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Traditionally the accuracy of a finite difference approximation for the advective
terms in the equations of motion has been examined by comparing the damping
and phase speed characteristics of the schemé,with the analytic Dbehaviour of a1l
resolvable waves, e.g. Gadd (1978). The errors are usvally largest Zar the
shortest waves. The constraints imposed by modern computers ensure that most
meteorological models will contain some po&rly resalved features. In practice
anomalous dispersion leads to ripples of significant amplitude on the edges
of such disturbances. Even a scheme with no phase errors must suffer in this
way due to the discretisation of the mesh (Boris and Book 1976). In this note
the ability of several schemes to preserve the shape of a disturbance is
examined. Shape preservation may be crucial in some models to retain the
qualitative nature of the-solution and also to ensure that a variable remains
bounded by its initial extrema. In cloud models with an explicit moisture
parametrisation the failure of water variables to remain positive can be a

serious source of error (Clark 1979).

The linear advection equation in one dimension, for some variable q,

3k dx |

where € is the constant advection speed, has been solved numerically to
illustrate these points. Figure 1 shows the results of advecting a poorly

resolved disturbance (described over seven grid poinfs) for 200 time steps with

a Courant number, (c bt/Ax; where A:{, At are the space and time increments
respectively), of 0.5, using several advection schemes. All the schemes are

___written in flux fom to conserve the nomalised linear integral
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For the leaﬁffoguééhémes most of the loss in ][2. ie due to>the start up procedure

chosen. The figure shows the resulting disturbance shape, quadratic conservation

( I?.) and the time taken to compute the solution for each of the schemes. (The

times were obtained using vector FORTRAN on a CDC Cyber 205 computer).
The leapfrog schemes are best for maintaining 12 but produce oscillations

where the gradient changes rapidly. The Gadd'(1978) scheme has a larger phase
error than the 4th order leapfrog scheme and, as pointed out by Gadd (1980),
also produces significant oscillations. learly such schemes are extremely
bad at shape preservation for poorly resolved features despite their formal

accuracy.

It is well known that such oscillations can be eljminated by using upstream
differencing but that this is very dissipative, Zalesak (1979). Recently more
complicated schemes have beer introduced, (Boris and Book (1976), Harten (1978)),

that eliminate or greatly reduce oscillations in the solution without excessive

damping. Good shape preservation is achieved by a careful combination of a

low order scheme (such as upstream differencing) with a high order scheme. For

example, let o
LAY

q( = Ar'\- — 8« F (24)

define a finite difference approximation to the advection equation, (1), where the

flux F (= cq) is defined at points between 9 values and the notation is

conventionale The flux is represented by the expression

F= (1-—SY>W+ SL 0sS¢1 @y

where H is the flux cglculated using some high order scheme, (order 2 or above, such

as Gadd (1978)), and L is the flux from a low order scheme (order one or zero,

such as upstream differencing).. S is a function of q designed to reduce the

formation of oscillations. The quantity determines the weighting of the

schemes at each point.

= I (3)

Three possible methods of evalu
(&) ;

usespand ? is chosen empirically to optimise the results.

ating S have been suggested. Harten (1978)




Clark (1979) describes a function which acts selectively when the variable

approaches some critical value taken here as

S = Sy 2‘. A x (&)
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wheret&o is an extremely small positive number required to prevent possible

division by zero but otherwise irrelevant to the scheme. The lower bound,
qQ = 0, is appropriate if q is a water variable in a cloud model.

Finally E; can be evaluated by a flux corrected transport (FCT) algorithm

as described by Boris and Book (1976) and Zalesak (1979). In this ES is an

approximation to the largest values for S that can be tolerated in (2) at

each point without producing new maxima or minima. S is expressed as a

function of g, H and L, and is described in Appendix A.

In Figure 2 a comparison is made between & number of hybrid schemes using these S
functions. All of the schemes use upstream differencing for the low order flux. The

Clark scheme uses the specification (4) with the Crowley scheme (Crowley (1968)) for
the high order part. The Harten-Crowley scheme also uses the Crowley scheme but S is

given by (3) with p = 1, (this was found to be optimal value in the cases considered
below). The form (4) is also used in the Hybrid Gadd scheme while the high order flux

is that given by the Gadd schemee The FCT scheme uses

- ¥ 4 :
H = c>'CL' ‘
and would be unstable if S = O but the algorithm used for calculating S prevents 1

thise Only the FCT algorithm has this property and if other methods are used for

‘ det?rmining S the constituent.schemes are redﬁired to be separately stable.

Clearly all the hybrid schemes are worse than the non-hybrid schemes (Figire 1)
for maintaining quadratic conservation (12) and considerably more time‘consumiqg.
.However'shape preservation is mueh better. The result of the FCT scheme shows the
least damping and most accurate position of those obtained usingﬂ}he hybrid schemes.
fhe téndency for FCT algorithms to produce a plateau instead of a peak, evident in

this case, can be reduced foilowing'Zalesak (1979) with some additional computation.
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The advection of a poorly resolved single cycle of a wave is shown in
Figure 3. It is apparent that the non-hybrid schemes grossly distort the
function shape. The Hybrid Gadd scheme is extremely dissipative but the FCT
performs well. The behaviour of all the schemes is much improved for a well
resolved disturbance. Figure 4 shows the advection of a single cycle wave
resolved over 14 points and a Courant number of 0.1 by several of the schemes,
As expected the differences between the results obtained using the different
schemes are much reduced compared wi£h those in Fig 3.

The Clark formulation for S (equation (4)) has been used in a hybrid
scheme for the water variables in the cumulonimbus model of Miller & Pearce
(1974) in which the Miller alternating time.step algorithm (Thorpe (1982)) is
used as the high order scheme. Previously the negative values produced by the
advection scheme Qere set to zero producing a spurious generation of water in

the model. Although this was small compared to the physical terms, it was

conmparable with the small residual between production and evaporation of
rain water. Predicted rainfall with the new scheme was changed by several
hundred per cent. -

In conclusion it is apparent that sewemes exhibiting high formal accuracy
are not good at preserving the shape of poorly resolved disturbances. There
is substantial computation involved.with schemes such as FCT but when
localisation and boundedness are essential they may offer the best rational

choice.
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AEpendix A The FCT Al gorithm

| The FCT algorithm used for this work uses the original flux limiter
| introduced by Boris and Book (1973). '

N+l |
Equation (2a) is solved in two steps. An intermediate field of (1/* |
|

is calculated as

n<l n

Yo = F 7 S=b )
nl
where L is the flux given by upstream differencinge. Then % is
calculated by
-l N\
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where H is shown in equation (5), and (1=S) is the flux=limiter defjned by
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and

where (i + %) as a subscript indicates an expression evaluated at the mid point
between grid points labelled i and (i + 1).
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Fioure Captions

Figure 1

Figure 2

Figure 3

Figure 4

Comparison of solutions from several advection schemes after 200
timesteps with Courant number 0.5. Horizontal axis tick marks
denote grid points from a domain of €600 points. Timings are
quoted as multiples of the 2nd order leapfrog tinme.

As in figure 1 for the hybrid schemes. (}\&fken Cxc&ﬂzj ahaaak e &
On am ITEBM 3bo /1as).

As in figure 1 for advection of a single cycle wave with comparable
resolution. Tick marks on the horizontal axis denote every 4th

grid point.

As in figure 3 but for a Courant number of 0.1 and a well~-resolved

initial wave.
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