between ejection of
the sonde and attempting to track it the aircraft moves 900 metres. Thus a step
change occurs in the TOA, of the signal from the transmitter towards which the
aircraft is moving, of 6 psec. This is due to an additional 900 m of path-length
for the Loran transmission and a further 900 m (approx) for the UHF pathlength
back to the aircraft. This error leads to a skip of one cycle (10 pw). The other
transmission does not exhibit the effect because the UHF sonde-aircraft pathlength
compensates for the reduced LF pathlength to the sonde. In general, off the
baseline, the errors will lie between these two extremes of 0 and 6‘ps.

As the sonde may be expected to lose its aircraft-given velocity very quickly
after parachute deployment, a better starting point for sonde tracking is given by
the TOAs at the moment of ejection to each of which is added a delay given by
V., xt/e. V, is (ideally) the aircraft ground speed, t the time between
ejection and acquisition of the sonde and ¢ is the velocity of electromagnetic
radiation. Any constant phase delay produced by the sonde would in practice also
be added. : ;

This method was used in the second simulation and the resulting 1 second
position errors are shown in figure 13. ILock was maintained. There is a remaining
source of error at acquisition caused by the use of a zero velocity word for the
sonde although both TOAs are increasing at a rate of 0.05‘Psecs per 100 milliseconds
due to the increasing sonde - aircraft UHF pathlength. The velocity words at
acquisition were set to 0,05 in the third simulation. The resultant position
error time series is shown in figure 14, Very little improvement is apparent.



This is because care was taken to match the time constants of the tracking
equations so that almost equal errors were caused in d and hence cancelled in the
time difference.

The fourth and fifth simulations were run with the SNRs of the two transmissions
reversed with the originally allocated values of Kp and Kv. The velocity worﬁs
were zero at acquisition in the fourth simulation (fig.15) and 0,05 in the fifth

: (fig.16). The effective time constants are no longer matched and aircraft
acceleration from t = 94 to t = 154 secs maps onto the position errors.

' The pronounced error in the vicinity of t = 270 is due to the acceleration in the
TOAs as the aircraft approaches, passes overhead and recedes from the sonde. In
addition the fourth siumulation exhibits a large error shortly after acquisition
while the wvelocity words build up at different rates. Finally in the sixth and
seventh simulations each SNR is decreased by 6 dB below the value used in the
optimisation of Kp and Kv. The effective time constants tend to increase together
so that aircraft motion, although just discernable in figures 17 and 18 is not as
pronounced ag in figures 15 and 16.




5o Conclusions

e s

The basic theory of the Beukers Iabs Inc tracking equations has been
developed and the concept of pseudo-linearisation found to be both valid
(within limits) end useful. A simulation program has been produced initially
,to test predictions of the theory but also to model complex interactions
inherli in the re-transmission concept of LO=CATE. A set of optimisation
criteria have been derived for the coefficients which govern the response
of the tracking equations. Finally these criteria have been used in

some specific examples of interest.
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Appendix. Determination of SNR.

As SNR is such an important design parameter for the optimisation of Kp and

Kv it is very desireable to establish its value for each Loran C signal.

As suggested by Poppe (1974), let us suppose that a second polarity sum SRAT
’
(- analagous to SRA) is generated from samples taken at & fixed time T after

* the TOA samples. Then from the data of figure 4 we may determine the average
A value of this sum as a function of SNR., The relationship is shown below and
clearly by choosing T to be in the vicinity of 1.0 to 1.5 psecs the average
value of SRAT may be used to infer the average SNR.
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TABLE 1

Root mean square phase error as a function
of signal to noise ratio.

SKR (aB) | ¢R‘qs(radians) ! ﬁms()l secs)
10 0,230 0.366
8 0,297 0.473
B 6 00392 0.622
4 0.527 0.839
V 2 0,694 1.105
0 0,871 1.39
-2 1,040 1,66
-4 1.188 1.89
-6 10313 2,09
-8 10415 2¢25
=10 1,497 2,38
-12 1,563 2.49
-14 1,615 2,57
TABLE 2 Expected average rate of change of SRA with phase
' error as & function of signal to noise ratio.
Sy UL APV it N : |
SNR (aB) | I —;SRR)I ( /useé')
10 14,70 %
8 11,79 !
6 939 §
4 Ted3 . i
2 5083
0 4¢55
=2 3053
-4 2,72
d -6 2,09
-8 1.61
i -10 1.24
-12 0,96
=14 0.74




TABLE 3

Minimum value of Kv to maintain zero crossing acquisition

for various body accelerations.

Minimun X_ (in wnits of 10—5) for stated
%gg) SRA ax maximun expected acceleration (m/éecz)
10 5 3
10 8,0 401 201 163
8 8.0 4.1 201 103
6 8,0 461 201 103
4 7.8 4.2 261 103
2 To4 405 2.2 144
0 6.7 4.9 244 15
-2 509 506 2.8 1.7
-4 560 6.6 %3 2.0
-5 4.2 709 3.9 2.4
-8 3+4 90T 4.9 2.9
-10 2,8 12 509 3.6
=12 2,2 15 Teb 4.5
~-14 10,8 18 9.2 5.6
TABLE 4 RS position errors in the vicinity of critical damping for
SNR = O 4B, = 5 seconds.
Criterion Steady state Acceleration phase

RIS error (metres) RIS error (metres)

D=2 19.7 22645
n = 2045 190.3
ne=3 28,1 52.6
ne?2 32.8 41.0
n=1 5546 56.2
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