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AnsTracCT
The potential vorticity (PV) is a property of the atmosphere which

iz characterized by the divergence of a vector field. It is illuminating
to draw an analogy between electrical charges and PV anomalies. Here the
field induced by quasi-geostrophic PV charges is chosen to be a quantity
which does neot depend on conditions imposed at boundaries at a finite
distance from the anomaly or on the mean static stability or density
profiles. This field describes action-at-a-distance. Elementary
PV-charges involve circulation about a vertical axis as well as a
vertically-oriented temperature dipole. A further consequence of this
electrostatics analogy is that the atmosphere is analagous to an
anisotropic dielectric material and hence the existence of a "bound" PV
charge is implied. The mean static stability measures this dielectric
property of the atmosphere and the dielectric tensor for the
quasi-geostrophic system is here presented. The bound charge concept
provides an elegant physical picture of how vertical gradients in the
mean static'stability parameter, such as occur at the tropopause, affect

the flow produced by PV anomalies.

The problem of attribution, namely attributing parts of the flow to
particular PV features, is considered in the light of the electrostatics
analogy. Imposing conditions at boundaries is equivalent to including

possibly spurious PV ancmalies exterior to such boundaries.



1. InTrRODUCTION
In this paper the analogy is pursued between the particle-based

theory of electrostatics and the quasi-geostrophic potential vorticity.
This physical model provides a theoretical basis for the concept of
‘Mantigon-at-a-distance"™ which is a cornerstone of potential vorticity
thinking. The model is based on parcels of air having an inherent
property, namely their PV. Just as in basic physics to understand a
significant subset of fluid dynamical behaviour the atmosphere must be
considered to act as though it were composed of particles, or charges,
of PV. An advantage of imagining that the atmosphere is composed of
particles or parcels of super-molecular scale is that conservation laws
can be applied easily (c¢.f. Hockney and Eastwood 1981). Feynman et al
1965 notes that analogies are common in physics and Hoskins et al 1985

{HMR) refer to the electrostatics analogy for PV in their review paper.

The essential aspect of this analogy is that it emphasises the
field theoretical aspects of potential vorticity. Charge induces a field
and it is this field that implies action-at-a-distance. Here we consider
the implications of this analogy for the static aspects of the balanced
flow associated with potential vorticity anomalies. Advection 1is of
equal importance but is not dealt with here in any detail. It should be
noted that the quasi-geostrophic formulation has a linear superposition
principle associated with it which is apparently absent £from the

non-linear Ertel-Rossby PV.

An important motivation in exploring this analogy is to provide
insight into ways of partitioning the effects on the flow due to parts
of the PV distribution. We will call this partitioning "attribution".
The idea is a simple one and it encapsulates the theoretical and
operational viewpoint of atmospheric dynamics. Stated in its simplest
form it seeks to attribute to a feature on a weather chart, such as a
vorticity anomaly, 2 unique influence on the rest of the atmosphere. An
example is when we speak  of an upper-level trough inducing development
via ascent and vwvortex stretching. A causal relationship is imagined
between the appearance of the trough and changes, for example, to the
surface flow. Without a scheme of attribution all one can say is that
everything affects everything else  and causal relationships are

difficult if not impossible to establish.



Current thinking is indeed rooted in an action-at-a-distance
principle associated with potential vorticity anomalies. Here the full
implications of the electrostatics model are pursued particularly in the
practical application of attribution. A simple example of the problem is
as follows. Suppose we wish to find how much of the observed surface
wind is due to the existence of a PV anomaly in the troposphere i.e. how
much of the wind field can be attributed te the PV anomaly. (This
attribution problem relates to distinct anomalies and should be
distinguished from inversions including all the PV structure.) An
approach is to define a volume of atmosphere including the region of
interest and to perform a PV inversion by solving for the geopotential
field. This requires knowledge of the PV anomaly and a suitable
specification of boundary conditions on the edges of the volume. Often
these boundary conditions are taken to be that the potential temperature
on the ground and the upper boundary are constant and that the relative
vorticity on the lateral boundaries is zero. There are, however, many
plausible choices .for these boundary conditions. However the result of
the attribution inversion is different for every choice. Here we show
that any boundary condition implies the existence of PV anomalies

exterior to the domain and show how the electrostatics analogy

illuminates their role.

This paper will set out in detail the exact correspondence that
exists between the quasi-geostrophic potential vorticity and electric
charge by first recalling some basic principles from the theory of
electrostatics in section 2. In section 3 the implications of this
isomorphism are explored and an archetypal problem is solved involving a
PV-charge residing beneath the tropopause. Also the consequences for the

attribution problem are explored.



2. TueoreTIiCcAL DEVELOPMENT

2.1 Introduction

An important approximate form of the potential vorticity is given

from quasi-geostrophic theory. The definition of the quasi-geostrophic

potential vorticity, q, is:

2 Fi 2 FJ f I
g=£ +2 wz + 8 wz + 8 ; oy (1)
ax 8y dp c dp
and Y’ = ¢’/fo is the geostrophic streamfunction, ¢’ the geopotential,

. . 2,
subscript zeroc refers to a constant value of Coriolis parameter, ¢ 13 a
reference static stability which only depends on pressure (p), and the

prime reminds us that we are dealing with a deviation from the reference

state. The definition of ¢ is:

2 R [ P R/cp ae
a‘ = - — [ —
PP dp

0
The parameter ¢ is related to the Brunt-Vaisaila frequency, N, in height

coordinates via: ¢ = N/pg where p is the density. It is convenient to

scale the pressure coordinate in the feollowing way, z = P (aoffo), where

o is a constant value of the static stability parameter and z has the

dimensions of height.

An important aspect of the theory to be developed is that the
quasi-geostrophic potential vorticity can be written in divergence form

in these coordinates i.e.

= ¥V .D 2
q = (2)
= a a a . .
where V = - 4y — 4 — |. Taking flow on a B-plane then the associated
dx 8y dz
vector field is given by:
0‘2
av av o av
D = — o+ —r 5 {3)
- ax dy o Oz

where ¥ = §/ + (x° + y') £/4 + By /6.

The physical picture that we now have concerning potential

vorticity is in terms of the divergence of a vector field. In a real



sense we can say that PV is that property of the atmosphere which
exhibits a non-zero divergence of Qq. The wvisualization of the attribute
PV should be in terms of the vector field; a question such as "what

exactly is the potential vorticity" would be answered in this way.

The part of the potential function other than Y’ leads to a
component of the field and of its divergence, PV, due to the solid body
rotation of the Earth in the absolute frame of reference. Thus even if
there are zero measured winds, the atmosphere exhibits a potential
vorticity which, in this gquasi-geostrophic framework, is associated with
the Coriolis parameter f. The part related to ¥’ is responsible for the

wind and thermal structure in the rotating frame of reference. We can

therefore write g = qQ, + g’ where:

qa = ﬁ . D’
-q
, (4)
, , © ,
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o/ = | = = =5 —=
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and D’ is the field associated with q’.
q
In much of what follows we will focus on the flow associated with

an additional localized PV anomaly or charge i.e. the g’ part; the PV,

qa, due to the Earth’s rotation is assumed to exist but will not be

referred to again until section 4.

The invertibility principle described by HMR states that given the
complete g distribution and potential temperature on the edge of the
domain in question equation (1) can be solved to find Y’ everywhere.
Here we propose that in principle one would like to attribute that part
of the ¥’ field at a given location which is due to a particular local
PV anomaly, q’, and the properties of the atmosphere between the ancmaly
and the point in question. In other words it would be an attractive
conceptual tool to imagine that a PV anomaly of a certain magnitude and
shape should have the same effect on the flow irrespective of where it
is currently located relative to real or artificial boundaries. This is
in the spirit of electrostatics where one speaks of the field due to
each free electric charge and these can be superposed in the case of

multiple charges.



2.2 Free PV charges

Imagine a uniform q anomaly (q) which, for simplicity, has a "ball"
shape. The solution to equation (2} depends on the variation of the mean
static stability parameter with height. Suppose we take the simplest
case of constant ¢. Inside the charge it is clear from symmetry grounds
that a simple gquadratic function for ¥’ must exist with the form:

z <b o =g and W = -—g (b /2-%/6)

2.1/2 ,

~ 2 2 =,2 2 = - =
where r = (x'° + y'~ + 2’ 0'/0‘0) , X', ¥, 27 = (x-x, Y=Y z—zo),

0

(xo, Yor EO) is the centre of the anomaly, and b is the radius of the
anomaly in these coordinates. Hence the anomaly is circular in the

horizontal plane and elliptical in the vertical plane.

In the atmosphere outside the charge then it is clear that the

geopotential takes the following form:
I>b q’ =0 and W = -gb / (371) (5)

This solution is such that ¢’ =+ 0 as r >« In figure 1 the solution is
-1 -

shown for g = 3 x 10 s ! and b = 250 km for a flow with constant

density and Brunt-Vaisaila frequency. Note that this is equivalent to

the solution given in HMR for different coordinates.

A convenient example of such an anomaly is the point PV charge
which is a delta-function PV distribution; the mathematical form of such
point PV anomalies was first described by Charney 1963. It can be
obtained from equatidn (5) by letting b » 0 and ¢ » ® in such a way that

Q
the streamfunction has the following form:

4 3 . . o
q 3 T b, the volume-integrated PV anomaly, remains finite. Then

Q (6)

v -
2 2 =,2 2 2172
ar (x'" + y'" + 2z’ 0*_10‘)/

In figure 2 we show a schematic of such free PV charges in the

vertical plane. Positive and negative free PV charges such as shown in



figure 2(a) form the building blocks of the theory. Such building blocks
are shown schematically in Hoskins and Berrisford 1588; equatidn (6)
gives their mathematical form. For example, a positive charge is an
elemental piece of cyclenic circulation accompanied by a warm anomaly
above and a cold anomaly below. It is important te note that at the
location of the PV-charge there is increased static stability and
cyclonic vorticity. However away from the charge itself, in the sector
defined by =% ¥ y’2 > 2 z'2 ¢2/¢§, there is increased stability with
anticyclonic vorticity and outside this sector there is reduced static

stability with cyclonic vorticity; see the schematic vertical section of

figure 2(b) for the plane y’ = 0.

Free PV charges are commonplace on weather charts - they are the
upper short-wave troughs, jet-streaks, and tropopause PV anomalies etc.
The terminology is new but the time-honoured picture of, say, a trough
moving over a lower level baroclinic zone and inducing cyclogenesis

implicitly invokes the free charge concept.

2.3 The electrostatics analogy and bound PV charge

The isomorphism between the @G eguations and those used in
electrostatics will now be outlined. It arises from the requirement that
potential vorticity be associated with a vector field, like the electric
field E, which is produced by each element of charge independent of
boundary conditions and the properties of the medium. The medium is a
dielectric or insulating electrical material. The electric field is the

gradient of the electric potential V;
E=-VV
The divergence of the electric field is the total electric charge which,
for an insulating material, is the sum of free (q)land polarization, or
bound, (qs) charges:
V.E=(qg+q) /eo

where €, permittivity of free space. In electrostatics a "free space”
Green’s function can be associated with each element of charge. For a
single charge this potential has a 1/r dependence, independent of the
medium properties, due to the simple Vz form of the operator governing
V. The free charge is that part of the total charge which is conserved

and is related to the divergence of an electric displacement field, D:



V.b=gq (7)
Unlike the electric field the displacement field depends on the
(dielectric) properties of the medium. We have given it the same symbol
as the vector field for potential vorticity from equation (4) to show
their exact correspondence. Bound charges are due to the polarization of
the dielectric medium by the electric field.The polarization field, P,
is the difference between the displacement and the electric field and
its divergence is proportional to the bound charge:
D=g E+P

V.p=- q,
Furthermore the displacement and polarization fields are each

proportional to the electric field wusing the permittivity and

susceptibility tensors:

E=(E, E,E )

3 3 3
D = Y e E.,):E.Ej,):E_E (8)

|ra
I
m

J

3 3 3
xlj E, zx E , }:X E
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where eij and xij_are the elements of the relative permittivity and
electric susceptibility tensors respectively {cf. Lorrain and Corson

1970) .

Equations (7) and (8} are isomorphic to those for the
quasi-geostrophic potential wvorticity when one sets V to - v, € = 1,
533 = eq, x33 za, and all other elements of the -permittivity and

susceptibility tensors are set to zero. Here xq and € are defined by:
4 _ a
2 2 2 2
=0 c - 1 and €E = ¢ o
xq 0/ . 0/
So from electrostatics € = 1 + x may be called the dielectric
q q
“"constant". For clarity we repeat the equivalent equations for the
quasi-geostrophic system usihg a suffix ‘gf to indicate

quasi-geostrophic:



- dx ay dz
R s a I a Fl
D = [ a— P _!ﬂ r € "'?"J {9)
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r
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- q 3;

It can be seen that there are consequently three vwvector fields
associated with PV which arise from the requirement to have a field, Eé,
which is independent of the static stability of the atmosphere. The
isomorphism between the QG equations and the electrostatic equations
suggests the terminology that V . E; is the free PV and - V . g; the
bound BV (q;). It is clear that from this viewpoint that ¥’ is induced
by both the free and bound PV and that the dielectric anisotropy is
evident from the fact that g; is only non-zerc in the wvertical
direction. In the electrical case such aniscotropic dielectric materials

are commonplace in nature.

As in electrostatics, each element of either free or bound PV can
be associated with a field, Eé, which is the gradient o©of a geopotential
proportional to 1/r where r = (x’2 + y’2 + ;,%1/2_ Although this field
depends on the constant o it does not depend on ¢ or on the existence
of boundaries. The streamfunction given in equation (6) for a pqint

charge represents the sum of such field contributions from both free and

bound charges.

From the ‘definition of bound PV it '‘can be seen that there are

potentially two situations in which there is bound charge:

2
, 8 ) ay’ 8 ay’ a g’
gt ] e g,
8z T 5z dz Oz 9 8z

The first is associated with the vertical wvariation of the mean
static stability parameter ¢ and the second is present even when that
parameter is a constant. For the latter case the interpretation of the
constant ¢ is of importance. It would be possible, for an atmospheric

’

flow with a constant ¢, to choose o, such that x = q = 0. (In
q

electrostatics the medium which has zero electric susceptibility is free



space.) However in practice ¢ in the atmosphere is always a function of

height (or pressure) and so we can deduce that bound charge will always

ocgur.

In figure 3 we show a schematic of the various fields associated
with a PV charge in a flow with constant o, as given mathematically by
egquation (6). If o, > ¢ is chosen then Eq, the equivalent to the
dielectric constant, is greater than unity 50 that, as in
electrostatics, g; - Eé > 0. Then the bound charge has the opposite sign
to the free charge at the location of the free charge. In the sector

.2 2

. - 2, 2 ., , :
defined by x’2 + vy >2z'" ¢ /Gb it also has the opposite sign whereas

it has the same sign outside this region.

In electrostatics the presence of bound charge is due to the fact
that in the presence of an electric field the insulator acquires a
polarization charge which is due to the electrons being attracted and
the protons being repelled in the direction of the field. The normzlly
electrically neutral atom thus acquires a pelarization charge. This
charge is often called a bound charge to distinguish it from the free

charge which, in our case, is conserved following the geostrophic

motion.

When an electric charge is introduced into a dielectric material,
it takes a finite amount of time for electromagnetic waves to establish
the electric field associated with such a charge. The electric field
induced by the free charge polarises the atoms, molecules, crystal
structure, etc. Such polarisation produces bound charges which produce
more electric field and hence more bound charge which produce more
electric field and hence more bound charge and so on., Eventually this
interplay between bound charges reaches a steady state and the electric
potential will satisfy (8). All the bound charges of this steady state
are attributable to the free charge. For our purposes it will be

convenient to speak of such bound charges as belonging to the free

charge.

Such ideas are easily transferred to the QG system. A convergent

iterative process which mimics the way free charge induces bound charge

10



which in turn induces more bound charge, etc¢ is discussed in the
appendix. The existence of such a procedure is important as it provides
a method whereby the bound charges belonging te a particular free
anomaly can be established without explicit reference to any imposed
boundary condition. The convergence of such a procedure is important
because, inter alia, it assures us that this boundary independent view
of potential wvorticity inversion will not lead to spurious internal free
anomalies.1 It also assures that for a finite PV anomaly the constraint
on ¢ is that ¢’ - 0 as r 5 o. Given that the original PV inversion
problem amounts to the solution of an elliptic eguation then it is to be
expected that this procedure is convergent. Alternatively one might try
to argue that quasi-geostrophic air is sufficiently similar to known

dielectric materials that exhibit no infinities then neither must the

quasi-geostrophic system.

The electrostatics analogy shows that extra or "bound" PV charges
must exist and this allows us to maintain a domain independent
interpretation of:the field induced by PV anomalies. The convergence of
the iteration scheme given in the appendix shows that the view of free
charge inducing bound charge is consistent with the boundary conditions
that Y’ and its derivatives tend to zero at infinity. Since solutions to
Poisson’s equation are unique given the boundary conditions then all

solution methods must yield the same result.

1Such an eventuality may seem unlikely, but if one considers that the
polarizability of QG fluid is not constrained by the laws that hold
atoms together, it is a serious concern. For example, suppose that the
dielectri¢ tensor of the system was such that a free PV charge induced
more bound charge in the fluid immediately surrounding it than that
contained in the free charge itself. Since the bound charge is assumed
to affect ¢’ in exactly the same way as free charge, the bound PV
charges could induce bound charges stronger than itself and so on until
a discontinuity was reached.

11



3. IMPLICATIONS OF THE ELECTROSTATICS ANALOGY

3.1 The erffect of the tropopause

The role and importance of bound PV charge is clearly evident when
considering the tropopause. The following example is given to show these
effects in practice. Consider a free PV charge, at z’ = 0, located
beneath the tropopause, at z’ = a: both the troposphere and the
stratosphere are taken to have uniform but different mean static

stabilities. (Note that as z is a pressure coordinate a is negative.)

From equation (4) it is clear that at the tropopause there are free

PV charges unless the following boundary condition applies at the

tropopause:
a~§ 8y’ 0‘3 oy’
el (12}
¢ J=z (< }-3
5 t

where suffices t and s refer to the troposphere and stratosphere
respectively. This follows also from the quasi-geostrophic thermodynamic
equation from which it can be shown that this condition makes any
vertical motion which might occur continuous across the tropopause. It
is therefore the appropriate condition to apply. (Note that the implied
temperature jump at the tropopause can, in principle, be removed by
deforming the tropopause, Rivest et al 19%2). The other interfacial

condition which must be satisfied is the matching of ¢’ itself.

This tropopause problem can be most easily solved by the method of
images as used in electrostatics where there is a dielectric constant
transition between two media. These image charges are superposed so as
to satisfy the matching boundary conditions at the tropopause and to
produce ¥’ = 0 as r - ®. First an image charge is placed in the
stratosphere a certain distance above the tropopause and the field in
the tropesphere is taken to be the superposition of that due to the
charge itself and its image. For that calculation the dielectric
constant is taken to be that of the troposphere everywhere. (Note that
the image charge is Jjust a simple way of representing the effect of
bound charge in the stratosphere on the troposphere.} Equally to

calculate the field in the stratosphere one extends the stratospheric

12



dielectric constant throughout the atmosphere and a different image
charge is substituted for the actual free PV charge. The total field is
then the appropriate one computed for either the troposphere or
stratosphere. An important point is that for each of the calculations it
is only necessary to know the inherent potential due to & particular
point charge in an infinite atmosphere. The principle of . superposition
allows us to simply sum the fields due to each charge; for this problem

there are 3 charges whose fields we superpose. The following is the

solution:
vi--% 1
t 4 (x,z . y,z + ;,2 °f/°i)1/2
n ]
2 -
(x’z + vy’ o+ (2'- 2(1)2 Gf/@ﬁ)ljz
(12)
- 2
s in (x’2+y'2 + (z’ -80.)20‘/0‘2 )1/2
3

where n =&/ m, £ = (1 = o‘t/crs), m= (1 + a‘t/o's), and suffices t and
s refer to tropospheric and stratospheric values respectively. Note that
the ratio 0E/¢s that appears in these expressions is simply the square
root of the ratioc of the dynamical dielectric constants in the
troposphere and stratosphere. In figure 4 the solution is shown for
@t/os = 0.33 and @ = - 0.1 H where the horizontal scale in the figure is
divided by o, H / T, and the vertical scale is divided by H (where H is
an arbitrary vertical scale). Note that this is a local solution whereby

the geopotential becomes small at large distances away from the free

charge.

The existence of bound PV-charge is obviocus from equation (12) as
at the location of the free PV-charge, z/ = 0, the radial gradient of ¥’
is not zero. If the only potential-producing charge was the free charge
then this gradient would, on elementary symmetry grounds, be zero. The
fact that it is not zero is due to the potential produced by the extra
or bound charge associated, in this case, with the tropopause. Equation
(12) is an example of a Green’s function which includes the field from

both a free charge and its associated bound charge.

13



The distance of any given PV anomaly from the stratosphere must be
known if the effect of that ancmaly is to be calculated. However we have
found that the streamfunction can be regarded as a linear superposition
of several point charges (three in this case) each of which act as
though they are in an infinite uniform medium. Of course the distance of
the anomaly to the tropopause, ¢, enters the superposed solution but the
physical interpretation requires nothing more than the individual

effects of point charges.

3.2 PV "atoms"™ ?

The existence of a polarization charge in electrostatics can be
understood in terms of the structure of the atom. In the absence of an
applied electric field the atoms in an insulator are electrically
neutral with equal but opposite charges on the bound electrons and
protons, With an applied electric field the electrons are attracted and
the protons repelled and they move fractionally apart producing an

atomic . polarization. The sum of these atomic dipoles is the net

polarization charge.

It is of interest then to examine the circumstances in which free
PV charges are "created" and "destroyed"”. The mechanisms by which this
occurs are processes such as friction and diabatic effects like
radiation and latent heat release. From the work of Truesdell 1951,
Thorpe and Emanuel 1985, and Haynes and McIntyre 1987 we know that the
total mass-weighted PV is unchanged by these processes. This means that,
away from the ground free PV charges are created in equal amounts of
positive and negative sign. This could be imagined as being a
consequence of there. being PV "atoms" composed of equal and cpposite
bound charges. These bound charges can be separated irreversibly to
generate free charges. Of course this is only a picture consistent with

the effects of irreversible processes and not a proof of the existence

of such PV atoms.

3.3 The superposition principle

The principle of superpesition, as used in electrostatics theory,
can be used to calculate the field due to many free charges. For example

consider the potential in an atmospheric layer containing two equal PV

14



anomalies a certain vertical distance, 2 H, apart: see figure 5. Notice
that at the mid-plane between the charges there is zero temperature
anomaly. Equally we can take two opposite sign PV charges in a vertical
line, see figure 6. Now on the mid-plane the geopotential perturbation,
the flow, and consequently its relative vorticity is zero. In this
latter case the field lines emanate from the negative PV anomaly and
"flow" towards the positive PV anomaly; this is, of course, exactly
analagous to an electric dipole and also because the mid-plane is an

equipotential surface then that surface is like a conducting sheet.

The dipole solution is of relevance also to the case of diabatic
foreing in the atmosphere. A point heat sink will produce a dipole PV
anomaly as in figure 6 but where the distance between the free charges
is very small (but not zero); this is because the PV changes according
to the vertical gradient of the heating. We can see that this fits into
our conceptual picture of the bound PV charges in PV atoms being
"liberated”™ by the action of irreversible processes. The diabatic
forcing acts to .separate the PV charges a small distance in the vertical
{or along the vorticity vector in the Ertel PV case). Therefore it is as
if a finite period of heating or cooling acts to free a pair of opposite
sign PV charges. The balanced response to that forcing can be obtained
from the superposition of the effects of each PV charge. This picture
incidentally shows that the action of a heat source/sink is not simply
to warm/cool the atmosphere local to the diabatic forcing. Due to the
ageostrophic circulation induced by the forcing there are reglons where
there is adiabatic cooling/heating also. These are above and below the
dipole as can be seen in figure 6. Similarly the effect of frictien
creates a dipole oriented normal to the frictional force vector. For a

horizontal frictional force this amounts to a horizontal displacement of

the two PV charges.

3.4 The attribution problem

The term “attribution" has been coined in this paper to describe
the process of finding the contribution to the flow and temperature from
a particular PV anomaly. Davis and Emanuel 1991 and Davis 1992 use the
term piecewise potential vorticity inversion for this process. In PV

inversions, such as given by Kleinschmidt 1950 and Thorpe 1985 and 1986,

15



a complete PV distribution is specified in a limited domain bounded
below by the Earth’s surface. Furthermcre conditions are impesed at the
boundaries of the domain. It is common in such inversions to specify €
at these boundaries perhaps because this accords well with a PV-8 view

of atmospheric dynamics (Hoskins 1991).

The electrostatics analogy suggests that for attribution, which
involves a piecewise PV inversion, it is appropriate to assign a Green's
function to each free PV charge which includes its associated bound
charge. In order to incorporate conditions at the Earth’s surface the
electrostatics analogy requires a subterranean static stability to be
specified. The choice of surface condition will be governed by a
hypothesis or model of the relationship between a PV anomaly and the
surface flow and temperature associated with it. For example, if it is
believed that a lower tropospheric PV anomaly is due to latent heating
in clouds then an attribution of its field could take 8’ = 0 at the
Earth’s surface as there is no latent heating at the surface. (Note that
the PV anomaly in this case does contribute to the surface flow but not
to its temperature.) Clearly such knowledge concerning the origin of PV
anomalies may not always be available. Therefore the derivation of this

hypothesis is not, in general, straightforward.

It can be seen that equation (11) implies that if the subterranean
static stability is infinite then bound charge will ensure that 8’ = 0
at the surface. This bound charge is of course due to the implied Jjump
in the "dielectric constant™. The suggestion by Bretherton 1966a that
‘potential temperature anomalies are dynamically equivalent to FV
anomalies is consistent with this cheoice. It has proved of .considerable
insight in interpreting aspects of atmospheric dynamics such as
baroclinic instability:; c.f. Bretherton 1966b. The Y’ = 0 surface
condition results when we assume that the surface has the
characteristics analagous to a conducting sheet.

As an example imagine a single positive PV anomaly, at z' =0,
located abowve the surface (;’ = - @) in an atmosphere with constant o.
(For simplicity we take the point charge solution here although the ball

solution of equation (5) may be more appropriate in practice.) The

solution is:

16



'!":—Q—[ 2 21-—222112 -
ar x'“ + vy + =z o-/o'o) (13)
1 )
x2+ vy (z +2a)? o-szz y /2
where the plus sign allows the 0’ = 0 condition to be chosen for the
attribution and the minus sign applies to the ¥’ = 0 condition. A

schematic of these two cases can be taken from figures 5 and 6
respectively; the mid-plane between the charges now is taken as the
Earth’s surface. For the 8’ = 0 case the effect of bound charge at the
surface can be described, for visualization purposes only, in terms of
the field due to the PV anomaly superposed with that of an equal image
charge located "beneath" the surface where the subterranean static
stability is taken equal to that in the atmosphere. Equally for the
Yy’ = 0 case the solution can be visualized in terms of an opposite sign
image charge residing in the subterranean extension to the atmosphere.
It should be stressed .that the image charges are a device for

visualization only.

An option arises to assume that the subterranean static stability
is equal to that immediately above the Earth’s surface. Then for a
constant static stability the Green’s function of eguation (6) applies
for each PV anomaly. This represents perhaps the weakest form of surface

condition that can be applied.

Thus different assumptions about the dielectric nature of the
hypothetical subterranean QG air will give different surface temperature
distributions attributable to interior PV anomalies. Generally these
surface patterns will not be equal to the observed thermal pattern. This
‘difference may be attributed to surface charge. This is "free" in the
sense that it creates field but it will not necessarily be "free" in the
sense that it is conserved following the geostrophic motion. The
important case where surface charge is "free" in both these senses
arises when the subterranean static stability is infinite, the flow is
frictionless and adiabatic. When these conditions do not apply then some

source of surface PV charge must be present.
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In principle then one can construct surface and subterranean
properties such that the field due to bound charge automatically
provides the required boundary conditions. With this attribution method
there is no need to apply lateral boundary conditions. Consequently the
electrostatics analogy makes it possible to infer the effect of PV
ancmalies exterior to a finite observational domain in an unambiguous
way. This is achieved by simply subtracting the field due to the free
and asscciated bound charge from the observed geopotential field. Since
the remainder was not induced by the interior free PV, it may be
attributed to free PV exterior to the domain. Note that this remaining
field will always have zero PV associated with it within the domain. The
linear deformation field of simple frontogenesis models is an example of
such a field. A practical example of this technique for assessing the
effect of sources exterior to a domain (albeit for vorticity and

divergence inversions) is discussed in Bishop 1994.

If lateral boundary conditions are imposed then possibly spurious
exterior PV is implied. The method of images can be used to illustrate
the effect on the field associated with a PV charge of the imposition of
such lateral boundary conditions. For example, a commonly used lateral
boundary condition is to require that the normal gradient of the wind
tangential to the boundary be zero. We can use figure 6 to illustrate
how the method of images can account for the exterior PV consistent with
this boundary condition, If figure 6 is rotated by 900, such that the
{x, z) axes Dbecome the (-z, x) axes, then there are PV charges
side-by-side. The 6’ field in figure 6 then becomes.the new v field.
Hence the normal gradient of v is zero half-way between the 2 charges.
So the exterior PV needed to produce that lateral boundary condition is
an ecual magnitude but opposite sign anomaly to the one inside the
domain. Equally for a v = 0 lateral boundary condition we require an
equal magnitude and sign anomaly exterior to the domain; figure 5
rotated by 900. The contribution to the internal field from this

exterior PV is thus made explicit.
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4. Concrupine Remarks

It is apparent that the quasi-geostrophic PV, an approximation to
the full Ertel PV, has a simple interpretation suggested from the theory
of electrostatics in a dielectric medium. A crucial element suggested by
this analogy is that a vector field independent of static stability,
density, or conditions at boundaries can be assigned to each PV anomaly.
The quasi-geostrophic atmosphere, being analagous to a dielectric
material, consequently exhibits bound PV and this implication is one of
the main results of this paper. The notion that PV is to be understood
only in terms of the associated vector field, and in particular its

divergence, is fundamental to this view of atmospheric dynamics.

The electrostatics analogy provides a useful interpretation of the
attribution preblem. Each PV anomaly has a field described by a function
which incorporates both the field due to the anomaly and its associated
bound charge. The bound charge can include conditions at the Earth’s
surface. However the relationship between a particular PV anomaly in the
atmosphere- and the. surface boundary conditions is not in general known.
This remains as an important arbitrary factor in attribution. The

dynamical viewpoint being taken will often suggest a choice of boundary

conditions.

It is appropriate to <comment now on the part of the
quasi-geostrophic PV associated with the Earth’s rotation. The simplest
model of a Rossby wave is where the conservation of absolute vorticity,
in a ‘horizontal plane, leads to a wave disturbance propagating due to
the B-effect. The charge interpretation of PV is applicable in this case
and it relies on the component of potential vorticity described in
section 2.1 as q_-. Suppose that a simple single-cell meridional
circulation occurs: this will displace free PV charge to create a local
dipole of vorticity anomalies. Each of these charges induces a field
which causes further meridional advection around the original dipole.
The combined effects of these fields is to displace further PV charges
and this process leads to the propagation of a wave-train of alternating
PV charges. Such PV charges do not produce any bound PV because a

barotropié Rossby wave has no vertical variations.
Tn the case of the Ertel-Rossby PV the equivalent of the dielectric
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constant depends on the field itself and so there is an inherent
non-linearity. It is known that for large electric fields the dielectric
constant depends on the field so there may be an electrostatic analogy
for Ertel-Rossby PV. How serious this non-linearity is for the field
notions developed here has yet to be established. Without these concepts
one might question the usefullness of potential vorticity as a
fundamental dynamical variable and so it remains an important unresolved
question whether such a field theory can be devised in this case. Using
a different formulation Shutts 1991 has described a point charge
solution for the semi-geostrophic (SG) equations. The SG formulation,
whilst being more accurate than the 0G approximation, involves a
vorticity vector which differs from the geostrophic vorticity vector.
However for the SG system, with the important restriction of constant
density and background static stability, a simple analytical form £for
the Greens function can be found. The relationship of the implied field
for this SG PV-charge to the quasi-geostrophic field described in this
paper remains as a subject of further research. Another important aspect
of " quasi-geostrophic PV dynamics is the existence of a linear
superposition principle. This does not carry through to the Ertel-Rossby
PV case 80 complicating the conceptual simplicity cf the

quasi-gecstrophic model.
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Appendix: Convergent iteration scheme

The aim here is to demonstrate an iterative process which converges
whereby the field induced by free charge induces bound charge which in
turn induces more field etc. It is important to do this because if such
a convergent iterative process exists then (a) the boundary independent
view of potential vorticity inversion will not lead to spurious internal
free PV anomalies and (b) the ¥’ associated with a free PV anomaly and
its associated bound PV ancmalies will become vanishinglyhsmall at some

finite distance from the free PV anomaly.

Firstly, suppose, following equation (10), that the bound charge
associated with changes in perturbation static stability (-1%62w'/622),
immediately comes into balance with the field induced either by the free
PV charge density, q‘, or by that part of the bound charge density, q;,
associated with changes in the mean stratification (—quIBE aw'/aE).
This can be achieved by using functions similar to the point charge
solutions described in the text; to be precise, by attributing to each
element of charge (g’ or q;) a geopotential field proportional to 1 / &
(c.f. section 2.2). With this assumption the iteration procedure reduces
to the statement that the streamfunction after n+l iterations, w’n+1, is
equal to the field, ¥’[q’]l, induced by the free charge plus the field,
W'[q;(¢'n)], induced ' by the q; which has been created at the nth
iteration., Furthermore we dencte w,o =y’ {q’]. The mathematical details

of this procedure are .more simply expressed in terms of the coordinates:

z
{x, v: 2) = [ Xy ¥r I S dz ]
Zz

-1/2

where § = eq and in these coordinates:
a
‘I: e —
qb “az
where o = Q_iP(S)_
g z

Since any free charge distribution may be constructed from a
complete set of elements of free charges, we only need to prove that the
iteration procedure will converge for any element of free charge
initiating the procedure. Let d&Q rep resent such an infinitesimal

element of free charge at the point (xﬂ, Yyr zo):
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8Q = q’ 8x &y &z (A.1)
and this induces the buoyancy field BbD, where b = 8y’ /8z and

50’ =80 (z - z) 1 anr ), (A.2)

where r = [{x - x-q)2 + (y - yo)2 + {(z - zo)zfdlz. The 6b0 field induces
bound charges where-ever a # 0 i.e.
592 - « ab° 8x 8y &z (a.3)
The sum of the buoyancy fields induced by Q and the QE field may
be written as 3b'. The sb' field induces a new field of bound charges
which in turn induces a 6b2 field and s¢ on. Thus, the iteration formula

for these buoyancy fields at position (x, y, z) is:

Foo 16O +0
” . (z - ') « 3b"
3b = &b + dx’ dy’ dz’ {A.4)}
4nr’3
-t -t -
2 -
where r’' = [(x - x’)z + {(y - ¥") + (z - Z')ﬁ 1/2

To investigate the convergence of this iteration scheme, we rewrite
(3.4} in matrix form. Then a strict upper bounmd on the largest
eigenvalue of the iteration matrix is established. If the bound is less

than unity then convergence is assured. First an ordering for (A.4) 1is

made by letting:
x' =1’ &8s, y' = j' &8s, z' = k' &8s,
. x=418s, yv= 3j 3s, z =k 8s
where 8s is an infinitesimal distance. Then for k’, 3, i', k, j, and 1
having magnitudes less than a positive integer M, we may define:
1’ = k' + j’M_+ i’Mz, ) (A.5)
1 =k + jM + isz
so thgt as 85 tends to zero and M tends to infinity, discrete values of 1’
and 1 can uniquely identify every rational point in (x’, y', 2z’) and
(x, y, z) space, respectively. With this ordering, (A.4) may be written

in the form:

1'=+te0
n+l [ n
= .[. b
(8b )l (8b )l E: All’ (3b )l' {A.6)
1'=-m
where All’ =0 for 1 = 1', while for 1 # 1’:
1
. —— {k - k') a 8s
A _ lim 4 (a.7)

11 85+ 0 l(i_i,)z N (j—j')z N (k_k,)ZJBIZ
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where 1’ and 1 are related to the coordinate indices via (A.5). It is
easy to show (cf. Varga 1962} that the iteration procedure defined by

(A.6) will converge provided that the largest eigenvalue of the matrix 2

. ] . 2

having elements All’ is less than 1. According to Gerschgorin (1931,
the largest eigenvalue of A must be less than the sum of the absolute

values of any row of A. Each row (constant 1) of A pertains to a single

point in (x, y, 2) space and the sum of the absoclute wvalues of its

elements, A, is given by

+00 +00 +00
|tz - z’)||a| dx’ dy’ dz’
A= 3 (A.8})
anr’

-0 -~ -0
Transforming to cylindrical polar coordinates,

(R, m, 2") = [ [(x - X’)2 + (y - y’)Z]”z, tan—1 [%, ], z’ ]

and letting x = R+ {z - z’)2 so that 8(x, m, z') / (R, W, 2")= 2R,

(4.9) may be expressed,

+ 2T o

|z - z)]]«| dy dn dz’

A=
87[;1:3/2
- o0 (z-z')
+e 2T
1
= E;l’. |a| dn dz’
-0 0
+co
1
= E I(II dz’
-m

Note that A is smaller when the vertical variations in static

stability are small. If

zl

s = 5(0) +J. |a] dz’.
1]
then

2
The proof is given in English in Varga (1962).
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Thus, convergence is assured provided that

5 {w)
A=1.15 1og10[§ (_m)] < 1 (A.9)

In the non-Boussinesqg QG system, S varies from some finite value at
the ground and increases with height into the stratosphere. Allowing for
density variations we expect (A.9) to be satisfied across the observed
tropopause. If the Boussinesqg approximation is made then the condition
is satisfied even if 4 such tropopause Jjumps were present. It should be
stressed that a prediction of lack of convergence using this technique
does not necessarily mean that the method will not converge. Rather if

(A.9) is satisfied then convergence is assured.

Ficure CaprTIONS:

FIGURE 1l:  The geopotential (contour interval equivalent to 1 mb) with
superimposed contours of the total potential temperature (contour
interval 6K), and v wind (contour interval 5 mé-l) field in a vertical
plane for a finite positive PV charge. The PV anomaly has a constant
value of 3 x 10™% s™! with a radius in the horizontal plane of 250 km.
Constant density and Brunt-Vaisaila frequency have been assumed such
that N/f0 = 100 and the diagram is plotted with height as the vertical
coordinate. The vertical scale of the diagram is 15 km and the

horizontal is 2000 km.

FIGURE 2: (a) Schematic diagram showing the positive and negative PV
charges which form the building blocks of the theory. Each charge has
circulation of the same sign as its charge and a potential temperature
anomaly dipole oriented vertically., The sense of the dipecle is such that
there is an anomaly in static stability at the charge of the same sign
as the charge. (b) However note that, as can be deduced from equation
{6), outside cones emanating from the charge there is a static stability
anomaly, denoted here by 5S, which is of the opposite sign of the
PV-charge. The vorticity anomaly, {’, has the same sign as the static
stability anomaly at the charge but has the opposite sign away from the

PV-charge inside the cones. In this schematic we indicate the sign of
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these anomalies in the plane y = 0 and in cartesian coordinates for =

positive PV charge.

FIGURE 3: A schematic of the solution for the geopetential, given by
equation (6), in the x-z plane showing examples of the field vectors for
E, D, and E.,(These vector fields are, of course, defined everywhere.)
The geopotential is negative and a minimum at the location of  the
positive free charge which is shown by the central black dot. The bound
charge q; is zero on the diagonal dashed lines with a negative value

(i.e. the opposite sign to the free charge) inside these cones and a

positive value outside.

FIGURE 4: The geopotential, perturbation potential temperature, and v
wind field for the tropopause problem of a positive point PV charge
located beneath the tropopause. The figures are in a vertical plane
defined by y’ = 0. The location of the tropopause is evident from the
abrupt change in geopotential gradient. (Here and in figures 5 and 6 the
horizontal scale is x’ divided by alﬂfoc and the vertical scale is z’
divided by H, where H is. an arbitrary height scale. Dotted regions
indicate increasingly large magnitudes as the point charge is

approached; the sign of the field in that region is as indicated.)

FIGURE 5: The geopotential, perturbation potential temperature, and v
wind field in a vertical plane for the superposition of a pair of
positive PV charges oriented in a vertical line. Note that there is no

temperature perturbation on the mid-plane between the two charges.

FIGURE 6: The geopotential, perturbation potential temperature, and v
wind field in a vertical plane for the superposition of a pair of equal
but opposite PV charges oriented in a vertical line with the positive
anomaly above the negative one. Note that there is no geopotential (and

therefore wind) perturbation on the mid-plane between the two charges.
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