Forecasting
Research

Forecasting Research Division
Scientific Paper No. 41

Hamiltonian balanced models: constraints,
slow manifolds and velocity splitting

by
M E Mclntyre and I Roulstone

1 September 1996

Meteorological Office
London Road
Bracknell

Berkshire

RG12 2SZ

United Kingdom




Forecasting Research Division
Scientific Paper No. 41

Hamiltonian balanced models: constraints,
slow manifolds and velocity splitting

by
M E Mclntyre and I Roulstone

1 September 1996




Hamiltonian balanced models: constraints, slow manifolds
and velocity splitting

By

Michael E. McIntyre
Centre for Atmospheric Science*at the
Department of Applied Mathematics and Theoretical Physics,
Silver Street, Cambridge CB3 9EW. UK.

and

[an Roulstone
Meteorological Office,
London Road, Bracknell RG12 25Z. UK.

© Crown Copyright.

Submitted to the Journal of Fluid Mechanics

1 September 1996

Abstract

The general mathematical structure of Hamiltonian balanced models of vortical atmosphere—
ocean dynamics is clarified, at arbitrary accuracy, along with its relation to the concepts of
slow manifold, slow quasi-manifold and potential-vorticity (PV) inversion. Accuracy means
closeness to an exact dynamics, meaning a primitive or Euler-equation Hamiltonian dynamics
(with constant or variable Coriolis parameter), regarded as the exact ‘parent’ of the balanced
model. Arbitrary means limited not by any particular expansion method or approximate
formula, or fast-slow scaling assumption, but only by the irreducible, residual inaccuracy
or imbalance associated with the Lighthill radiation, or spontaneous-adjustment emission, of
inertia-gravity waves by unsteady vortical motions. The clarification shows (a) which features
of Hamiltonian balanced models like Hoskins’ semigeostrophy and Salmon’s L; dynamics are
special and which are general, and how such models can be generalized to arbitrary accuracy
without losing Hamiltonian structure, (b) how such generalizations can be constructed, at
least formally, by inserting into the Hamiltonian framework any of the highly accurate bal-
ance conditions used in recent studies of accurate PV inversion, and (c) how, in a certain class
of models, canonical coordinates X analogous to Hoskins’ geostrophic-momentum coordinates
can be found. This class, defined by a new pair of ‘canonical coordinate theorems’, includes
both Salmon’s L; dynamics (in two versions, one of which filters boundary Kelvin waves) and
also a new f-plane Hamiltonian balanced model accurate to a further order in Rossby number,
that is, accurate to the same formal order as the standard (non-Hamiltonian) ‘balance equa-
tions’. For these particular cases X takes the form x + Vi — vz x Vo (cf. Hoskins’ x + V),
where V = (8/0z,0/0y) and z x V = (—0/dy,d/0z), ¢ being f~* times a suitably defined
geopotential anomaly or Montgomery potential anomaly, and x = (z,y) the horizontal coordi-
nates for the physical domain. A remarkable and surprising feature is that the dimensionless
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coefficient v must be pure imaginary, v = ¢ for L; dynamics and 7 = iv/3 for the new, more
accurate balanced model. Reality of the symplectic one-form and two-form requires only that
7* be real, not 7. The Legendre duality property of semigeostrophy disappears, along with
the semigeostrophic Monge-Ampeére equation, when v # 0.

All Hamiltonian balanced models, regardless of accuracy — if derived by constraining a
parent dynamics supporting inertia-gravity waves and Lighthill radiation — have a character-
istic general property that may be called ‘velocity splitting’, recognition of which is important
for a full understanding of the dynamics. Imposing any balance condition as a constraint on
the parent dynamics splits the parent velocity field, into just two velocity fields in the simplest
set of cases. The first, u® say, is the velocity in the ordinary sense, the velocity with which
material particles move. The second, u® say, is the constraint velocity defining the balanced
model’s ‘slow manifold’, a prescribed functional of the mass configuration alone; u® is also
the velocity that enters the simplest forms of the model’s PV, energy and other conserved
quantities, which quantities, when evaluated with u®, are given by the same formulae as in
the parent dynamics. The model’s conserved PV, in particular, is always the Rossby-Ertel PV
when expressed in terms of the ‘constraint vorticity’ ¢, i.e. the absolute vorticity evaluated
with u®, and furthermore is always given by the same (real) Jacobian determinants involving
X as in Hoskins’ semigeostrophy, in cases where canonical coordinates X are known. Semi-
geostrophy itself is more complicated, from this viewpoint, exhibiting double splitting in the
sense of having two slow manifolds and three distinct velocity fields u®, u®™ and u®®, of
which the second enters into energy conservation via the parent Hamiltonian and the third
into PV conservation via the parent symplectic structure.

There is a fundamental integral equation that governs the difference-velocity field or ‘ve-
locity split’ u® = u® — u®, and defines the balanced model dynamics including any boundary
conditions additional to those used in defining the configuration space. The formulation in
terms of u® gives a mathematical description that is manifestly independent of reference-
frame rotation rate. The dynamical effects of rotation enter solely through the u® functional
or functionals, for instance through (. This greatly simplifies the formulation of variable-
Coriolis-parameter models, and brings other conceptual and formal simplifications such as
the ability to accommodate Galilean-invariant u®. The integral equation takes an especially
simple form for singly-split models. Solving the equation gives u® as a functional of the mass
configuration alone, defining, in turn, how particles move, and showing that u® is generally
nonzero though small for an accurate model. Any norm |lu®|| provides a natural intrinsic
measure of model accuracy, suggesting minimization of such norms as an approach to find-
ing ‘optimal’ Hamiltonian balanced models. The nonvanishing of ||u®|| is connected with the
existence of Lighthill radiation and the nonexistence of a parent slow manifold.

1 Introduction

A longstanding problem in the theory of atmosphere-ocean vortex dynamics, closely relevant to
today’s problems of data assimilation and environmental forecasting, has been how to general-
ize simple balanced models like Hoskins’ semigeostrophic theory, hereafter ‘semigeostrophy’, to
higher accuracy while preserving Hamiltonian structure. For instance, Hoskins’ elegant canonical
coordinates X (Hoskins 1975) have been important in clarifying salient mathemtical features of
semigeostrophy, such as Legendre duality, and their use in understanding atmosphere—ocean phe-
nomena such as fronts (e.g. Roulstone & Sewell 19965, and many references therein). This paper
builds on the foregoing work and on the pioneering work of Salmon (1983, 1985, 1988a) to further
clarify what is involved, both in generalizing Hamiltonian balanced models beyond semigeostrophy
and in finding canonical coordinates for them.

The crucial step is to recognize a universal general property, velocity splitting (not to be con-
fused with regime bifurcation) that characterizes all balanced models that inherit their Hamiltonian

structure from an exact Hamiltonian ‘parent’ dynamics. The parent dynamics is assumed to sup-



port inertia—gravity waves, and is regarded as exact in the sense that it provides the standard of

accuracy against which the balanced model is to be assessed. In this paper the parent dynamics
is assumed furthermore to have a particle-relabelling symmetry and a corresponding materially
conserved Rossby-Ertel potential vorticity (PV).

The simplest, most straightforward and conceptually clearest way in which a Hamiltonian
balanced model can be constructed from an exact parent is to impose a balance condition — usually
of geostrophic or higher accuracy — that constrains the dynamics to a single ‘slow’ manifold M€
within the full phase space of the parent dynamics. More precisely, this means imposing a suitable
workless ‘momentum-configuration constraint’ u = u® on the parent velocity field u, regarded as a
phase space coordinate, where uC is a prescribed functional of the mass configuration that respects
the particle-relabelling symmetry. Thus u® is prescribable solely as a functional of the Eulerian
fields p(x) and o(x) of mass and entropy per unit volume for three-dimensional stratified dynamics,
or of layer depth h(x) for shallow water dynamics, where x € D is position in the physical domain
D. The simplest nontrivial choice is to prescribe uC€ as the geostrophic velocity; but some of the
more accurate possible choices require a fully nonlocal functional dependence. Velocity splitting
means that the actual particle velocity u® predicted by a Hamiltonian balanced model, viewed
in the physical domain — what would normally be regarded as ‘the’ velocity — always differs
from u®, no matter how accurate u® may be, except in at most a tiny subset of special cases
whose Lighthill radiation is exactly zero. The only known such cases are certain steady vortex and
Rossby-wave flows. The significance of Lighthill radiation, the ‘spontaneous-adjustment emission’
of inertia—gravity waves by unsteady vortical motions, will emerge shortly. Note that the constraint
velocity u€ is both a field, a function of x, and also a mass-configuration functional; and when
one or other aspect needs emphasis we refer to the ‘u® field’ or the ‘u€ functional’. When both
need emphasis, as when dealing with u® mathematically, we sometimes use explicit notations like
u®(x; p(-),0(") or u®(x; h(-)).

We find it mnemonically useful to say that imposing the constraint splits the parent velocity field
u into u¥ and u€. Such splitting is possible because of the fact that, in a classical Hamiltonian
system, ‘velocity field’ has two separate though possibly coincident meanings, particle velocity
field and phase space coordinate. It is the latter, not the former, that is constrained. A sufficient
reason to pay attention to both velocity fields is that the conservation properties of the balanced
model take simple forms only when expressed in terms of u®, not u*. In particular, the model’s
conserved PV is always the parent Rossby-Ertel PV evaluated with u®, whose respective forms

for three-dimensional stratified dynamics and shallow water dynamics are simply
Q% — prie TN a il i and ¢ QT SIS (1)

(C and (© are respectively the three-dimensional and two-dimensional forms of the ‘constraint
vorticity’, the absolute vorticity evaluated with u®, and are natural generalizations of the standard

notion of absolute ‘geostrophic vorticity’. Similar statements hold for energy and momentum.




These general results were implicit in Salmon’s work and in a recent study of semigeostrophy by
Roulstone & Sewell (1996a, eqgs. (50)ff.), and have been noted explicitly in the independent work
of Allen & Holm to be mentioned below. It is emphasized that the purpose of calling u® a velocity,
despite its not being a true velocity of material particles, is the mnemonic value of the simple rule
for obtaining the conserved quantities of the balanced model. The rule is that one substitutes u®
into the corresponding parent conserved quantities, as if u® were the true particle velocity. The
difference field or ‘velocity-split’ u®(x) = u® — u® can be thought of as a natural generalization
. of the ‘ageostrophic velocity’ that appears in simple models like semigeostrophy or Salmon’s L;
dynamics.

The fact that uS(x) is generally nonzero can, under reasonable assumptions, be proved rigor-
ously. The essential points are sketched here and set out carefully in §3 below, where a relevant
‘velocity-splitting theorem’ is proved. This theorem makes only the mildest of assumptions about
the prescribed u® functional and the associated slow manifold MC. It amounts to saying that if
the constraint has any effect at all on the parent dynamics, then u®(x) cannot be identically zero.
Conversely, only a constraint having no effect at all will fail to split the parent velocity field u. But
the existence of Lighthill radiation in the parent dynamics means that — except in a tiny subset of
special cases — the imposition of the constraint must, in fact, have a nonvanishing effect. It must
act to suppress the Lighthill radiation. The existence of nonvanishing Lighthill radiation, from
all or nearly all unsteady vortical motions, is one of the ‘reasonable assumptions’ we make. This
has not been proved rigorously, to our knowledge, but is supported by overwhelming analytical
~ and numerical evidence (e.g. Crighton 1981, Ford et al. 1996, & refs.). That evidence includes
~ powerful heuristic analytical arguments of the kind originally used by Lighthill, for the fundamen-

tally similar problem of aerodynamic sound generation. It also includes corroborative laboratory
experiments (e.g. Webster 1970; Kambe et al. 1990, 1993).

The quantity measuring the effect of the constraint on the parent dynamics, for these purposes,
is a field R(x) that besides depending on position x has functional dependence, like u®, on the
mass configuration. R may be called the residual, or unbalanced, contribution to the gravitational
and pressure-gradient forces per unit mass. It shares with u® the convenient property of being

. indifferent to the choice of rotation rate for the frame of reference. In an inertial frame, R is
defined by
R=F-AC, (2)

where A®(x) will be called the absolute ‘constraint acceleration’ (including what are usually
counted as centrifugal and Coriolis accelerations) and where F(x) is the net gravitational and
pressure-gradient force per unit mass defined by the parent dynamics for the given mass configura-
tion. Thus F is equal, by definition, to the absolute material acceleration that would occur if the
constraint were suddenly removed. The constraint acceleration A€ is also a functional of the mass
configuration. A® is the material rate of change of u® evaluated from a fictitiously evolving mass

configuration that coincides, at the moment considered, with the given configuration but changes



as if all particles moved with velocity u®. Thus R would be identically zero if this fiction were

fact, i.e., if the constraint had no effect on the parent dynamics. The superscript C will be used
throughout, as just illustrated, to signal a functional dependence on the mass configuration that
is known as soon as the u® functional is given. The field A® qualifies as having such a functional
dependence because, as a moment’s reflection makes clear, A can be expressed solely in terms of
u® and its first functional derivatives. Such derivatives enter the reckoning when taking account of
the fictitious rate of change of the configuration when particles move with velocity u®. With these
definitions, the abovementioned ‘velocity-splitting theorem’ states that every mass configuration
whose R field is not everywhere zero in the physical domain D has a u® field that is not everywhere
zero in D.

The theorem can be established most easily by showing, as will be done in §3, that the R(x)
and u®(x) fields are connected, exactly, by a certain linear integral equation, for any given u®
functional. This equation is of interest for other reasons as well. It not only provides an easy
proof of the theorem but also a general, but conceptually economical, way of defining the entire

C, avoiding any artificial dependence on reference-

balanced dynamics associated with the given u
frame rotation rates. It provides an easy route, for instance, to variable-Coriolis-parameter models.

It explicitly shows why imposing the constraint must suppress Lighthill radiation. It takes the form
> [9560x) uSx) dm(x) = Rix) 3)
i D

where the kernel Qg-

(x,x'), to be defined in §3, is antisymmetric in the sense that Q%

(x,x') =
—Qﬁ-(x’ ,x), and like A€ is known in terms of u® and the mass configuration. Here dm(x’) is the
mass element, p(x')dx’ or h(x')dx’, and the index j is summed over the space dimensions of the
physical domain D, 1 to 3 for stratified and 1 to 2 for shallow water flow. The theorem now follows
at once, by reductio ad absurdum, for any 93 (x,x’) whose behaviour is good enough for the left
hand side of (3) to vanish when u® is identically zero. This is hardly a significant restriction. It will
become clear by example that the behaviour of Q% is, indeed, typically more than good enough
for this purpose; Qg (x,x") will be seen to consist of a term equal to the constraint vorticity at
x times a Dirac delta function §(x — x') plus further terms proportional to spatial derivatives of
d(x—x") plus, in some cases, finite-valued, integrable contributions, corresponding to fully nonlocal
contributions to u®.

If, furthermore, Qg (x,x') is invertible, then equation (3) can be regarded as a prognostic
equation for the balanced dynamics, with the nice property of being reference-frame-independent
in a natural sense. The dynamical effects of rotation enter solely through u® and the associated
(absolute) constraint vorticity. Solving (3) yields u®, and thence uF, given the mass configuration,
allowing integration forward in time ¢. Notice that, because u® is only the first time derivative
of particle position, no dynamics of the form (3) can exhibit Lighthill radiation, simply because
such dynamics cannot support inertia—gravity wave motion. Indeed it cannot support bidirectional

wave propagation of any kind, because of the single time derivative. That is why imposing the




constraint must always suppress such propagation, and radiation, together with the associated
arrow-of-time effects, implying R # 0.

A noteworthy corollary of the foregoing is that the parent dynamics, given that it supports
inertia-gravity waves, cannot possess an exact, invariant slow manifold in phase space (e.g Errico
1982, Warn 1996, Warn & Ménard 1986, Ford et al. 1996). If there were such an exact parent
slow manifold, then it would be possible to choose u® to coincide with it. This would make R
identically zero for all time, by its definition (2), for any evolution on that manifold, contradicting
the above. As Ford et al. (op. cit.) point out, this can be made sense of by assuming that the

parent dynamics must possess not a single, invariant slow manifold but only what is sometimes

« called a ‘slow quasi-manifold’ @ in the form of a thin chaotic or ‘stochastic’ layer; of the kind

familiar from studies of finite numbers of weakly coupled pendulums or other oscillators. Q is thin
to the extent that Lighthill radiation is weak. The most accurate u® functionals correspond to
MC lying within Q.

We have not been able to prove any general result about the invertibility of Qg (x,x') but, on the

- evidence so far, invertibility seems likely to hold for suitably chosen u® functionals that are close to

geostrophic or gradient-wind balance. Invertibility has a geometric meaning in infinite dimensional
phase space; some aspects of this are shown in figure 1 below, via the simplest finite-dimensional
analogue. The technicalities in infinite dimensions are nontrivial, and include what becomes, in

infinite dimensions, a rather subtle distinction between symplectic and contact structure. This

. is touched on in §8; a full discussion of this distinction is beyond the scope of this paper, and

i

in any case seems not to be crucial to the invertibility of Qg—(x, x') in well-behaved function

- spaces. One choice of u® for which invertibility has been explicitly verified is the case of Salmon’s

- L, dynamics, corresponding to geostrophic u®. In that case invertibility not only holds but is

demonstrably robust, as will be shown in §§4-7 and Appendix A for the simplest, nontopographic
f-plane shallow water case. We may conjecture that similar results hold for other u® functionals
corresponding to physically reasonable balance conditions, representing refinements to geostrophic
accuracy; but the corresponding mathematics is again nontrivial. In the case of L; dynamics we
shall find that (3) can be reduced to a second order elliptic partial differential equation, as originally
shown by Salmon (1985), together with exactly enough information about boundary conditions to
complement the configuration-space boundary conditions chosen a priori. For L, dynamics there
are at least two reasonable choices for the latter, one of which leads to a new ‘filtered L; dynamics’,
so called because it filters boundary Kelvin waves and is therefore fully PV-invertible, in a sense
to be explained in §7.

A wider class of models that includes both versions of L; dynamics is that of ‘near-local’
Hamiltonian balanced models, meaning those defined by u® functionals that are near-local in the
sense that u® depends only locally on p(x), o(x) or h(x) and on a finite number of their spatial
derivatives. We say ‘near-local’ rather than ‘local’ to emphasize that a neighbourhood of x is

involved (because for instance pressure gradients are involved), and not just the point values of

s



p(x) etc. at x. It is known that the accuracy of the balance condition u = u®, whether used in

a Hamiltonian or a non-Hamiltonian model, is then limited to just two orders in Rossby number
Ro, or one more than for L; dynamics and semigeostrophy — that is, to the same formal order
of accuracy as a first approximation to gradient-wind balance, or the standard (non-Hamiltonian)
‘balance equations’ of Bolin and Charney (e.g. Whitaker 1993). To get further orders of accuracy it
would be necessary to use a fully nonlocal functional dependence, equivalently an infinite number
of derivatives at x, because of the so called omega-equation nonlocality of certain horizontally
irrotational contributions to u® (‘omega’ equation referring to the elliptic equation governing such
contributions, not to Q°, e.g., Hoskins et al. (1978)). Nevertheless, two orders in Ro is already
a practically useful order of accuracy, far superior to geostrophic in problems typical of the real
atmosphere for instance; and the near-local Hamiltonian balanced models prove to be interesting
theoretically as well as practically.

One theoretically interesting point is that we can find very simple canonical coordinates X like
those of Hoskins (1975) for a significantly wider class of near-local models than semigeostrophy; and
these canonical coordinates have a surprising twist. The discovery of these models, which for brevity
we call ‘near-local canonical models’, was originally motivated by recent results on the application
of the theory of contact transformations to Hoskins’ semigeostrophy (Sewell & Roulstone 1994,
Roulstone & Sewell 1996b). §8 derives the relevant general results as a pair of ‘canonical coordinate
theorems’ that characterize such models and their further generalizations. The theorems establish
for what class of Hamiltonian balanced models, near-local or fully nonlocal, a given X is canonical.
It does so by characterizing the corresponding class of u® functionals, showing for instance how the
special case found by Salmon (1988a) fits into a fully general framework. These models include a
large infinity of models with variable Coriolis parameter (§10 below). Near-local canonical models,
with both constant and variable Coriolis parameter, make up an important subclass.

It turns out that L; dynamics is a member of this subclass, as is also a new Hamiltonian
balanced model accurate to two orders in Ro, which we put forward as a strong candidate for
further investigation. The simplest, f-plane versions of these models correspond, in an inertial

frame of reference, to

u® = %fﬁ ) e Ol s 8 xf‘luG('el).VuG('e') (4)

with different choices of «, a constant parameter. Here % f is some typical or average value of the
rotating fluid’s bulk absolute angular velocity, also taken here as a constant, 2 is a unit vertical

vector, and uS(®) is the relative geostrophic velocity associated with the mass configuration and

Gl S 10 3_¢)
u ""zva¢_f< ayyaz ) (5)

where V denotes the horizontal gradient operator, and ¢ is the relevant surface-elevation geopoten-

the parameter f, i.e.,

tial for shallow water dynamics, or Montgomery potential for stratified dynamics in an isentropic-

coordinate description. Then the particular near-local canonical models defined by (4) turn out to




have canonical coordinates given by the remarkably simple formula X = x + f~%(V¢ — vz x V),

S N R L
A—z+—<——+'y—y), )f—y+.—f-.2-(-6—y 783:)’ (6)

i.e.

provided that

y=vV22a-—-1; (7)

and a = %, i.e. v = 0, gives Hoskins’ X, for which (4) becomes the constraint discovered by Salmon
(1988a, eq. (5.18)); for the relevance to Hoskins’ semigeostrophy see §11 below. But now comes
the surprising twist. To get a more accurate model of this class, & must be chosen < %, i.e. v must
be chosen to be pure imaginary.

In particular, the choice v = i (a = 0) provides canonical coordinates for Salmon’s L; dynamics
— a new result in itself. But, still more interestingly, the choice v = iv/3 (a = —1) defines a new
model with canonical coordinates X that has one further order of accuracy in Ro . The choice
v =1y/3 is the only such choice when X has the simplicity of (6).

These results suggest that, in order to gain such accuracy, it is necessary to depart from the
~ gradient form of X exemplified by (6) with v = 0, which gradient form gives rise to the Monge-
Ampere equation of semigeostrophy (e.g. Purser & Cullen 1987; Roulstone & Sewell 1996b). The
suggestion is confirmed in Appendix B below, which examines the class of near-local canonical
models in which X has the most general possible gradient form that respects the particle-relabelling
symmetry. It is found that all these models lead to the same Monge-Ampére equation as in
semigeostrophy, but that none of them can be formally more accurate than semigeostrophy itself.

A point to emphasize is that the conceptual structure we are dealing with is simple. This
becomes most evident from the modern geometric view of Hamiltonian dynamics, which maintains
a clear distinction between the symplectic or contact structure on the one hand and the Hamil-
tonian functional on the other. Imposing the constraint representing the balance condition then
becomes a very straightforward process and avoids, for instance, the introduction of the traditional
Lagrange multipliers. Nor is there any need to consider solvability or consistency conditions, or
sequences of such conditions, of the sort that arise in the Dirac-Bergmann theory of constraints
(e.g. Gotay et al. 1978). There the problem is of a different and more complicated kind, that of dis-
covering implicit, pre-existing constraints or ‘Lagrangian submanifolds’ associated with degenerate
symplectic structure due to the use of too large a phase space at the outset. All that is relevant
here is the nondegeneracy of the imposed constraint represented by the u® functional, as reflected
by the invertibility of Qg (x,x’). The essentials can be appreciated from simple finite-dimensional
examples; the simplest such is given in the next section.

The plan of the paper is as follows. §2 presents the simplest finite-dimensional example, and §3
shows how this extends to fluid systems respecting the particle relabelling symmetry, establishing
the ‘velocity-splitting theorem’ on the nonvanishing of u® together with the fundamental equation

(3) that leads to it. The simplest system for which the balance concept is nontrivial is f-plane



shallow water dynamics, and this is used for the most part when making details explicit, though

the formula for Qf(x,x’) is exhibited also for the three-dimensional stratified case, as are the
general canonical coordinate theorems of §8. §4 shows how the fundamental equation (3) quickly
leads to the equations of L; dynamics, as first derived via a longer route by Salmon (1983). This
provides a clear example in which Qg-(x, x') is robustly invertible. §5 describes a general proce-
dure for extracting boundary conditions from (3), and shows that the balanced model conserves
energy when those conditions are satisfied; §86 and 7 illustrates the procedure by deriving and
discussing the two sets of boundary conditions for L, dynamics. §7 also discusses the sense in
which filtered L, dynamics is PV-invertible, with implications for numerical solution. §8 presents
the canonical coordinate theorems, and §9 sketches the application to L; dynamics and to the new,
higher-accurate Hamiltonian balanced model for which v = iv/3 in (6). §10 shows how the present
approach simplifies the formulation of variable-Coriolis-parameter models. §11 puts Hoskins’ semi-
geostrophy itself, sometimes called ‘geostrophic momentum theory’, into the present perspective
of inheritance from a parent dynamics. From this perspective semigeostrophy is doubly split, in a
sense to be explained. There may be other such models with useful analytical simplicities, though
keeping track of their accuracy is conceptually more complicated. The relation between material
conservation of PV and symplectic-form invariance is noted, in the version relevant here. §12 gives
concluding remarks and looks at some remaining challenges.

Some of the ideas and results developed here can be found in the independent work of Allen
& Holm (1996), to which the reader is referred for an alternative view of problems of this general
kind, based on Hamilton’s principle and Kelvin’s circulation theorem as contrasted with the present
approach via symplectic and contact geometry. What we have called velocity splitting is implicit in
their results, for instance in the Kelvin circulation theorems for the Hamiltonian balanced models
they derive, corresponding to material conservation of PV as defined by (1) above. As is clear
from their presentation, the velocity entering the integrands of the Kelvin circulation integrals
differs from the velocity with which the contours of integration must move in order to conserve
circulation. Translated into our notation, it is u® that enters the integrands but u” that moves

the contours of integration.

2 Velocity splitting in the simplest possible example

The fundamental equation (3) for singly split models stems directly from the properties of Hamilto-
nian flow in phase space, and the properties of nondegenerate momentum-configuration constraints.
This is so basic that it seems worth demonstrating first in a simpler, finite-dimensional case, the
simplest possible ‘toy problem’. The theory can be presented most succinctly in the modern,
abstract mathematical language of differential forms, symplectic geometry and contact geometry,
but for wider readability we mostly use the standard, older textbook notation, especially as this

points most directly, and in a very simple way, to the infinite-dimensional fluid-dynamical cases of




interest here.

The simplest example showing the basic points is that of particle motion in two dimensions
under a potential V(x), with Hamiltonian function H(x,p) = (2m)~'pipi + V(x), where x = {z;}
denotes the particle-position coordinates defining the system configuration, at a given instant t,
and p = {p;} denotes the corresponding set of canonical momenta. Most of what follows applies to
an arbitrary though finite number of particles in two dimensions, but the simplest case of a single
particle of mass m is sufficient for our immediate purposes. The phase space for the Hamiltonian
description is then four-dimensional, being spanned by (1, z2, p1, p2) where the canonical momenta
(p1,p2) coincide, in this example, with the ordinary momenta md;, ma@, because of the classical
form of the Hamiltonian function. The four Hamilton’s equations are

oo O O
e el e

(i=12); (8)

and the first pair gives p; = mz;.

Now an alternative way of expressing the same information is to introduce arbitrary variations

dz;,dp; (often notated dz;,dp; in textbooks) and to note that Hamilton’s equations are equivalent

>

to

&ydp; — pidz; = a—H-dmi + <

A api = ’ 9
T o, dp; =dH , say 9)

~ where, here and subsegently, summation over repeated indices is understood. This has great

advantages for our purposes, of which the most, crucial is the simplicity and directness with which
a new Hamiltonian dynamical system can be derived from (9) by applying a workless constraint.
There is no need to introduce Lagrange multipliers, nor integrals with respect to time ¢ nor caveats
about their end points. To generate a constrained problem that inherits Hamiltonian structure

from the parent dynamics, one need only adhere to the following basic principle:

Apply the same constraint to the arbitrary variations dx,dp (10)
as is applied to the phase space flow X, p.
In the fluid case this will prove crucial to finding boundary conditions, as well as equations, that
express Hamiltonian structure in an appropriately general way. Geometrically, this principle says
that the dynamics is constrained to a single manifold M, as suggested in figure 1.

In the present, finite-dimensional example, (10) means that, if the constraint is expressed as a
set of smooth functions z; = 2°(z), p; = p{(z) where z = {z;} denotes a smaller set of variables,
which will here be taken to be just two variables, then in order to convert (9) into the new,
constrained problem one simply substitutes the same functions z{(z), p{(z) into dz;,dp; as into
Z;,p; and H(x,p). Hamiltonian structure is then automatically preserved. We assume here that
certain degeneracies are not introduced, specifically that the constraint functions =¥ (z) and pf(z)

are such that a certain matrix QS

ij» which arises from the substitutions, is invertible. Figure 1 and

the equations to follow show what is involved.
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First consider the expressions p;@; and —p;dz;. Constraining these expressions produces, re-
spectively,
@i = 05 (2)%; (11)
pPiT; = J “j 5
and

—pidz; = —9?(z)dzj 4 (12)

where both expressions involve the same set of known functions 0g(z), namely

e =025 (13)

, Adding the first variation of (11) to d/dt of (12) and noting that two terms *+p;di; cancel on the
left, similarly :tejcdz'j on the right, we see that the left hand side of (9) becomes

iidp; — pidz; = 2d8F —0Cdz; (14)
e ch,dzJ , say (15)
where 5
96s(z) 065 (2)
QC )
Craata (16)
because e c
00 . 00;
G e :
db; i —dz; and 0= Bz, a7)
Note from the antisymmetry of QS- and the symmetry of 8%/9z;0z that
AR%: a5 80%
ij ik X
YRR s PR sk (18)
From (9) and (14), then, writing H(z) = H(x°(z),p(z)), we have
O zidz; = dH . (19)

Removing the arbitrary factors dz;, we see that the new problem that results from constraining
(9) is

OH
6zj :

Notice that energy conservation for the new, constrained problem follows at once from the anti-

OF 4 = (20)

symmetry of ; replacing the remaining arbitrary variations in (19) by phase space flow rates,

l]’

we have

dH

or = Og 4 =0 (21)
Nondegeneracy says that the matrix QC has an inverse JS , with QCJ = dik, giving Hamilton’s

equations for the new, constrained problem in noncanonical form:

parlh

5 (22)
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The corresponding Poisson bracket is

dA OB
9 e 23
{A(Z),B(Z)} 82;‘ ]]z sz ) ( )

satisfying Jacobi’s identity
DJS aJC 9=
JC ik C ki JC AL 0 :
. 621 7 JJI 321 R o azl

whose equivalence to (18) for nonsingular QS and Jg can be verified by multiplying (24) by
Qe Q¢ pr then using 8/9z of QFJS = §;x. Each of the three versions, (19) or (20) with (18)

im*“jn kT

(24)

or (22) with (24), are Hamiltonian systems by standard definitions (e.g. Salmon 1988b, Shepherd
1990). The matrix Qg- is sometimes called the symplectic matrix and Jg the cosymplectic matrix.

In the language of differential forms, the right-hand sides of (14) and (15), i.e., the left-hand side
of (19), can be regarded as the interior product z|QC of the vector field z, defining the phase space
flow of the constrained problem, with the symplectic two-form Q€ = —dGJQ ANdz; = +dz; A d0§3 =
%Q,-dezi Adz;j. This requires reinterpreting dz; as the exterior derivative of the i*" coordinate field

z;. The simple way in which (11) and (12) lead to (16) then (18) corresponds to two successive

“exterior differentiations of the expression (12),

—65dz; =6°, say, (25)

regarded as a one-form. In the standard notation, Q€ = df®; dQC = ddf€ = 0, of which the last
corresponds to (18) and is called closedness of €. Energy conservation (21) is z| dH = z]z]QC = 0.
Now the constraints of interest in this paper are always momentum-configuration constraints

for which the dimension of z equals that of x (2 here, and oo in the fluid case), and
x%(z) = 2, (26)

so that the parent configuration space or part of it becomes the phase space of the new, constrained

problem. Then 8z¢ /8z; = 6;j, whence (13) gives

65 (z) = pj (z) = muf (x) (27)
so that (14), (15) and (19) become
&;dp; — pidz; = m(d;du§ — u§dz;) = QO #de; = dH (28)
(or x|Q° = dH) with
Q,-Cj(x) =m (% - %) ; (29)

Figure 1 illustrates the associated geométric structure in a simple example; the caption provides

- further explanation. We now have

dH(x) = dH(x, mu®(x)) = dV + mufdu§ | (30)
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or equivalently

OH H(x, OH (x,p) Ouf ov L Ouf
'(X) 5 (6 (x,p) a(x P) %g(fc)) iy T“Lm“%%' (31)
(9.1:j Ox; Pk T D= muc(x) Tj Zj
We can now derive corresponding equations for
uw® =x-u(x), (32)

directly demonstrating velocity splitting in this simplest example. The shortest route uses (28)

and (30):

0 = —m(&;du§ —aSdz;) +dV + mudu§ (= —x|Q° +dH ) (33)
= —m(ujdu§ — ufdz;) +dV (34)
= —m{ujdu§ — (af — AD)dz;} + dV + mATdz; (35)

for any vector AC. If we now choose

ouf
ol U e,
which is the constraint acceleration in the sense of (2)ff., then
ouf ouf ouf
A C R | SRR T o TR W @t SRS P |
u;.— Ay = &; 5 u; s, u; Per (37)
Then (35) becomes simply
qu?dml = R,‘dl‘,', (38)
where
OH oV
R mA; oz, mA; oz, mA; (39)
implying that
Qs =R andl - cul = TR (40)

Notice that the first of (40) is the discrete-particle analogue of equation (3) of §1. When m =1,
(39) corresponds to the definition (2); in the fluid case it is more convenient to define R and F
as force per unit mass, corresponding to the most convenient particle labelling; see (45) below.
The first term —0H/0z; = —0V /0z; on the right of (39), the force on the i particle, likewise
correponds to m times the first term F of (2), the particle acceleration that would occur if the
constraint were suddenly removed.

We note in passing — though this will not be used in the sequel — that an alternative but
equivalent view of the problem is easily obtained from traditional Lagrange multipliers. This is
related though not identical to the approach of Allen & Holm (1996). In our version, the velocity-
split u® turns out to be equal to the Lagrange-multiplier field A of the momentum-configuration
constraint p—p€ = 0, where p© = mu®. Lagrange multipliers A for such constraints are velocities

because they must yield energies when multiplied by (p — p€) and summed over particles; in

13




the modern geometric language, {p“} and {\} belong respectively to the cotangent and tangent
bundles of the configuration manifold {x}. The standard recipe is to retain the Poisson bracket
of the parent dynamics and to replace H(x,p) by H = H(x,p,A) + \;j(x)¢;(x,p) where, in
our version, ¢; = 0(j = 1,2) is the constraint in standard notation, not to be confused with
geopotential: ¢; = p; — pJC(x). (It is simplest to avoid Salmon’s (1988a) Dirac-bracket notation
because the Dirac bracket defined there is not manifestly bilinear in its two arguments, hence is
not manifestly a bracket in the usual sense.) Then we get four equations
oH SO
W ey

. which, together with ¢; = 0 constitute the equations to be solved for the six unknowns &;, p; and \;.

(41)

T;

The entire system of equations for x, p and A is not self-evidently Hamiltonian, but can readily
be shown to be equivalent to (20) and hence is Hamiltonian by implication, in a noncanonical

description. The first of (41) shows at once that
A=x%x-pC=u’. (42)

Again, if the constraint has any effect, then the Lagrange multipliers, i.e., u®, must differ from
zero. Using (42), the second of (41) can be shown in two or three lines of manipulation to be
equivalent to (20), either directly or by using the facts that that {q&j,ﬁ } = 0 and {¢;,¢;} =0
where {. , .} is the canonical Poisson bracket of the parent dynamics.

In this scheme it is essential to interpret all partial differentiations as being taken in the full
parent phase space and not on the constraint manifold M. This is where the restrictiveness of
partial differentiation, as compared with the freedom allowed by differential forms, makes the tech-
nicalities a little more complicated. (The Lagrange multipliers \; can, however, be held constant
during all such differentiations, because they are always multiplied by ¢; = 0.) Once again, no
Dirac-Bergmann consistency conditions enter the picture, because the problem is one of changing
the dynamical system by imposing a nondegenerate constraint, requiring (29) to be nonsingular
— not the subtler problem of finding a pre-existing constraint or Lagrangian submanifold implicit
in a degenerate parent dynamics.

Notice finally that the variational forms (28) and (38) can easily be adapted to dynamical
models that include dissipation or forcing terms. Such terms can be added on the right of (8) and
carried through the analysis. Thus there is no difficulty with the formalism, as presented here,
in modifying Hamiltonian dynamics by adding forcing and dissipation. Of course the extra terms
can interfere with balance, and the possible accuracy of the resulting balanced model is a separate

question.

3 Extension to fluid dynamics

The simplest fluid-dynamical system for which the concept of balance is nontrivial is shallow

water dynamics. Here the mass configuration is completely described, in a way that is invariant
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to particle relabellings, by the layer depth h(x) as a function of position x. References to the
dependence on time t are suppressed. It proves overwhelmingly advantageous to use both the
Eulerian description, as with A = h(x), and also the Lagrangian or particle-following description
of the fluid motion. Use of the Lagrangian description allows the symplectic structure on the
slow manifold M€ to be represented in a simple way that precisely parallels equations (16)—(25)
of §2. Fields like u®, A®, F and R, on the other hand, are simplest to handle in the Eulerian
description, because this is by far the simplest way of representing the pressure-gradient and other
forces associated with the mass configuration and the corresponding potential-energy variations in
the Hamiltonian functional, as will be illustrated in (70) below. Use of the Eulerian description
is also the simplest way to guarantee that the particle-relabelling symmetry is respected. If a
u® functional did not respect the particle-relabelling symmetry, then the corresponding balanced
model would violate material PV conservation as well as the particle-relabelling symmetry itself.
The Eulerian description is needed, furthermore, to make explicit the precise sense in which the
fundamental equation (3) is reference-frame independent, thereby simplifying, for instance, routes
to variable-Coriolis-parameter models.

We therefore use both descriptions, Eulerian and Lagrangian, together. This requires continual
use of the configuration mapping a «+ x between present positions x and the reference positions a
that label material fluid elements. The mapping is assumed to be well behaved, meaning invertible
and sufficiently differentiable. Then, given the configuration mapping, any function of a can
equally well be regarded as a function of x, and vice versa. Thus the field h(x) can equally
well be regarded as a function of a; and to reduce symbolic proliferation we adopt the notational
convention that the same symbol may be used to denote both functions, so that the equality of
values when x corresponds to a is written as h(x) = h(a). (Note that this is shorthand for what
could have been written h(x(a)) = h(a) by a different, ‘fixed-slot’ convention.) Variations §“x(a)
in the configuration mapping, naturally regarded as functions of a when using the Lagrangian
description, can also, in the same way, be regarded as functions of x and written as 6“x(x).
Again,

Qg % ) Qg-(a, a') (43)
in (3), and so on. Arguments will be shown explicitly whenever there might be danger of confusion.
The notation 6“ will always mean a Lagrangian variation, with the implication that a is held
constant, as with 6“x; and 6® will always mean an Eulerian variation, with x held constant.
The distinction is crucial when dealing with functionals like u® that are also fields. Variations of
ordinary functionals like the Hamiltonian, with no dependence on a or x, will notated 4.

For a rigid side boundary 9D,
o“x . A=0 on 8D, (44)
where n is the outward unit normal. The mass element

dm = hdx = da , (45)
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if, as we prescribe, the reference positions are actual positions in a notional initial layer of uniform
depth 1 unit, and density 1 unit, in appropriate units. Therefore, with (z1,z2) replacing (z,y)

from now on,

_ a,a2) _ (9(@1,22)\ " 46
s d(zy,23) (3(‘11"12)> : L

Eulerian and Lagrangian variations §®h and 6“h, with h(-) regarded as a function of x, are related

to mapping variations expressed as 6“x(x) by
6Vh(x) = 8“x.Vh + 6Bh = —hV.(6"x) , (47)
6Fh(x) = —V.(hé"x) , (48)
consistently with the general relation
6L = dtx.V + 6% . (49)

This last is applicable to any function of x . Observe that the notation 6“x(x) is consistent with
(49), because 6®x is trivially zero. Observe also that 6% commutes with V or 8/8z; — an important
simplifying feature — whereas 6 does not.

In order for the u® functional to respect the particle-relabelling symmetry it must be expressible

€ = u®(a;x(-)) = u®(x; h(-)). This says that the value of u® at any position x

in Eulerian form: u
is nonlocally dependent on the mass configuration h(x), but independent of where individual fluid
- elements are located within that mass distribution. The degree of nonlocality depends, as already
mentioned, on the accuracy desired. From (47) and (48) it is straightforward to show that the
relevant Lagrangian and Eulerian functional derivatives are related by the appropriate form of the
chain rule, 5 5 o

TR e el e el LY

where § with argument (x —x’) denotes the two-dimensional Dirac delta function. In the first term

on the right, 9/0z; connotes that the function argument h(:) is unvaried. In the last term, 6¥ /6%h
connotes that the position argument x is unvaried. The second position argument x’, appearing
in the denominator, is analogous to the denominator index j in the first term and also, like the a’
on the left, signals which dummy variable of integration to use when computing variations. Thus
by definition, for sufficiently smooth é“x(a) and 6®h(x),

ot uC€(a;x(-)) st

6"u(a) = 6“uC(a;x(-)) = 5oz @) zj(a’) da’ (51)
and S
5EuC(x) = 8BuC(x; h()) = [ KR0D) s iy g (52)

SER(x')

where, as in §2, summation over repeated indices is understood. Note that [ da’é™/¢“x(a’) and
J dx'6% /6®h(x") both have dimensions (length)~', the same as x~! and h~!, and, for instance,

from (46), i ] ;.
i dLx(a’)  h(x') obx(x) ’

(53)
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consistent with (45). To verify (50), substitute it into (51), change variable of integration to x’
using da’ = h(x')dx’, integrate the ¥ term by parts, recalling (44), and use (48), (52) and (49).
Note that the relation (50) is similar to, though simpler than, the relations needed to derive the
Eulerian (Morrison & Greene 1980) formula from the canonical (Lagrangian) formula for the parent
Poisson bracket.

Equation (3) now follows simply by noting that the infinite-dimensional counterpart of (29) is

_ hul(ayx()  Suf(a’;x())

5 N =& N = = 4
Qt_] (x7x ) Ql] (a’a ) 6Lx](a,) 5L:1:1(a) b (5 )
and that the parent Hamiltonian functional is
H=v+/§|u|2 dm , (55)
D
where V is the potential energy of the mass configuration, so that
Ifi:V+/%|uC|2 dm ; (56)
D

H and V are scalar-valued functionals of the mass configuration alone. The finite-dimensional

relation (30) has the counterpart

SH(x) = 6V+6/%|uc|2dm = 5v+/u§§5Lu,€.dm : (57)
D D
now integrating over mass elements dm as well as summing the index k from 1 to 2. Note that 6%,
by its definition, commutes with [ ...dm, i.e. with [ ...da.
It remains only to carry out the steps that parallel (33) - (35), again with d replaced by ¢ or
6" as appropriate, and applying integration over D with respect to the mass element dm as well

as index summation from 1 to 2. The definition of R is still R = F — A€ but now with

oV a0 6V

M=  oLzi(a) = ~ 0z 0Fh(x) ’ E

and
e s
AS(x) = /u?(a',x( »’ Z{_ij(’a,g ) qa!
D
ouS A{h(x")u§ (x'; h(-))} 6Bul(x; h(")) . ,
7 dz; —/ oz} oBh(x') i !

using (50) and (44) to rewrite A in terms of Eulerian functional derivatives. Similarly rewriting

(54) we get finally

/ 08 (x, x')us (x') dm(x') = (¢ x u®); + / w8 (%, X )ud () dm(x') = Ri(x),  (60)
D D
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where
8 6BuS(x;h() 0 0°uj(x';h())

o AT T G AL i 0
ozl Fh(x') Or; OEh(x)

WS(X, x,) = _w';(xlvx) =

) (61)

Note that the (¢© x uS) term comes from the first term in (50), when substituted into the antisym-
“metric expression (54). It is crucial to remember here that both Qicj (x,x') and A€ are absolute
(inertial-frame) quantities: absolute u® values must be used in (54) and (59). Thus, for instance,
AC includes what we normally call the Coriolis and centrifugal accelerations; this point is further
discussed in §10 below.

For the general three-dimensional stratified, compressible case, with u®(x; h(-)) replaced by
u€(x; p(+),a(+)), a precisely similar calculation, whose details will be omitted for brevity, produces

(60) with

9 Fuf(x;p(),0() 0 Puf(x';p(),0())

C N = —wl(x', x) =
Wi (X,X ) i w]x(x ,X) 8x; JEp(x’) oz; 6Ep(x)
o) 8 FuC(xip(),0() _o(x) 8 Puf(ip().0()) o
p(x') Oz dEo(x') p(x) Ox; o (x)
In brief, we replace h(x) by p(x) in (48), giving dm = pdx = da and
6Ep(x) = =V . (pé"x) (63)
with V now three-dimensional; and we use also
6%o(x) = -V. (aéLx) (64)
and the following counterpart of (50)
Fuf(@x()) 1 9uf(x;0();0()) ,
Lz;(a)  px) oz; o =
9 Fulxip();o() | a(x) 0 §"uf(x;p();a() (65)
oz dEp(x’) p(x') Oz 0Ea(x!)

We may speak of a ‘well behaved’ Hamiltonian balanced model whenever the foregoing operations
make mathematical sense. More precisely:

Definition The Hamiltonian balanced model defined by a given, functionally differentiable u® will
be called ‘well behaved’ for some given set of mass configurations if (a) the constraint vorticity ¢Cis
finite, (b) the u® andu® fields exist and are smooth enough for the integral [,w (x, x")u$ (x')dm(x')
to erist, and (c) the w?j fields implied by the given u® functional are such that the integral vanishes
whenever u®(x) = 0 everywhere in the physical domain D.

We can now assert, as an immediate consequence of (60) by reductio ad absurdum:

.Theorem 1 (Velocity-splitting theorem) For any well behaved Hamiltonian balanced model
as just defined, every mass configuration whose R field is not everywhere zero in D has a u® field

that is not everywhere zero in D.
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Remarks. Note further that:

1. Equation (60) is exact in the sense that it follows without approximation as soon as the parent
dynamics and the u® functional are specified. The accuracy of u® itself, as measured by the

smallness of norms ||R/| or |[u®||, or closeness to the parent dynamics, is a separate question.

2. The antisymmetric kernel wg (x,x") arises solely from the way in which mass rearrangement
affects the u® functional, hence its definition solely in terms of Eulerian functional derivatives with

respect to the mass configuration.

3. As already mentioned, the functional dependence of u® upon the mass configuration h(x) or

p(x), o(x), notated h(-) or p(-),a(:), can be fully nonlocal, as is necessary for the highest accuracies.

4. The dynamical effects of rotation enter solely through the u® functional or functionals, for
instance through ¢© and through the way in which the u€ field changes when, for instance, the
pressure field changes. This will prove very convenient when, for instance, it comes to applying (60)
to variable-Coriolis-parameter models (§10). It gives a natural way of distinguishing ‘centrifugal’
and ‘Coriolis’ accelerations from ‘relative’ accelerations that is based entirely on the u€ functional

and the constraint accelerations A€ derived from it.

5. The constrained Hamiltonian functional ﬁ(h(-)) or ﬁ(p(-), o(-)) enters the foregoing derivation
very simply, owing to the use of the Lagrangian description in treating the kinetic energy term, as
in the second term of (57). Some more details are given in (82)ff. The potential energy term, §V in
(57), does not need to be computed here because it enters solely through its relation to the parent
force F = §V/4"x per unit mass, which can usually be written down from elementary knowledge

of the parent dynamics (cf., e.g., (71)).

6. When F does need to be computed from V, this is simplest via the Eulerian description, as will

be illustrated in (69)ff.

7. Both PV and energy conservation follow by standard arguments, provided that the PV is given
by (1) and the energy by H, asin (21), and provided also that, in the case of energy conservation
in bounded domains, the information about boundary conditions implicit in (60) is used. Details
for energy are given in (82)ff, in connection with the general procedure for obtaining boundary

conditions. Details for PV are given at the end of §11.

4 Equations of Ly dynamics and L; dynamics

We now show that Salmon’s equations for f-plane Lo dynamics and L; dynamics, for f-plane
shallow water parent dynamics under constant gravity g, follow very directly from the result just
obtained. These are the simplest examples of Hamiltonian balanced models of the kind under

discussion. For Ly dynamics we simply take

ul =iz cn (66)
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describing solid rotation. Then the constraint vorticity becomes simply the Coriolis parameter of
that solid rotation, (° = f = constant. The right-hand side of (61) vanishes, because u® does not
depend on the mass configuration, so that the wicj terms in (60) vanish. The residual unbalanced
force R per unit mass becomes simply the contribution to the horizontal pressure-gradient force
per unit mass that is not balanced by the centrifugal acceleration of the solid rotation. Thus (60)
becomes simply the geostrophic relation, u$ = u®e) with u®e) the relative geostrophic velocity
given in terms of the mass configuration by (5), wherein ¢ = ¢?%5 — ¢°e"*rif with ¢ defined as
g times the actual surface elevation, and ¢°"*"if as g times the paraboloidal surface elevation for
_ the solid rotation (66).
Although (66) does not yet give a balanced model capable of dynamical evolution, it does
illustrate the tendency of u” = u® + u® to be an improved approximation to the balanced motion
in comparison with u®.

For L, dynamics we take, iteratively,
u® = 1f2 x x +ulle (67)

The constraint vorticity (€ in (60) now becomes the geostrophic absolute vorticity (¢ = f+2.V x

uCe) = (G say. The corresponding materially conserved potential vorticity (§11),
Q% =h71(C; (68)

is assumed to be positive everywhere. Also (for arbitrary bottom topography)

V= / (¢*® — Lgh) dm = / (¢*"h — 1gh?) dx , (69)
D D
implying that
8V = / (h6"¢*"® + ¢***6%h — ghé®h) dx = / ¢**56%h dx (70)
D D

ecause with any fixed topography Eulerian variation i1s simplest, =g , whence, by
b ith fixed hy Euleri iation is simpl OF pabs 0%h), wh b
(44), (45), (48) and (58),

oV = / x(x).Ve*®* dm ; = F=-V¢*>*, (71)
D

Note incidentally — with an eye to §10 and to Remark 4 of §3 — how the inertial-frame descrip-
tion is related to the standard description relative to a rotating frame of reference. There, the
Hamiltonian functional is usually defined to contain only the relative kinetic energy and to contain
| only the part of the potential energy associated with ¢, not ¢*** (e.g. Salmon 1983). Here we have
| instead the absolute kinetic energy and the actual gravitational potential. It is straightforward
to check that the two are equivalent, provided that one remembers that as well as using absolute
“(inertial-frame) u® values in H, one must also use absolute u” values in place of x in the fluid
counterpart of —x|Q° + dH =0 (more detail in (82) below), and allow for any work done by

‘moving boundaries. Cancellations then lead to the standard rotating-frame description.
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We now restrict attention, for illustrative purposes, to the simplest possible case. This is the

‘no-topography’ case in which the bottom of the shallow water layer coincides with a centrifugal-
gravitational level surface of the basic solid rotation associated with f. Then a short calculation
from (59) and (71) gives

R=F +A° = S Bl (72)

There is no mass-rearrangement term in this case, because now hV¢ = % gV (h?), implying
Vel = 0o vty (73)

annihilating the relative part of the last term in (59). If particles were to move with absolute
velocity u€, i.e. with relative velocity u®!)  then dh/0t evaluated in the rotating frame would be
exactly zero. So in this example there is no contribution to R from the functional dependence of
u®e) and hence u® on the mass configuration, h(x). The reference to rotating frame is only for

computational convenience and can be dispensed with, for instance with the help of (122) below).

C

It remains to evaluate wf;. The Eulerian functional derivatives of u® and u®®) are equal

because of the reference-frame indifference of 6¥. In the present case we therefore have

Ful(x;h()) _ Fui"(gh() g @

E), T EhGe) f e T (74)

where ;1. is the two-dimensional alternating tensor (e12 = —&21 = 1, €11 = €22 = 0). Thus, from

(61), for any x interior to the fluid domain D,

/wg (% x')u?(x’)dm(x’) =
D

g & 9? e el e
z ?/ oz, * ooz, 6(x —x) | uj(x') h(x) dx
D 8 ok

e g 0 S 3G S
- -f—/ [e,-,-ma(x —x')] w3 (x') h(x') dx' = ?Eijszj ; (75)
D
where
US(x) = h(x)uS(x) . (76)
To verify this, replace uJS in the second line by ugépj = —ugepqs,,j then use €ix€q; = 0igOkj — 0ijOkq ,

then integrate by parts twice. Rewriting the (¢© x u®); term in (60) as —5¢,~QCUJ-S, we see that
(60) reduces to
(V2 - K*(x)) U° = ‘52 iyl (77)

for any x within the domain D, where K? = fQ€/g, the appropriate inverse square Rossby length,
which is positive under the parameter conditions favouring balance. (In the three-dimensional
stratified case, negative K2 would correspond to an inertially unstable state, with any initial
balance breaking down spontaneously.) The elliptic equation (77) is Salmon’s (1985) equation,
and is robustly invertible whenever f¢© hence fQC are everywhere positive, for an unbounded

domain D with evanescent boundary conditions.
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Again under the parameter conditions favouring balance, V> and K? reinforce, and we can
usually assume that K? is not negligible against V2. Then the typical order of magnitude of u’
is given immediately by comparing the right-hand side of (77) with the second term K2U® on
the left. After cancellation of factors f/g this shows at once that uS will be one power of Rossby
number Ro smaller than the relative constraint velocity, u®®) say, = u®() in this case. A
similar argument applies to the relative magnitudes of u® and u®®) in the general case governed

by (60), where the corresponding comparison is between R on the right and ¢€ x u® on the left.

-5 Boundary conditions and energy conservation for rigidly

bounded domains

Contrary to appearances, the fundamental equation (3) or (60), with (62) or (61), contains essential
information about boundary conditions and their role in energy conservation. This involves some

mathematical subtlety. We illustrate this by discussing the rigidly bounded shallow water problem,

“with points of greater generality indicated where appropriate. In what follows, the side boundary

0D can have one or more connected parts 9D; (0D = |J; 0D;) so, that, for example, an annular
domain D is possible. Rigidity is understood to include impermeability: no fluid particles may
cross the boundary, implying that, in a reference frame co-rotating with D, the particle velocity

relative to that frame, uP "V say, must satisfy

u) 4=0 on D (78)

~ as well as its variational counterpart (44). This is part of the definition of the configuration space

for the parent and balanced dynamics.

It turns out — and this seems to be another new result — that there are two natural choices of
boundary conditions for rigidly bounded L, dynamics, each resulting in a well determined problem,
and each conforming to (78) and (44). If we make one of these two choices, Kelvin waves are filtered,
and if we make the other they are not.

Why should there be any freedom to choose? This is a general point. One might think that
there is no reasonable alternative to defining the configuration space of the balanced model to be
the same as that of the parent dynamics, then looking to the balanced dynamics to determine
the remaining boundary conditions. But there is freedom in the sense that one can make the
configuration space smaller by, in effect, imposing a more restrictive constraint. That such a
thing is possible in principle is clear from the toy example of figure 1 (q.v.). Nondegeneracy in
that example requires that the MC surface is nowhere ‘horizontal’; but there is no reason why
some part of it should not tend to the ‘vertical’. It will still intersect the symplectic hypertubes.
One could imagine, for instance, p, asymptoting to —oo on M€ as z, increases to some finite
value beyond the range of values depicted in the figure. The resulting dynamics plainly has a

configuration space that is smaller than the configuration space for the parent dynamics.
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Consider, now, the case in which the parent is shallow water dynamics. The parent configuration

space is a set of sufficiently smooth functions {h(x)} such that total mass is constant,

/h dx = constant . (79)
D

Configuration changes must conform to (78) and (44)), but there are no boundary restrictions on
the value of h. Note incidentally that, because of (79), configurations are rays, not points, in the
function space {h(x)}, as with quantum-mechanical Hilbert spaces.

We can, as already suggested, define a balanced model with the same configuration space as
the parent. For L, dynamics this is the choice that does not filter Kelvin waves (details in §6). But
we can also define the balanced model to have the slightly smaller configuration space in which, in

additional to the foregoing, the condition
0¢/0t=0 on 0D (80)

is imposed (details in §7), where £ is a tangential coordinate along 9D, such as arc length, and
¢ is defined in §4. This is the choice that filters Kelvin waves, evidently so because such waves
depend on undulations in ¢ at D. The imposition, at the outset, of the extra condition (80) is
like making the M of figure 1 infinitely steep in certain directions in configuration space. In
the present, infinite-dimensional fluid case these directions correspond to a values signifying fluid
particles located on 9D.

To find the remaining boundary conditions, once the choice of configuration space has been
made, we may probe these same directions in configuration space by forming the variational coun-
terpart of (3) and considering suitable variations at 0D. The following applies equally to shallow
water and three-dimensional stratified cases. Boundary conditions that preserve Hamiltonian struc-
ture must satisfy the basic principle (10): their variational form must be derivable by applying the
same constraint to the variations as to the phase space flow. Thus, for instance, if (80) is imposed,

then we must also impose
A6Cp/0t =0 on 8D . (81)

Now the variational counterpart of (3) can be exhibited in three useful versions, as follows, where,

because of (57)ff., uf and u® are absolute (inertial-frame) velocities:

_/ (WP 8%ul — alolz;)dm +6H =0, cf (33), (82)
D
or equivalently, via (57),
_/ (WSshul — aColz;) dm+ oV =0, cf. (34), (83)
D

whose Eulerian form, via (49), is evidently
C
g Ou;

—/ {u?&Eu? + (uj —a—x—: - uf') 5Lz,~} dm+46V =0, (84)

D
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with a first term that is reference-frame-independent. The symbol 1® means, as before, the material
rate of change of u® when the mass configuration evolves with the balanced model dynamics, and
is not to be confused with A®. The second of these three equivalent versions, (83), is the version
closest to the integral equation (3), and can easily be obtained from it. One need only multiply
(3) scalarly by 6“x then integrate over D, a process analogous to going from the first of (40) back
to (34).

The first version, (82), will be most convenient for deducing energy conservation, being the fluid
counterpart of —x]QC + dH = 0 in (33), which fact provides another route to all three versions
and a useful cross-check on their correctness. The third version, (84), will be the most convenient
for deducing boundary information.

The boundary information is contained in the reference-frame-independent first term of (84).
The reason is that the u® functionals of physical interest, such as (67) and its more accurate
counterparts, contain contributions involving gradients and possibly higher spatial derivatives of
the field or fields describing the mass configuration. Therefore the term containing 6°u® has to be
integrated by parts in order to bring out a factor §“x, making the variations removable from the
integral over D. This will generally produce boundary terms. Notice the contrast with the parent
dynamics, which is described by (82) with the C’s replaced by P’s, and in which 6“uf and é“x
are independently variable because of the larger parent phase space, and are therefore removable
as they are, in the standard way, to give just the parent Hamilton’s equations and no further
- boundary conditions.

The reader might wonder how the relation (84) can appear to make more information available
than (3), even though derivable from it as just indicated. This is unlike the finite-dimensional
(34), which manifestly contains no more and no less information than (40). The answer lies in a
mathematical technicality peculiar to infinite dimensions, and related to the limiting process in
which the boundary 9D is approached from the interior.

Note first that (60) and its original derivation in §3 has a clear meaning only for particles not at
dD, even if arbitrarily close. This is because of the Dirac delta functions in (50) and, for instance, in
(74). By contrast, (84) contains no delta functions when the u® field and its variations are smooth.
This allows us to handle the limiting process in a straightforward way. More precisely, (84), unlike
(3), can accommodate limiting forms of the variations §“x, and the associated 6%h = ¢g~16¢, that
probe conditions at the boundary 9D alone. In the limit, we may leave particle positions unvaried
throughout the interior of D, while varying h, equivalently ¢, on 8D alone. We can furthermore
vary independently, on dD alone, as many of the normal derivatives of h or ¢ as we please. This
is done by moving particles in an arbitrarily thin band adjacent to 9D, requiring, in the limit,
negligible virtual mass flux to or from the interior. Such variations are invisible in the derivation
of (60), which relies on (51) and (52) and therefore on 6“x and 6®h = g~16%¢ being smooth
functions, able to be multiplied by Dirac delta functions §(x — x’) and their derivatives and then

integrated over x’ when x ¢ 9D.
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The upshot of the general procedure based on (84), using the freedom of boundary variations

just noted, is that the boundary terms emerging from all the-integrations by parts of the first
term of (84) — which are line integrals over the 9D;, contain arbitrary variations 6Eh = g~'6%¢
and, in general, a finite number of the normal derivatives of those variations — imply that the
coefficient of each such variation, 6€¢ and any normal derivatives that appear, must vanish, along
with the integrand multiplying 6“x in the remaining integral over D. The vanishing of the latter
integrand gets us back to (60), as can be verified in a few lines of manipulation; but we now have
the necessary complement of boundary conditions as well.

Before turning to explicit illustrations, we point out that one of the integrations by parts,
namely the last of the sequence, the one that frees the factor 6Lx in the integral over D, always
fails to produce additional boundary information because it has been, so to speak, pre-empted by
the boundary information imposed when defining the configuration space. The boundary term
that emerges at that stage is always annihilated by the configuration-space boundary condition
(44), the vanishing at 8D of the normal component of dLx. The same thing, it will have been
noticed, happens with the integrations by parts needed to derive (50), the basic relation between
Lagrangian and Eulerian functional derivatives. Thus (50) and its three-dimensional stratified
counterpart are true without qualification; we can go freely between the Lagrangian and Eulerian
forms of the functional derivatives without producing any boundary terms. All this is because of
(44) and the contraction with 6“x in (51). Thus for instance it is immaterial, for present purposes,
whether we begin with (3) or with (60).

In the case of L; dynamics, with §%uC proportional to gradients of h(x) — making (60)
equivalent to the partial differential equation (77), as already shown — just one extra boundary
term is produced. Details are spelt out in the next section. Higher derivatives in SEuC will
produce a higher order differential operator and correspondingly more boundary terms. With a
fully nonlocal u® functional, we must expect (60) to be equivalent to an infinite-order partial
differential equation with an infinite number of boundary conditions, probably most conveniently
treated as a integro-differential equation with a kernel free of delta functions and a finite number
of boundary conditions. Details for cases of this kind remain to be worked out.

We can now see how to show that energy conservation will hold for a general Hamiltonian
balanced model of this kind. Energy conservation must, of course, on physical grounds, be expected
to depend on boundary conditions. Notice first that, when (82) holds true for arbitrary olx, it
holds true, in particular, when 6“x is replaced by u” and 6*u® by u€. (In the language of exterior
calculus, this is the interior product of the phase-space flow with (82) regarded as a one-form, the
fluid counterpart of —x|x|Q° + x| dH = 0 of §2.) The first term of (82) then plainly vanishes, by
skew-symmetry, and the second term becomes the time derivative of H. Now (82) does hold true in
general when, and only when, all the boundary conditions and interior equations, derived according
to the above general procedure, are satisfied. Energy conservation then follows, as expected, for

the balanced model, with H as the conserved energy.
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We now make the foregoing more concrete by presenting explicit details for L; dynamics.

6 Boundary conditions for L; dynamics

First consider the case in which, straightforwardly, the configuration space for the balanced model
is defined to be the same as the configuration space for the parent dynamics. This means that the
boundary conditions will include, ab initio, as part of the specification of the configuration space,

only the no-normal-flow conditions (44) and (78), the latter being equivalent to
USh=-uClre) f=_uSCD) /4 on 8D. (85)

Inspection of (77) reminds us that this provides only half the needed boundary information. Fol-
lowing now the general procedure outlined in the previous section, we substitute the geostrophic
uC, (67), straight into the first term of (84), then integrate by parts. The first term of (67), fZ X x,

makes no contribution because it is mass-configuration-independent and has vanishing Eulerian

variation. We have simply JEu? = JEuf('el) = —(9/f)ejx0%(Oh/zk), so that the first term of
(84) is
_9 (s  se(%h =9 .aUJ'SE _!if : S<E
f/ujeJkJ (sz) dmyi= f/c—:,k a:l:k6 h de 7 dls,knkUJ-J /5 (86)
D D 8D

One more integration by parts is required to expose the interior variation dx, but as explained
above this produces no further boundary terms, because of (44). The boundary term displayed in
(86) contains the rest of the boundary information in this case. That term must vanish separately,
for the reasons discussed below (84), with, for the chosen configuration space, 6%k an arbitrary

function on 8D. It follows that ¢;xn U7 =0 on 8D, i.e.,
US.2=0 on 8D, (87)

‘where £ =% x h is a tangential unit vector. The remaining terms in (84), all integrals over the
interior D, recover Salmon’s equation (77) after a few lines of manipulation; so this calculation
also provides a check on the previous derivation of that equation direct from (60).

The boundary condition (87) was first postulated by Allen et al. (1990), from energetic consid-
erations, and has been derived from Hamilton’s principle in the Clebsch representation by Salmon

- (personal communication) and via a different route by Allen and Holm (1996).

7 Filtered L; dynamics

The Hamiltonian balanced model that we call filtered L, dynamics, because it filters boundary
Kelvin waves and is PV-invertible, results from imposing h/8€ = 0 on 8D at the outset, as well
as (85), and the variational counterparts of both of these. As already discussed in §5, the extra

conditions can be regarded as constraining the parent dynamics slighly more severely than before,
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resulting in a slightly smaller configuration space. Because u® itself has not changed, the same

line integral, that in (86), must still vanish. So we can read off the remaining boundary conditions

at once, giving the complete set

US.a=0 on 8D (88)

from (78), because now u®®) . n = 0 on 9D, and

oh R :
ﬁ =0 hence '@ = 6—€'(VU ) =0t on oD ’ (89)
with
?{ US.de=0 (90)
oD,

separately on each connected part 8D; of D, from (86). This last condition, (90), replaces (85)
because of the reduced freedom in §®h, which in accordance with the basic principle (10) can
now change only its single value on each connected part dD; of 9D. As a check that the general
procedure of §5 has, indeed, led to well determined boundary value problems for L; dynamics and
filtered L, dynamics, uniqueness proofs for both are given for both in Appendix A. Existence, too,
can be demonstrated (R. Temam, personal communication); see end of Appendix A.

It is known of course that L; dynamics, as defined by (77) with (88)-(90), supports Kelvin
waves, indeed accurately describes them in the long-wave limit, in which the wavelength along the
- boundary and the boundary. radius of curvature are both much greater than the Rossby length
K~'. This is known from, for instance, the work of Allen et al. (op. cit.). The Kelvin-wave solutions
illustrate how L; dynamics resolves the boundary conflict between the no-normal-flow condition
and the u® functional. Near the boundary (more precisely, within about a Rossby length K ! of
the boundary), the u® field increases in magnitude to be comparable to uC. This is in contrast to
its usual magnitude, with u® being O(Ro) smaller than u®.

Filtered L; dynamics, on the other hand, exemplifies Hamiltonian balanced models with no
such boundary conflict, and no scaling anomaly near the boundary. Related to this is the fact
that filtered L; dynamics is fully PV-invertible, in the following sense. The point has more than
theoretical interest: it could also be useful when performing numerical integrations of such models,
because it relates to well-conditionedness at small Fr and Ro.

PV inversion means using a balance condition to deduce the velocity and mass fields from the
Eulerian PV field Q(x), in the shallow water case, or from isentropic distributions Q(z;, z2, s) and
boundary s(z;,z>) fields in the three-dimensional stratified case, where s is specific entropy o/p
(Hoskins et al. 1985). Here the relevant balance condition is that defined by the u® functional;
therefore, PV inversion will yield u® and not u®. The implication is that we may timestep such a
model in two equivalent ways, after solving (3) or (60) for u® and hence uF.

The first way is to use the u® field to advect the mass configuration directly, followed by
evaluation of u®. The second way, likely to be better-conditioned numerically, is to use the u®

field to advect the PV (and similarly to advect the surface s in the stratified case), then invert to
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get the new mass configuration simultaneously with u®. The two ways are equivalent, i.e. mutually
consistent, in the absence of numerical truncation errors, because of @ and surface s being exactly
conserved on particles moving with velocity u®. However, under the usual parameter conditions,

it is likely that the second way will be less sensitive to truncation error. Under typical rapidly-

* rotating conditions with Ro < 1, the u® functional is such that slight errors in the mass field have

large, O(Ro™ ") effects on the relative velocity field. For a given Ro there will be a tradeoff between
such sensitivity and the cost of solving two elliptic problems instead of one, at each timestep.
PV inversion is indeed possible under the boundary condition dh/d¢ = 0 on 9D, if we also

specify the absolute boundary circulations I'; on each connected part 8D; of 9D,

Ii= f ol (91)
aD;

As indicated in §11 below, the I'; are separately constants of the motion. Hence the I'; (not to
be confused with the line integrals (90) coming from (60)) are known from the initial conditions.
Alternatively, we may specify the total mass (79), also known from initial conditions (in the
stratified case, this becomes the mass under each isentropic surface), together with all but one of

the I';, hence none at all in the simply connected case.
It can be shown that either set of conditions is sufficient to determine the solution to the

inversion equation, which, in the shallow water case with balance condition (67), can be seen from

the definition (1) of the PV, QC, to be

(V2 -K*(x)) h=—f?/g (92)

- where, as before, K = fQ€/g, bringing in the given PV field Q°(x). That the first set of

conditions is sufficient (specifying all the I';) can be proved by using relation (145) of Appendix A
with A in place of V.US. That the second is sufficient (specifying the total mass (79) plus all but

one of the I';) follows from the relation

Sri=2Y% § gae= [ (@n-g)ax, (93)
1 laoDl_

D

which shows that (with the given Q©(x) > 0) the single free I'; value increases monotonically as
we add mass increments to the layer. This is because h increases monotonically pointwise at each
x, because of the linearity and maximum-on-boundary properties of the problem (V2 — K?)p =0

in D with 7 = 0 on all 9D; except one on which 7 = 7y = constant > 0, implying 0 < 7 o 7o.

8 Canonical-coordinate theorems

~ Which Hamiltonian balanced models have canonical coordinates X given by explicit formulae, like

those discovered by Hoskins for semigeostrophy? We can now provide, rather easily, a general

formal answer to this longstanding question. The first step was taken by Salmon (1988a, eq. 5.18),
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who found a u® functional that corresponds to Hoskins’ X, the case a = % in (4). The full
generalization emerged, during the present investigation, by analogy with recent results applying
the theory of contact transformations to semigeostrophy (Sewell & Roulstone 1994, Roulstone &
Sewell 1996b). The theory of this section applies to the three-dimensional stratified as well as to
the shallow water case, in two separate senses to be explained below, depending on the choice of
parent dynamics.

Canonical coordinates on the slow manifold M€, in the most general sense analogous to
Hoskins’ X, are both fields and also mass-configuration functionals that respect the particle-

relabelling symmetry, like u®:
X = (X1, X2) = X(a; x(-)) = X(x;h()) , (94)

or X(x;p(-),0(-)) for the three-dimensional stratified case. The dependence on the mass configu-
ration can be nonlocal. X is canonical by definition if, for some scalar configuration functional,
say B(x(-)) = B(h(-)) or B(x;p(-),a(-)), and with u® the absolute constraint velocity, i.e., defined

in the inertial frame,

¢ = —/u,-Céindm = fo/%eijkéLdem + 6B . (95)
D D
Here fp is a constant normalization factor, introduced to give X dimensions of length. It will
usually, but need not, be identified with some typical or average angular velocity of the spinning
mass of fluid; see §10 for the application to models with variable Coriolis parameter.

The central result can be stated as follows.

Theorem 2 (Canonical coordinate theorem, general version) General canonical coordinates

X are functionally related to the absolute constraint velocity u® by

; Ex . (x' h( .
€ = _LfocisXs %f: - az-,- L foein / X3 (s () 2 18 0) "?E(”:(;(')‘( D dm(x’) + ——5;(:(%) (96)
D

u

for shallow water dynamics, and by

SEX(x!; p(+); 0(- ; 8B(p(-); o (-
- Ly l[xk(x';po);a(-)) Lt gy - Bl

6Fp(x)

o(x) 9 ; 6P X;(x'; p(); 0 (- . 6B(p(-); o (-
- 282 o D/xk(x;pc);a(-)) St i) ) + EEEEN o)

for three-dimensional stratified dynamics, for some configuration functional B.

The proof is a straightforward application of the same Eulerian-Lagrangian functional differ-

entiation machinery' as used in §3, especially (49), (50) and (48) for shallow water dynamics, and

1Direct substitution shows that (96) and (97) satisfy (95); arbitrariness of d“x takes us back to (96) and (97).
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their counterparts including (63), (64) and (65) for stratified dynamics. Note that, in (97), i runs
from 1 to 3 but j and  still run from 1 to 2. Equations (96) and (97) can be regarded as functional
equations defining the possible canonical coordinates X, if any, for a given u® functional and any
choice of the arbitrary functional B. It can also, more tractably, be regarded as defining the class
of u® functionals that yield Hamiltonian balanced models with canonical coordinates of the type
X, given by simple formulae or otherwise. One need only substitute a given such formula into the
right-hand side. Of course what is interesting is to choose the formula for X in such a way as to
produce a balanced model that has good accuracy in some sense. To show that this is possible, it is
sufficient to produce specific examples; the next section will present what is arguably the simplest
¢ such set of examples.

Notice that the contributions to the u® fields given by (96) and (97) are equal either to a gradient
in physical space, or to such a gradient times o(x)/p(x), with one important exception, namely the
leading contribution, the term % foejx Xx0X;/0z;. This leading contribution is simple, involving
no functional derivatives, because it arises solely from Lagrangian corrections associated with the
- first term §“x.V on the right of (49). This gives corresponding simplifications in the vorticities and
PVs. The shallow water (€ and the Rossby—Ertel PV in the stratified case, ¢©.V(a/p) = ¢©.V(s),
- are therefore correspondingly simple. Indeed they have exactly the simplicity of semigeostrophy,
being expressible as the same Jacobian determinants found by Hoskins for semigeostrophy. The
« results, which are an immediate consequence of (96) and (97), and hence have the same generality,

can be summarized as follows:

Theorem 3 (Jacobian vorticity /PV theorem) If canonical coordinates X of the form (94)
are known for a Hamiltonian balanced model generated by constraining a parent dynamics, as in §3

or §11 below, then the (absolute) constraint vorticity (° can always be expressed in Jacobian form:

c _  9(X1,X5)
¢ ‘f°'—‘"—a(z1,x2) 5 (98)

The materially conserved potential vorticities QC, for the stratified and shallow water cases (cf.

equation (1)), can likewise always be ezpressed in Jacobian form. Respectively, these are

2 :f_o-a(Xl,Xg,S) &£ E&(XI,XQ)
p O(zy,x2,23) ’ h O(zy,x2) ’

Q° Q° (99)

where as before s is the specific entropy o/p. The second of (99) also applies to the stratified case,
when described using Rossby’s isentropic coordinates. With the exception of this last statement,
to be justified below, the results (98) and (99) follow from (96) and (97) by straightforward ma-
nipulations, including use of the chain rule for Jacobians and the mass-element relation (46) and

its three-dimensional counterpart p = d(a1, az, a3)/0(z1, 2, x3):

Q_C g 6(X1,X2,s) = la(Xl,Xg,s) g(i oL a(Xl,Xz) S la(xl,Xz)
fo 3(01,02,03) Pa(xl;xZ»xS) : fo 3(01,02) Sh 3(2?1,372) %

The first of (99) generalizes the three-dimensional result derived in Hoskins (1975). Note inciden-

and

(100)

tally that any function of s alone, potential temperature for instance, can be substituted for s
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in the definition of the stratified (Rossby-Ertel) PV, provided that we make the corresponding

substitution in the Jacobian formulae (99) and (100).

Anticipating the considerations of §11 — where it is pointed out that semigeostrophy uses, in
effect a second slow manifold to constrain the Hamiltonian functional — we note that the foregoing
results, unlike (3) and (60), have no dependence on the Hamiltonian functional. They are purely a
consequence of restricting the parent symplectic or contact structure® to M, (see §11), and hold
for any Hamiltonian functional whatever. Thus the Jacobian formulae found in semigeostrophy are
indeed special cases of the foregoing, in which M€ is the particular M given by (4) with a = %
The result (98) shows also, for instance, how the concept of ‘vorticity coordinates’ introduced by
Schubert & Magnusdottir (1994) fits into the present framework, together with the recent results of
Roulstone & Sewell (1996a). Note well that the vorticity, for this purpose, is always the constraint
vorticity, the vorticity evaluated from u®. .

Note further that the first of (99) is appropriate to the case in which the parent dynamics is fully
nonhydrostatic, so that (96) gives a three-dimensional u®. This u® generally has a nonzero vertical
component u3C, in contrast with X, which still has only two quasi-horizontal components X =
(X1, X3), as it must in order for the contraction with the two-dimensional alternating tensor &
to make sense. We may expect ug to be small for choices that lead to an accurate balanced model,
but it cannot generally be zero. Thus (96) significantly restricts the class of u® functionals that
give three-dimensional Hamiltonian balanced models with two-dimensional canonical coordinates
like those of Hoskins.

It remains to discuss the sense in which the second, also, of (99) applies to the three-dimensional
stratified problem. It applies to a case of that problem in which the parent dynamics is taken to
be the meteorological ‘primitive equations’, with the hydrostatic approximation already imposed.
We then need to reinterpret the notation h(x) etc. in the following way. The stratified system
is now regarded as a set of many interacting two-dimensional layers in the physical domain.?
Therefore we use a description in which specific entropy s, or some function of it such as potential
temperature, keeps track of vertical position in the physical domain D, taking advantage of the
stable stratification. Thus s now has the role of a Lagrangian label that is also a physical,
measurable quantity and is not subject to the particle-relabelling symmetry; and (z;,z2) is the

horizontal projection of position on a given stratification surface s = constant. The mass element

2The phrase ‘symplectic or contact’ is used for the following reason. The distinction between symplectic and
contact structure is clear in finite dimensions: the first applies only to even-dimensional manifolds, and the second
only to odd. Respectively, they refer to an even-dimensional manifold equipped with a two-form like 2€, and an
odd-dimensional manifold equipped with a one-form like §€, together with appropriate nondegeneracy conditions.
The distinction between even and odd dimensions has no obvious meaning in infinite dimensions; but what seems to
matter here is that one still has a #€ whose exterior derivative is 2€, with sufficient nondegeneracy to give invertible

Q,.Cj(x,x’) in some reasonable function space.
3This incidentally is very unlike the generalization of the toy problem of §2 to three x dimensions, which is

degenerate. It is more like taking many particles, interacting through the potential V, and each moving in two

space dimensions.
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dm is now written in the form

dm = daydasds = h(zy, 22, s) dzdzads , (101)

where h is given by h = p(9z3/9s)z, 2, With z3 denoting geometrical height as before. Note inci-
dentally that h could be zero at a given horizontal position x and a given value of s, corresponding
to (z1,22) being outside the image of {(a;1,a2)} at that s value, as can happen for instance when
isentropes intersect a horizontal boundary — the counterpart of shallow water ‘lens’ or ‘blob’ mod-
els with h vanishing at a free side boundary, and zero mass outside that boundary. The use of s
to help identify particles within the physical domain D via (ay,as,s) and (z1,2,s) amounts to
using the well known Rossby isentropic or isopycnic ‘coordinate’, more aptly ‘label’.

The components z; of x in (94) do not, incidentally, need to be components referred to Cartesian
axes. For instance spherical components could be used, as in the theory of Shutts (1989), extending
semigeostrophy to the sphere. This is because the mathematical objects involved belong to the
exterior calculus and are thus metric-independent. The connection between Shutts’ equation and
the theory of contact transformations was established by Roulstone & Sewell (19960, §7).

We now show how the foregoing results apply to the important case of near-local canonical
models, for brevity confining attention to shalléw water dynamics. Both the u® functional and
_the putative canonical coordinates X are all now assumed to take near-local form, generalizing (6)
and (4). That is, u® and X are assumed to be completely general functions of the depth h(x) and

a finite number of its derivatives, here denoted by
u®(x, h()) = u®(zj, hy his hijy ) - (102)
Xz 0 haihi ) = X(oph, ls, by, ) (103)
For consistency the functional B is assumed to take the corresponding form fDB dm where
B(x, h()) = B(zj, h, hi, hijy ) - (104)

When the number of arguments is arbitrary but finite, these are the most general possible forms

expressing near-local functional dependence. We now have, starting for instance from (96):

Theorem 4 (Canonical coordinate theorem, near-local shallow water version) Near-local
canonical coordinates X are functionally related to the absolute constraint velocity u® by

0X;
;= —5focinXn 3 =

u

1

Rrenis Ponn bXs 0 BXJ') o2 0X;
ax,»{ff"ef" [hX" oh ~ Oz, (hX"ah,,, * 5,0z, hX"ah,,,q>""]

0B 0 0B o* 0°B
x (B = h% ¢ 5;; (hah.j) o amjaxk (hah,,-k) G )} (105)

for some near-local B(zj,h,h i, hj, ) and near-local X(zj, h,h i, h;j,---).

These u® functionals characterize all shallow-water near-local canonical models, in the sense

‘under discussion; the next section gives some examples.
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9 (Canonical coordinates for Salmon’s L; dynamics and for

the new balanced model

The simplest near-local examples take us back again to the f-plane, no-topography shallow water
case (f = constant, ¢ = gh). This allows us to narrow the search for suitable explicit X formulae by
restricting attention to physically acceptable expressions for f-plane dynamics, requiring invariance

to coordinate axis rotations. The simplest such choice is the near-local form

Xl-x,+aah+ce,]ah Bi=bh, (106)
ox; oz
for suitably chosen constants a, b,c (not to be confused with Lagrangian labels a). We make the
choice
g g g
a= =, b==v, ¢c= =7, 107
7 77 777 (107)

where v is the constant introduced in (6) and (7). With this choice of constants we set fo = f in
(105). Inserting B from (106) into the last line of (105) and X; from (106) into the right-hand

factors of the first two lines gives (with the B contribution first)

e b Oh
HiE
9’h 0%h 92
bt %€jk [Xk (61] I aa 2:0; + cgjp axiaxp) = 9z:0z, <th (adjq + Cejptqu))] . (108)

Using the identity jx€jp0pq = Okq in (108) yields, after some cancellation between terms,

1

2,3,4
1 BOh
?u? e e 3k Xk
i 6,7,8 9
+'aE ) Xy #2X, a OhoX, a OhoXi
qk

dzidz, 2" 9w, Oz | 2 ™ Da; Oz
li) 11,12 13,14,15

¢, Xy c0h 09X, e Oh OXi

2 6$i6$k 262:,' afl:k 2a:ltk 62},‘ :

(109)

The terms are numbered for the purpose of comparison later. Substituting for the remaining X

factors with (106) now gives

1 3 4
e — 2 et e gt ew—
L% ggﬁ_'l—ef? o 6h+cah
FH T e F e o W Do T DD
5 6 7 8 9
a0, 0 oy o Oh @ Oh Oh _acOh Oh  acdho,,
2 Oz 2% 0z, " 2 "z, 0z:0zx 2 Oz, 070z, 2 0z
10 ll 12 13 14 15
i — g i NI A e 0 N 7 —
= av2h+ giz_+9£6hv2h+3_aﬁ+ggﬂz__6_2_h__+c2 Oh _&h_ (110)
Ox; 6 2 Oz; 20z; 2 Oz OO0z o T Ozy 0z;011

where V? = 8%/0z;0z;. Because b/f = c term 1 cancels with 4, 11 and 13. Further, terms 5 and

10, 9 and 12, and 8 and 14 all cancel in pairs. This eliminates all the terms proportional to ¢, and
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therefore to 7, and leaves (relabelling dummy indices)

l.c i Oh a*+c* Oh &%h
RO L Loy, e e St 06 G SRt 111
ful 261k$k o 3xk 7 2 i 6:5,- a.’lfia.’ltk ( )
which, on the right, are terms 2, 3 and 6, and 7 and 15 respectively.
If we set v =i then a® = —¢c?, and (111) with (107) and (5) becomes
uf = —Lfepzi +u" (112)

This is, again, precisely the constraint defining Salmon’s L; dynamics. The canonical coordinates

for L; dynamics are therefore, as stated earlier, given by v =i in

5 g Oh g_Oh
Xi=z; + f26 +'7f25.,axj.

(113)
The new balanced model has v = iv/3 hence 1(a® + ¢?) = —g?/f* in (111), giving two orders of
accuracy in Rossby number Ro , that is, one order better than L; dynamics or semigeostrophy.
This can be verified most easily either by using (98) with the first of (106), or by taking the curl

of (111), to give
8(X1,X2) 2 a( G(rel) uG(rel))
0(z1,2) i 3(181,1‘2) 5

whose last term is like that in the physical-coordinate form of Hoskins’ semigeostrophic vorticity,

¢¢ = =¢% - (114)
except that its coefficient is —2 times that in Hoskins’ formula. As is well known, and can easily be
verified by standard scaling arguments applied to the divergence equation of the parent dynamics,
(114) implies that the new balance condition is correct to two orders in Rossby number Ro (e.g.
Craig 1993).

A useful check on the foregoing calculation, including the multiple cancellations in (110), is to

take the same canonical coordinates X; = z; + adh/0z; + cc;;0h/dz; and insert them into the

corresponding two-form (with fo = f)

oh oh oh oh
1 iy 0 gy oL e L Srlideandh 3 —
2f/dmejké X N6 Xy f/dm& (xl +aa + 622)/\6 (a: 2+ a5 o caxl) . (115)
D D

This is the infinite-dimensional exterior derivative of the one-form ¢ defined by (95). It should be
real-valued when v and hence c is pure imaginary, for consistency with (111) and (110); the terms

proportional to ¢, and hence v, in the two-form must vanish. Those terms are

oh dh oh Oh oh oh
L L P L L L L L
fc/dm[ —6"z1 A6 (azl) ad (62:1)/\6 (8x1)+ ) (622)/\6 To + ad (azz)/\é (azz)]

(116)

The second and fourth terms vanish by the skew-symmetry of the wedge product, leaving

2
fc/dm or (%) Adtz; = fc/dm [azahmjé z; + 6F (g:)] Adlz; (117)
D D

where the last step uses §* = x.V + 6%, (49) of §3. The second-derivative term vanishes, again by

the skew-symmetry of the wedge product. Therefore we are left with the Eulerian part 6¥(9h/dxz;)A
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6z;. Recalling that
5}
(5Eh o= —&—T(hdL.’E‘j) ’ (118)
J

from (48) of §3, and that 6® commutes with 8/8z;, we have

Oh o
Bl Ly, = e Y, L. L o
fc/dm6 (6:1:-)/\5 z; fc/dm 92:9%; (hé z;) A bz ; (119)
D D
and integrating by parts, with dm = hdx, now gives
fc/dx 2 (hs"z;) | A e (hétz;)| =0. (120)
ox; ’ Oz; 5
D

Note that the boundary condition (44), relevant to the rigidly bounded case, forces the expression
7;0%z; A8z; to vanish on 9D for each value of j separately; so no boundary terms arise here. The
same is true of free boundaries where h itself vanishes, as in ‘lens’ or ‘blob’ models. Therefore, in
all these cases, the two-form  [,dm €;x6" X; A 6" X}, is real; it contains only the square of y and
not the first power, confirming (111) and (110). A corollary is that the Jacobians in (98), (99) and
(100) are real.

10 Galilean-invariant balance, and variable Coriolis
parameter
For constant-Coriolis-parameter models, the u® functional has the general form
u® = r(x) + u®CH (121)

as illustrated by equation (4), where r(x) = % fz x x, representing solid rotation with angular veloc-
ity 3 f. Notice again that r(x) is mass-configuration-independent. That is, its Eulerian functional
derivatives vanish. By contrast, u®e) is mass-configuration-dependent, u€e!) = uCe) (x; h(-))
or u®)(x; p(-),o(-)), and rotationally invariant; e.g., for shallow water dynamics:

) OR(x') 6EuCte) (x; h(-))
= / %) oz SER(X')

dx' = —1.Vu® - uC.Vr = —r.VuCre) — yCre) yr | (122)
D

That is, rotating the h(x) pattern with r(x) must correspondingly rotate the u€(x) field, i.e. must

Lie-advect it with r. :

Note once again (Remark 4 of §3) that % f need not be thought of as a reference-frame rotation
rate. It can be defined in wholly physical terms, as a typical or average rotation rate of the spin-
ning mass of fluid whose dynamics we are trying to model. As already suggested, this gives us a
natural way of distinguishing ‘centrifugal’ and ‘Coriolis’ accelerations from ‘relative’ accelerations
that is based entirely on the u€ functional and the constraint acceleration A€ derived from it, and
not at all on arbitrary choices of reference-frame rotation rate. The question of whether or not

the shape of the bottom boundary matches the centrifugal-gravitational paraboloids, spheroids
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or other equipotentials becomes a separate question. (If nonaxisymmetric topography or other
nonaxisymmetric boundaries are present, then a particular rotating frame is, of course, distin-
guished physically, and shows itself through (122), which will fail unless the topography and other
boundaries rotate with absolute velocity r(x).) The centrifugal acceleration associated with (121)
is defined as the mass-configuration-independent contribution to A€, and the Coriolis accelera-
tion as the cross term in (59). (To verify this last statement, note that because V.r = 0 the r
contribution to the last term of (59) reduces to the left-hand side of (122); this takes the place
of the reference-frame transformation of 8/t in textbook derivations of the Coriolis term, and in
the corresponding argument for the parent dynamics.) One might summarize all this by saying
that the formulation in terms of u® and the integral equation (3) or (60) gives us a natural way
of incorporating into a balanced model the appropriate kind of Galilean invariance.

It also gives us a natural and straightforward way of defining what are usually called variable-
Coriolis-parameter models. We need only take r(x) in (121) to be some function of x alone that

departs from solid rotation. The only formal restriction is that we must still have
V.r(x) = 83 (123)

because we want to avoid a situation in which all mass distributions will be rearranged by the

velocity field r(x). The corresponding constraint vorticity
¢C = Vx r(x) + V x uCte) (124)

has a first term, V x r(x) = Zf(x), say, that can be identified with the Coriolis parameter of
a variable-Coriolis-parameter model. Again, ‘centrifugal’ and ‘Coriolis effects can still be distin-
guished by using (122) and (123) and the fact that the Eulerian functional derivatives of r(x)
vanish.

In the near-local shallow water case, the last two relations become

u® = r(x) + terms involving h(x) and its derivatives (125)

and
CC — f(x) + » » =% (126)

There is no formal restriction on the choice of f(x). This remains true even if we specialize, further,
to the near-local canonical models that have been the main focus of interest in the literature.
Hamiltonian balanced models with arbitrary f(x) and canonical coordinates X can always be
obtained. This is essentially because the canonical coordinate theorems (96) and (105) allow the
canonical coordinates X to have any dependence on x. Inspection of (105), for instance, suggests
trying

X = x(x) + terms involving h(x) and its derivatives , (127)

for some function x(x) of x alone. This can indeed give any desired f(x). The quickest way to
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show it is to recall that (98) is the curl of (96) or (105), so that (127) implies

CC =42 a(leXZ)

= + terms involving h(x) and its derivatives . (128)
a(zl ) Zg)
The first term on the right can be made equal to any desired f(x) by taking, for instance,
o®
S 1
X! azi ( 29)
where ®(x) is some scalar function of x alone that satisfies
8%
o 40 G , 1
det Hes @ = det ( oz, 6:z:j) f(x) (130)

This is a Monge-Ampere equation for ® given f(x). It is known such equations have smooth
solutions; these can be used in (129) then (127). Notice that with non-solid r(x), the condition (122)
no longer has a completely clear physical meaning, and the definition of ‘the’ Coriolis acceleration
must to some extent become a matter of convention (cf. Salmon 1985).

Recalling the remark above (97) about Shutts’ spherical-coordinate theory and the indepen-
dence of physical-domain metrics, we may claim that the foregoing results give (we believe for
the first time) a clear general answer to the question of how to construct Hamiltonian balanced
models having both canonical coordinates and variable Coriolis parameter, in any physical-domain

coordinate system whatever.

11 Semigeostrophy is doubly split

By a doubly split Hamiltonian balanced model we mean one whose relation to the parent dynam-
ics is defined by two slow manifolds M) and M®M) | say, corresponding respectively to two

constraint functionals

c()

= and u=u®® say. (131)

The doubly split model is defined by constraining the symplectic or contact structure to M)
and the Hamiltonian functional to MSM). That is, the constrained Hamiltonian functional will
be V + [ 3/u®®[2dm. The two slow manifolds will have be close to each other, of course, if the
resulting balanced model is to be accurate. The conserved PV is now, evidently, the Rossby—Ertel
PV evaluated with u®® | whereas the conserved energy and conservable physical momenta are
just the parent energy and momenta evaluated with u€.

Another way to think of such a model is to imagine changing the kinetic energy term %|ul? in
the parent Hamiltonian H (e.g., equation (55)), by making the replacement

Luf? = LHu - uC® 4 o2 | (132)

and then constraining the new Hamiltonian functional that results, call it H’, say, to MS() along
with the symplectic or contact structure. Note that H’ is admissible as a Hamiltonian functional,

because in (132) both u®® and u®M) are functionals of the mass configuration.
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It is now plain that Hoskins’ semigeostrophy is exactly a case of this. Here, MC@) i the

manifold defined by (4) with a = . In an inertial frame of reference, this is
u=ut® = Lggicn 4 w0 . LaisfrlaSittliyetiel. (133)

the constraint functional discovered by Salmon (1988a). The other slow manifold M°™) is defined
simply by

u=u®™ =13 xx + uSC (134)

the geostrophic velocity viewed in an inertial frame. This is one way of making sense of the fact
that Hoskins’ PV, (114) with a = %, is not simply the geostrophic PV whereas Hoskins’ conserved
energy is, by contrast, the geostrophic energy.

It should be noted that the simple forms (3) and (60) of the fundamental equation apply to
the case of a single slow manifold only, that is, to singly-split balanced models only. This is
because, as pointed out below equation (55) and in (82)ff., the simplicity depends on having the
standard kinetic energy term in the parent Hamiltonian. In doubly-split cases the corresponding
results are generally more complicated, though semigeostrophy itself has remarkable compensating
simplicities, dependent on the gradient form of X and on a judicious choice of the functional u®®.
Whether simplifications can be found as a tradeoff for double splitting in more accurate problems
remains to be seen; we already know from Appendix B that any such simplifications will have to
* be of a different kind than those of semigeostrophy.

Double splitting does not affect PV conservation and the associated circulapion theorems, which
depend only on the symplectic or contact structure on MS(®) . The essential points are (a) that
any flow advecting a geometric structure in phase space conserves intersection properties; (b) any
such flow therefore conserves the value, Q say, of the symplectic two-form Q€ on any pair of
variations, i.e. pair of tangent vectors §“x(!)(a), §“x(®)(a) in phase space, when both the vectors
and the two-form are advected by the phase-space flow (recall caption to figure 1), (c) that if the
flow is Hamiltonian (for any Hamiltonian functional) then QC itself is invariant (its Lie derivative
-vanishes), and can therefore be considered not to be advected and to remain equal to the prescribed
QF of the balanced model, the corresponding Q still being a constant of the motion provided that
6“x(M(a) and 6“x(?)(a) are still advected, and (d) that Q is equal to an arbitrarily weighted
material domain integral of the PV, Q€, when d"x()(a) and 6“x(®(a) are chosen such that all
Eulerian variations vanish, 6® = 0 in (49), as the particle-relabelling symmetry makes possible.
To show the arbitrariness it is enough to consider a pair §“x(!)(a) and §“x(®(a) in which a small
disk or ring of particles within D undergoes small angular displacements, the whole disk in turn
being much smaller in diameter than all spatial scales of the fluid flow: §¥x(*)(a) and §“x(?)(a)
are made distinct, giving nonvanishing Q, by starting the angular displacements from two finitely
different angular positions. In the stratified case the disk must, of course, lie in a stratification
surface s = o/p = constant, so as not to violate the particle-relabelling symmetry.

The corresponding Kelvin and Kelvin-Bjerknes circulation theorems follow by standard ma-
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nipulations, for simply connected D: for a finite closed curve in D moving with velocity u®, i.e. a

material curve, the absolute circulation
D= fuc Bt A fuc(m . d€ = constant , (135)

where d£ is an element of the curve. In the stratified case, as V. Bjerknes showed, the curve has
to be taken to lie in a stratification surface o/p = constant. Again, this holds for evolution under
any Hamiltonian, being a consequence solely of the symplectic or contact structure on M) so

C = u®® and not u®.

that the integrand involves u

If the material curve cannot be shrunk to a point without encountering fluid boundaries, as is
possible in a domain D that is not simply connected, then (135) is easiest to establish from the
relative integral-invariant associated with the one-form 6€ = — fDuicéLx,-dm, replacing the small
ring of particles by a finite circuit, and using a single 6“x(a). An equivalent argument is to be

published in a forthcoming paper by Holm (1996).

12 Concluding remarks

The theory of Hamiltonian balanced models in the form presented here has clarified several long-
. standing questions. One such question has been the extent to which the mathematical structure
associated with semigeostrophy generalizes to a wider class of models. The new canonical coordi-
nate theorems (96) and (105), the latter defining what we called the class of ‘near-local canonical
models’, help to answer this question. They give insight by showing, for instance, exactly what
class of u® functionals lead to Hamiltonian balanced models possessing near-local, canonical co-
ordinates X like those in Hoskins’ theory, in the sense of X being related, by explicit formulae, to
the physical-space coordinates x and mass configuration, and being two-dimensional or layerwise
two-dimensional in the physical domain D. The same theorems show, furthermore, that for any
such model the constraint vorticity and the corresponding materially conserved PV can always
be expressed in the Jacobian forms (98)ff., paralleling the Jacobian forms discovered by Hoskins
(1975) for semigeostrophy and their variants summarized by Chynoweth & Sewell (1991).

The new canonical coordinate theorems (96) and (105) also answer a longstanding question
about the Monge-Ampére equation and Legendre-duality properties of semigeostrophy. There is a
wide class of models having parallel properties (for details see Appendix B), but the results of §9
strongly suggest, and Appendix B confirms, that the necessary gradient form of X, such as that
defined in (6) with v = 0, cannot lead to a balance condition more accurate than semigeostrophy.

There has been a deafening silence in this paper about that excellent old workhorse, quasi-
geostrophy a la Charney and Obukhov. The reason is that, as began to emerge from the work of
Salmon (1988a), quasigeostrophy is an isolated case in the sense that it does not belong to the
class of Hamiltonian balanced models considered here. Though it has its own Hamiltonian struc-

ture (e.g. Weinstein 1983, R. Salmon and V. Zeitlin, personal communication), that structure is
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not inherited from any exact parent, at least not in the simple and straightforward sense discussed
here. There is certainly no simple, explicitly prescribable u® functional that, when substituted into
the Rossby-Ertel formula for PV, will produce the conserved quasi-PV of quasigeostrophic theory.
Consequently there is no natural systematic procedure for constructing sequences of higher approx-
imations, with guaranteed Hamiltonian structure, that start from quasigeostrophy and approach
an exact parent dynamics.

In the examples studied so far, which are all ‘physically reasonable’ balanced models in that they
all have u® close to geostrophic, the ¢ x uS contribution in (60) tends to reinforce the mass-

rearrangement contribution involving wiCj, indicating robust invertibility as already emphasized,

* and thence a well-defined velocity-split uS and associated dynamics. We may regard u® and u®

as natural generalizations of the ‘geostrophic’ and ‘ageostrophic’ velocity fields that arise in simple
balanced models. Under the usual parameter conditions, scaling analysis on (60) shows that the
magnitude of u® is one order smaller in Rossby number Ro than the magnitude of u®. Moreover,
adding u® to u® to give u’ tends to improve on the accuracy of u® though not, in general, to
correct it fully to the next Rossby-number order (the case of Ly dynamics being an exception). All
this was explicitly illustrated in §§4-7.

Equation (60) implies that the dependence of u” on the mass configuration respects the particle
labelling symmetry, hence qualifies u” as the u® of a further Hamiltonian balanced model. It
follows that, formally at least, there is an iterative sequence of such models in which the uf of
one member is taken to be the u® of the next. The first two members are Salmon’s Ly dynamics
and L; dynamics (§4). We conjecture, from the examples looked at so far, that ||R|| and ||uS|| will
decrease like a geometric sequence, on iteration, until the accuracy approaches the limits set by
Lighthill radiation.

Alternatively, given a u® functional that already has such accuracy — and u® functionals
seemingly approaching such accuracy have already been found from studies of shallow water PV
inversion, (e.g. Norton 1988, McIntyre and Norton 1990a,b, 1996) — one can insert such a u®
straight into (60) or (84) to obtain a Hamiltonian balanced model whose error is of the same order
in Rossby number Ro , and probably smaller numerically. It is a separate question, far from being

answered, whether the best accuracy by comparison with the parent dynamics, in a given norm,

~will be attained by Hamiltonian or by non-Hamiltonian balanced models or, if by Hamiltonian

models, whether singly or doubly split (§11). It has recently been found that what is arguably
the most accurate PV-conserving balanced model yet to be discovered is both non-Hamiltonian
(because its particle velocity is defined to be the same as the velocity that enters the model’s
Rossby-Ertel PV) and also violates local mass conservation (McIntyre and Norton 1996; S. Ren,
personal communication). There is an intuitive argument that rationalizes this result in terms of
the dynamics of Lighthill radiation. It says that, to the extent that such radiation is associated
with a continual, spontaneous local adjustment towards balance (a notion whose precise meaning

is not obvious, because of the fuzziness of the parent slow quasi-manifold) one might expect a very
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accurate balanced model to try to mimic this situation by letting mass rearrange itself nonlocally.

One might also say that velocity splitting is the way in which a Hamiltonian balanced model copes,
s0 to speak, with the same problem. For instance one could insert into the present Hamiltonian
framework the same highly accurate balance condition as in the abovementioned non-Hamiltonian
model, thereby defining a model whose u® is, by construction, exactly compatible with local mass
conservation, but differs by u® from the velocity u® that enters the model’s Rossby-Ertel PV.

Which way of ‘coping’ has the greatest potential for accuracy, near the Lighthill-radiation
limits, is very far from obvious, involving as it does nontrivial mathematical questions about
the presumably chaotic nature of the parent slow quasi-manifold. It is not enough to point out
that Hamiltonian balanced models conserve energy. Inertia-gravity waves affect the energy and
momentum budgets of the parent dynamics, making it conceivable that the suppression of Lighthill
radiation while maintaining the best possible accuracy might require departures from energy and
momentum conservation.

For Hamiltonian balanced models, perhaps the grandest mathematical challenge of all is the
problem of minimizing ||R|| or |[u®|| over u® functionals. Can sharp estimates of minimal ||R|| or
||lu®|| be found? Can ingenuity with the mathematics of large function spaces find a way to home
in on the actual minimum or minima, i.e., to find an optimal u® functional or functionals? One
would have to restrict the set of mass configurations that are taken as the domain of u®, in such
a way that the u® functional belongs to the realm of physically reasonable balance conditions,
for instance imposing bounds on the permitted range of i /f. At present, such questions, to our

knowledge, are very far from being answered.
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A TUniqueness theorems for L; dynamics and filtered L; dy-
namics

Basic lemma: Consider a rigidly bounded domain P in the zy plane. For any domain function
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Y(x), define
P@() = / (VP + K2 (?) dx (136)

D

and note that P(3(-)) is non-negative if K?(x) > 0. Then, with n the outward normal coordinate

and £ the tangential co-ordinate,

(V-KY=0 = P@O=¢ y2lat, (137)
oD

where 9D is the boundary of D. This will be applied to several choices of (x), and we assume

throughout that ¥ is smooth enough that P(:(:)) = 0 implies % = 0.

1. Uniqueness theorem for conventional Ly dynamics: Given h(x) hence u® = u®®) and hence

R, we need (at each timestep) to solve (77), i.e.
(V2-K»S=R, (138)

for the velocity-split S, with both S. £and S. f (tangential and normal components) prescribed on
9D, respectively 0 and —u®!) i (known). Consider, in the standard way, the difference problem,
whose solution must be shown to be identically zero for uniqueness [note, this standard technique
will apply to the US problem for any Hamiltonian balanced model because the S problem is always
linear, by the fundamental equation (60)]. Denoting by US the difference between solutions of this
boundary-value problem, we have

(V2-K*)US=0; (139)

US2=0U%a=0, =0U%=0, on OD. (140)
Apply (137) to with 7 taken as z-component fjls of US, = US =0 Vx e D. Similarly, the

y-component (723 =0.

2. Uniqueness theorem for filtered Ly dynamics: We have the same equation (138), but the

boundary conditions are now less simple:

USA=0 on 8D (141)
because u®®) n = 0 on D, and
S ofe_g on oD (142)
e :
because
oh el B N
Tk 0  hence 0L = &(V.U ) =0+ "on: 8D, (143)
and
US.de=0 (144)
aD;

separately on each connected part 9D; of 9D, each of which are closed curves.
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Take the divergence of (139) and apply (137) with ¥ = v.US:

7S
P(V.US() j[v o AL L dl=D (W02 7{ ey , (145)

B on

8D : aD;
with (V.ﬁs),- the value of V.US on the i*" connected part dD; of D, whose f-independence is
implied by (142). Now the Helmholtz decomposition consistent with the boundary condition (141)

enables us to write

US=V® + z2x V¥ (146)
for some smooth, single-valued domain functions ®, ¥ with
0%/0n=0=0¥/0¢ on 0D, (147)
in terms of which (139) becomes
V(V2 - K%)® = -2 x V(V2 - K%)¥ . (148)
Together with (141) or (147) this implies, with (n,£) right-handed, that
0 3]

el ot 2
5V’ =5V’ on OD. (149)

Because V.US = V2@, (145) now becomes

P(V. Us())—E(V US); j[ o =V2¥ de=0,
oD;

because V2V is single-valued. Therefore
VUE=0 VacD. (150)
So we may take V® = 0 in (146), whereupon (148) implies that
V(VZ-K)¥ =0

and therefore that
(V2 - K*)¥ = func(t) =0, (151)

if we use the freedom to replace ¥ by (¥ — func(t)/K?), which is permissible as long as we allow
¥ to be a (thus far unrestricted) function of time ¢ on each connected part dD; of 0D, consistent

with (147). Now applying this to (137) with ¢ = ¥, (141) with and then using (144), we see that
PE() =3 f \p—de =y % f ol (152)

with ¥; the value of ¥ on 9D;, hence that
=09 Y220 YrieD, (153)

This verifies that the boundary conditions (141-144) for filtered L; dynamics in a rigidly bounded
domain, singly or multiply connected, are indeed sufficient to ensure a unique solution for S(x),

given h(x).
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It can further be shown, using the foregoing manipulations together with standard functional-
analytic methods that, in both the above cases, L, dynamics and filtered L; dynamics, weak

solutions to (138) exist in a certain Hilbert space with norm

1/2
B0l = ( / V2 dx) (154)
D

(R. Temam, personal communication). The methods used are analogous to those described in
Temam (1984), and in the case of filtered L; dynamics the function space is like the standard

space H}(D) = H} (D) ® H} (D) apart from the different boundary conditions involved.

B Generalized Legendre duality properties of a subclass of

near-local canonical models

Consider now the class of near-local canonical models whose canonical coordinates X are semigeostrophy-

like in a generalized sense, in that they have gradient form. One example of this is canonical

coordinates X;(z;(a)) that may be defined by a Legendre transformation in phase space,

str
B s 1
Xt 6L$1(a) I ( 55)
either generally, as in (96) and (98), or alternatively where near-local form is assumed,
T[X, h] = /dm f(:z:j,h,h,,-,h,,-j,---) . (156)
D
From (47)—(53) of §3, we have L
oY O0A
'T lzi(a) Bz’ o
where
0
A=f+hf’h—a:r- (hf,h_i)—--- 2 (158)

From here on, we consider general near-local A, including, but not restricted to, the above case
(158) derived from the phase-space functional Y.

We now substitute X defined by (157) into the right-hand side of (96). With the use of (157)
and the fact that 9/0z; and 6® commute, the integrand of the middle term on the right of (95)

oA oA oA 0’A AOEA
oo — 6 =—) =Ltc,— [V, —
2€Jk8xk6 (6:::,-) 259k By (6 “"aziam,- 4 dz; ) (159)

Calculation of the Eulerian variations is performed in exactly the same way as was done in ob-

becomes

taining (105), and we obtain, after including in equation (159) the analogue of the exact one-form

6" [,da B(zj,h,--), the following relation between u® and A:

2
20 OA O°A

1
) 2fo¢ Oz, Oz;0z;
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This of course is a special case of (105), though its derivation via that route is a little longer.

The connection with Monge-Ampere equations is now evident. Note that (¢ = Vx u® involves
only the first term on the right of (160), and it can be shown that the additional terms obtained
by working through the calculation when A depends on the higher-order derivatives of h, do not

change the structure given above, i.e.

C 1 % [ 61\ 6‘21\ a

U’ = —= B [ o rmm e e
279" | Oz 020z  Oz;

F(VA,VVA,VVVA,VVVVA,--)|.

1

Therefore, for the class of functionals T considered here, we have a generalized Monge-Ampere
equation for A given (€

9%\
61‘,’3:6 j

det Hes(A) = det ( ) = (C(zj, b hi,--) - (161)

However, these ‘Y-models’ and ‘A-models’ cannot have a higher order of accuracy in Ro than

semigeostrophy, for the following reason. Semigeostrophy is the case
A = 3(zi +23) + gh/f* (162)

already accurate to one order in Ro . No coefficient on the right of this expression can be changed
without making the accuracy worse than one order. So the only hope of reaching higher accuracy
is to add terms involving the first or higher spatial derivatives of h. But any such term evidently
produces third and higher derivatives of h that cannot cancel to zero on the left of (161). Consider
for instance a term proportional to dh/0z; added to (162). Then there will be one and only one
term in 8°h/8%z;, coming from (8°A/0%z,)(0%A/0%z3), in (161). This term cannot cancel any
other term in (161). Thus none of the new terms can take the form det Hes(k), which contains only
second derivatives. Thus none of the new terms can produce agreement with (114) when there is
a coefficient —2 in front of its final Jacobian term, instead of the coefficient +1 that results from
the unmodified (161).

We note for completeness that semigeostrophy is a special case of the foregoing, though with

the modifications described in §11. In semigeostrophy, with A given by (162), (157) and (158)

Xixihl~ /dm[f2+a:1+z2}

so OA/Oh,; = 0 etc., and from (160)

imply

g OA O*A 6 3]
uf = 3 focj [ Tre ( ;’2 5 (hA, k))] (163)
From the first of (106) with ¢ = 0, and with f, = f a constant, we have
_ 6A G(rel), OA 1 Grel) .
X1—6z1—$1+fu ,Xz——'é;;-—mz——u 1;
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note that 0X»/0z; = 8X,/8x,. Using this, we can show, for example, that

a‘\ aY aX 84¥2
c = -1 Liatos 2%
Uy o= zf[ T )\161 $281+)&z+z18z1],
1 8uG(l‘e|)2 1 auG(rel)l }

e C(rel) G(rel) QU2 1 Gre) OUT1 !

[fmz 5 7 T om : fu > on

G(rel
= -— f:l,‘2 — 2u I‘el) luG(rel)lw 1 G el) a—u—(:e—z—] :

axl f 612

which is precisely the uf component of Salmon’s constraint (133). Roulstone & Sewell (1996a)
give further discussion.
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FIGURE CAPTION

Figure 1. Partial visualization (seen in three out of four phase-space dimensions) of a constraint
manifold M® and its intersection with the parent symplectic structure, for the simplest possible

case of one particle in a two-dimensional configuration space. In this illustration the constraint has
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the special form p; = p€ = mu = constant, p» = p§ = mu§ = function of z; alone, making (29)

nonzero and giving invertible QS provided that 9p$/dz; # 0, i.e. MC nowhere ‘horizontal’. The
parent symplectic structure (corresponding to the two-form dz; A dp; = mdz; A du; and giving rise
to the left-hand side of (14) or (28)) consists of two sets of infinitesimal oriented hypertubes (e.g.
Misner et al. 1973, Schutz 1980), say ‘tubes’ for short, one set intersecting only the z;p; plane
and the other intersecting only the zaps plane. Only a few members of the second set of parent
tubes are sh®wn, as if they had finite cross-sections; a continuum limit needs to be understood.
In the canonical-coordinate view shown, the parent tubes fill phase space homogeneously and all
have the same infinitesimal cross-sectional area. The tubes’ infinitesimal cross-sectional shapes are
irrelevant: instead of squares they could be parallelograms, hexagons or any other area-measurable
shape. They are significant only as regards the signed total ‘number of tubes’ intersecting any
specified small parallelogram A (not shown) that is arbitrarily oriented in the four-dimensional
phase space, the sign being positive if the tubes’ orientation or circulation agrees with that of
A. (This signed total, in the continuum limit with A becoming infinitesimal, is proportional to
the value of the two-form on the vector-pair defining A.) Because metric concepts like ‘angle’ and
‘orthogonality’ are not used, the relevant intersection properties are inherited when the constraint
is applied in accordance with (10), as here, with A lying in MC (giving rise to the two-form
108 dz; A dz; when x is used, as here, to track position on MC). Invertibility of Qf says, in
this illustration, that when A lies in MC the signed total number of parent tubes intersecting A is
generally nonzero — true here because, with p{ = constant, the second set of parent tubes does not
intersect MC at all, but false if, for instance, p{ were changed to p{ = [ (0pS /0z1)dx2, in which
case the two sets of parent tubes give mutually cancelling contributions for any A in MC. When
this picture is extended to the infinite-dimensional fluid cases of interest, M€ will be, heuristically
speaking, ‘steeper’ than the figure suggests: particles need not move far to upset near-geostrophic

balance when Rossby and Froude numbers are small, Ro « 1, Fr « 1.

parent
hyper-
tubes .

4
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