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Abstract

A novel approach to the study of shallow flow of water over an
uneven bed, and of air over mountains, is initiated. Generality is
achieved via the concept of constitutive surfaces, which are geometrical
expressions of particle properties valid in any motion whatever.
Connections are made with the cusp and swallowtail catastrophes. The
various types of bores which can travel over an uneven surface are
classified. General local formulae which express the solutions of the
balance conditions of mass and momentum at a bore or hydraulic jump are

derived.



; Introduction

The objective of these papers is to initiate and develop a new
approach to the study of shallow flow over obstacles. This will apply to
the flow of air over mountains, and to water over an uneven bed. A
number of papers have been written in this area, to which we shall refer
later where appropriate. The present approach subsumes and considerably
extends the existing literature. Given the limitations of shallow water
theory, which are well understood, we show that it can be used to provide
a very precise study of the mechanics, for example of the local
properties of bores over an uneven bed extending in two dimensions, in a
generality not previously attempted. We give a strong emphasis to
geometrical properties of the theory.

The novelty of the approach is that it is based on the concept of
the constitutive surface, which was introduced into gas dynamics and
shallow water theory by Sewell and Porter (1980). This is a property of
each particle, in any motion whatever, and therefore has a basic role
allowing one to deduce results which are equally valid in motion which is
steady or unsteady, in one, two or three dimensions, with or without
rotation of the bed, and whether discontinuities such as shocks and bores
are present or not. Furthermore, there proves to be a close connection
between the shapes of constitutive surfaces and the cusp and swallowtail
catastrophes, via the notion of Legendre duality (Sewell, 1987).

Part I shows how to adapt the notion of the constitutive surface to
shallow flow over an uneven rigid bed extending over two dimensions, in
83. We thus derive a number of quite general properties of unsteady

shallow water theory. Appropriate balance equations of mass, momentum
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and energy are given in 84. Rotation of the bed is allowed for, as some
geophysical applications will require. A classification of the various
types of bores (perhaps curved in plan view) which can travel over a
bumpy plane is given in 85. General local formulae which solve the Jjump
conditions of balance are obtained, for example to express the energy
dissipation at the bore, and the bore speed, in terms of the strength of
the bore. A new swallowtail interpretation is given to a general
hydraulic jump, and extended to bores.

We take the view that a thorough understanding of the variety of
possible local events which we reveal here is a desirable prerequisite to
the fitting of any particular set of conditions at a distance.

Part II applies this general theory to a one dimensional case, i.e.
in which the shallow flow is the same in every parallel vertical plane,
and there is a single obstacle perpendicular to that plane. We consider
a wide family of obstacle profiles, and demonstrate new pseudo-steady
flows over them which include smooth bifurcations at the obstacle top
when the latter is locally non-parabolic, and bores running upstream from
the obstacle. Many new results are given. For example, such bores can
convert a blocked flow not only into a subcritical free flow, but also
into a subcritical flow which can then bifurcate at the top into either a
supercritical or a subcritical flow as far as local conditions can
determine. A sensitivity of the free surface shape to that of the
obstacle profile is demonstrated. We have not seen this sensitivity
remarked upon elsewhere.

We begin in 82 by recalling those standard features of shallow water

theory upon which the subsequent new material is based.



Shallow Water Theory

We consider an incompressible inviscid fluid of uniform density p
flowing in a region spanned by a fixed system of cartesian coordinates
X1» Xg Xg, where X3 is measured vertically upwards. The flow takes
place between a rigid bed Xy = b(xl.x2) and an upper surface
Xy = s(xl.x2,t), where t denotes time. The function b(xl.x2) is
given and piecewise C', but the function s(xl.xz.t) is unknown in

advance. Let
d = s-b>0 (1)

denote the total fluid depth, which will also be an unknown function
d(xl,xz,t).

The fluid may be air flowing over mountains, or water over an uneven
bottom. The bed may be fixed, or rotating when the spin of the earth is
locally important.

Let p denote the true pressure, which is a function of
X1» X, Xg, t. Assume that vertical momentum balance is satisfied by the
hydrostatic approximation 8576x3 + pg =0, with constant g > 0. We
choose the upper surface to be free in the sense that p = 0 there, and
so obtain p = pg (s - x3). Let p > O be a new variable such that, at
any given horizontal station X1, Xg at time t, the vertically

averaged pressure

I pdx; = pp . (2)



It follows that
ki gt (3)
2

so that p(xl.x2.t) is a function of the horizontal station and time
which is also unknown in advance.

There are several ways of scaling the variables to write (3) as the
parabola y = %-xz. such as p/g = % d®> or pg = %-(gd)z. We could
have eliminated further mention of g, like p, by writing pgp on the
right of (2), and therefore p = %-dz in (3). However, we shall retain
g in the analysis as a reminder of how the physics gives structure to
the theory. To plot many of the plane curves and surfaces in three
dimensions which we exhibit, we choose g = 1 so that dimensional
variables can be displayed on the axes as a reminder of the physics (for
example, (3) is then again p = %-dz). Exactly the same diagrams will
then apply if dimensionless variables are subsequently required on the
axes. For example, if & 1is a reference depth (such as that on one side
of a bore, as we choose in §5), then with dimensionless depth x = d/6
and mean pressure y = p/gb~, (3) becomes y = %-xz.

The hydrostatic approximation is consistent with lowest order
shallow water theory (Stoker, 1957, p.30) in which the vertical velocity
is zero and the horizontal velocity components are functions ul(xl.xz.t)

and uz(xl.xz.t) which are independent of Xq.

Equation (3) is valid in any motion with these properties.




3 Constitutive Surfaces

A constitutive property of a particle, in any continuum, is any
intrinsic property associated with the particle which holds throughout
any motion whatever. Thermodynamical properties of a gas particle, such
as equations of "state'", provide examples; they are hypothesized before
any balance equations of mass, momentum and energy are set down.
Constitutive properties of a continuum therefore hold irrespective of
whether these balance equations are satisfied.

Constitutive surfaces are geometrical representations of
constitutive properties. Sewell and Porter (1980) introduced the term
and exhibited many new examples, in compressible gas dynamics, and in
shallow water theory applied to channel flow. These constitutive
surfaces contain singularities associated with the cusp and swallowtail
catastrophes (see also Sewell, 1987, §85.3). The present paper extends
this viewpoint. There is much that can be deduced, and displayed
geometrically, about the properties of a particle before the balance
equations of motion are considered. At any time in its motion, each
particle can be represented by a point on each constitutive surface.
When the balance laws are applied, actual motions are therefore
representable by tracks on the constitutive surfaces. Such motions
might be steady or unsteady, and with or without discontinuities such as
shocks or bores.

The properties of a particle on a streamline offer a particular
example, for steady flow, of what can be deduced when only some of the
balance equations are added to the constitutive properties; Sewell (1985)
displayed all the 15 possible plane graphs, i.e. constitutive curves,

which relate the 6 scalar variables of pressure, speed, density, mass
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flow, flow stress and temperature for an ideal gas on a streamline in
three dimensional flow. An actual motion will possess a particular time
track, along each graph, for the pair of variables represented there.

In shallow water theory the vertical averaging process results in a
situation where no distinction is made between all the actual fluid
particles above the momentary XXy station. Any one of them may be
regarded as the representative particle at that station. Our subsequent
theory sets up a plane problem for any such representative particle, in
any flow. Variables associated with the representative particle for all
time include the p and d in (3), and the velocity components u, and

1

uy introduced in 82. The half-parabola (3) for d > O is therefore our

first example here of a constitutive curve, in the p,d plane. Any

motion of the representative particle, subsequently called simply the

particle, will have a horizontal velocity vector u (ul.uz) in the
X1. Xg plane.

We define a dimensionless Froude vector

u
B —4:72 whose magni tude F = ——iLEZ (4)
(2d) (gd)

is the standard Froude number, where u = |u| > O is the speed of the
particle. Circumstances in which F = 1 are called critical, with F »

1 as supercritical and O { F < 1 as subcritical.

We now define a new variable h > 0 by

1
2

hss i iad - Gt ods (h—%uz). (5)
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The motivation is that certain energy interpretations are associated with
h, as we explain in 84. One of the most obvious, in the special case of
steady flow over a flat bed, is that h then has a Bernoulli constant
value along a streamline; but we shall also see in §4 how a variable
similar to h 1is prominent in the dynamical conditions. It is best to
regard h as a new variable without preconceptions, detached at the
outset from such consequent particular properties, and available when the
bed is uneven and the flow is unsteady. In so doing we adopt the
viewpoint introduced by Sewell (1963, equation (7)) in gas dynamics, and
used by Sewell and Porter (1980, equation (4.5)) in shallow water theory.

Equation (5) describes a parabolic cylinder in h,u,d space, and
this is an example of a constitutive surface as defined above.

The following Theorems 1-4 are a convenient way of describing Figs.
1-4, in which the viewpoint is from the direction having colatitude 6
and longitude ¢, and in which the axes are scaled so that each
represents 2 units. Each surface has one subcritical part and one

supercritical part, smoothly joined along a critical space curve.

Theorem 1

The function

p(h,u) = iéit% u* - hu? + hz] (6)

obtained by inserting (5)2 into (3) describes the constitutive surface
shown in Fig. 1, having the following properties.

(i) It is saddle shaped, and strictly convex in h, everywhere.



Pig.- 1

_10_
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(ii) Every cross-section h = constant has an inflexion where F = 1,

and is strictly concave in u where F < 1, and strictly convex

in' ‘w ‘where F > T,

(iii) the surface lies between the parabolas p = h®/2g, u =0 and

oLyt ¢
hi= Su, pP= 0.

Proof

From (6) we find

B N B s

; - = (7)
ah2 g auz aua g
so that the determinant Iazp/a(h,u)l = - d/g < 0. These facts confirm
(i) and (ii), and (iii) is immediate. o
Next we introduce the mass flow vector
Q = ud with magnitude Q =ud > O . (8)

This Q 1is the vertical area of fluid which passes a horizontal station

in unit time. Recalling that u® = uf + ug ., We observe that
ey e
Q = 3u and i e (9)
Theorem 2

The function

Q(h.u) é [h = %u“] (10)



YR 1

obtained by inserting (5)2 into (8)2. or from (6) and (9)2. describes the
constitutive surface shown in Fig. 2, having the following properties.
(i) Every cross-section h = constant has a maximum where | 3 s

(ii) The locus of these maxima as h varies is a space curve

%
LB G ST _1[2h
h = 3u ., Q= z implying Q = . [3 ] (11)

which divides the surface into the subcritical and supercritical
parts shown, and whose projection onto the Q.h plane is half of

the bifurcation set for the cusp catastrophe.

N =

(iii) The surface lies between the h axis and the parabola h =

Q=20.

Proof

The formula

[h - §u2] = [1 = )4

Justifies the results, when we recall the following terminology from

catastrophe theory. o

The cuspoid potentials are the set of polynomials

Vig; of.0) = @ et g, (12)

in a single variable q, depending also on parameters a, B5 ... .where

n 2 3 1is a positive integer. The function (6) is only a trivial
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diffeomorphism of the cusp catastrophe potential n = 4. Therefore Fig.
2 is part of the familiar cusp catastrophe manifold dV/8q = O (called
the equilibrium surface by Sewell, 1966). We only require that part of
it which lies in the positive octant, because all our variables are
non-negative for physical reasons. The bifurcation set in the a, f,
space is obtained by eliminating q from dV/3q = 8°V/3q® = 0. Theorem

2 uses, in effect, the choice
V(u; h.Q) = p(h,u) + Qu (13)

with h and Q treated as parameters, to make the connection with

catastrophe theory.

Theorem 3

The function
Qth.d) = - oar%y (14)

obtained by inserting into (8)2 the positive root u from (5), describes
the constitutive surface shown in Fig. 3, having the following
properties.

(i) Every cross-section h = constant has a maximum where F = 1.

(ii) The locus of these maxima as h varies is a space curve

which divides the surface into subcritical and supercritical parts

oriented oppositely to those in Fig. 2.



Fig. 3

o
Fig. 4 P=Ph,Q) for g=1, 6 = 30°,

Q = (2hd? - 2gda®)%

_14_
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for g =1, 6 = 30°,

¢

= 20°.
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(iii) The surface lies between the h axis and the straight line

h=¢gd, Q=0.

Proof
1 1
The formulae u = 2A(h - gd)A ; gl 1+ l-F2 and
gd 2
2h - 3gd % 1
G2 wfr-b
justify the results. o

Consider next the 2x2 tensor uiujd + 6ijp, where 6ij is the
Kronecker delta and i and j take the values 1 and 2. Its principal

values are

uw’d+p = P (15)

(say) and p , with associated principal directions along and
perpendicular to the local velocity vector, respectively. For this
reason P is called the flow stress. The variables which become
prominent in the dynamical equations of §84 and 5 make it desirable to
express P as a function P(h,Q) of h and Q. Such a function does
not have a simple algebraic expression, but the important theoretical
concepts of duality and the swallowtail catastrophe are introduced next

to determine it graphically.



Theorem 4

The constitutive surface P = P(h,Q) has the shape shown in Fig. 4,

with the following properties.

(1)

(ii)

(iii)

Proof

(ii)

It is determined by inserting (8) and the inverse of (9)2 in (15),
i.e. by a Legendre transformation of - p(h,u) with u as an
active variable and h as passive.

The surface is double valued, having a subcritical part lying
above a supercritical part. The two parts Join along a cusped
edge where F = 1. The subcritical part is strictly jointly
convex in both variables, and the supercritical part is saddle
shaped but concave in each variable separately.

The surface is part of the swallowtail bifurcation set, lying

between the h axis and the parabola P = h®/2¢g, Q = 0.

The inversion of (9)2 at each given h is a function u(h,Q)
which, after insertion with d = Q/u into (15), gives the

function P(h,Q) with properties

& &
- %4 (19)

P = Oy ¥p,
by the chain rule. These are recognizable as the standard
properties of a Legendre transformation from - p(h,u) to
P(h.Q). General properties of the Legendre dual transformation
are described by Sewell (1987).

The transformation has an isolated singularity where F =1, as

(7)2 shows. The double valuedness in Fig. 4 is a consequence of
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S s

the fact that along the critical curve Q has a smooth maximum
for each fixed h. Therefore the curve F =1 is a cusped edge
of regression on P = P(h,Q). The stated convexity and concavity
follow from

a%p 1 3°%p u a3%p 1

& -y R Gy R (P

and the determinant [3°P/8(h.Q)| = [(1-F?)gd] ! .

The swallowtail property was shown by Sewell and Porter (1980) to
follow via the more complicated gas dynamics analogue from a
"ladder for the cuspoids" proved by Sewell (1977, 1987), that the
Legendre transform of the cuspoid (12) of degree n has the same
shape as the bifurcation set of the cuspoid of degree n+l. This
is applied here for n = 4, using the fact that the bifurcation
set of the cuspoid of degree 5 in the a, B. ¥ parameter space of
(12) is known to have the swallowtail shape. Fig. 4 shows that

part of it lying in the octant of physical interest. o

Theorem 5

(i)

The constitutive surface P = P(h,Q) in Fig. 4 has the parametric
description

i
5 gd?, (17)

b oo %-uz . ad 8- L i
with u and d having the role of a pair of surface coordinates.
Each coordinate curve u = constant, and d = constant, is

tangential to the edge of regression.
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(ii) Each member of the family u = constant passes from F > 1 to
F <1 as d (and therefore Q) increases, and appears as a
straight line in plan view. Each member of the family
d = constant passes from F <1 to F > 1 as u (and therefore
Q) increases, and appears as a half-parabola in plan view. Each

family in plan view envelops the bifurcation set (11)3.

Proof
(i) From (3) and (15), with (5)1 and (8)2. we obtain (17). The edge

of regression F =1 is the space curve

The tangent to this has the direction ratios g : u : 2u?, and
this is readily verified to be the same as that of each of the two

families where F = 1.

(ii) By (4)2, when u = constant F decreases as d increases, and
when d = constant F increases as u increases. From (17),
1

when u = constant h = §-u2 + gQ/u 1is a straight line in the

h,Q plane, and when d = constant h = Q®*/2d + gd is a parabola.
The tangency property just proved in h, Q, P space justifies the
envelope property in the h, Q plane, since (11)3 is the projection of

the edge of regression onto that plane. o

Figs. 5(a) and 5(b) each display seven examples of the coordinate
curves u = constant and parabolae d = constant respectively, as they

appear in plan view.
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RN\

Fig. 5(a) Lines h = xu® + gQ/u for g =1 and constant

DN —

u=0.25 (0.25) 1.75, with F increasing along arrows,

and their envelope 27g%Q”® = 8h® where F = 1.

0]

h

d = 0.25 (0.25) 1.75, with F increasing along arrows,

%
|

Fig. 5(b) Half-parabolae h = Q®/2d + gd for g =1 and constant

and their envelope 27g?Q® = 8h® where F = 1.

B
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Each sheet of the surface in Fig. 4 will carry a coordinate grid of
curves u = constant and d = constant, selected from one side of the
tangency points to the envelope in Fig. 5. One can give specific
examples of how a bore can be represented as an arrow from a point on
either the subcritical or supercritical sheet to a point on the
subcritical sheet, as we shall see in Fig. 7. The differences between
the coordinate values at the two ends of the arrow is their jump at the
bore.

From the viewpoint of plane mappings alone, the definitions (5)1 and
(8)2 provide a single valued mapping from the positive quadrant of the
u,d plane to that part of the positive quadrant of the h,Q plane which

lies in the domain

h -3 (9" 20 (18)

bounded by the bifurcation set (11)3. The inverse mapping is double
valued from inside the boundary. Figs. 2-4 display this double
valuedness, not only of u(h,Q) and d(h,Q), but also of P(h,Q) whose
derivatives they are, and of the Froude number too.

It will be convenient to use P, u, d, F and P*. u*, d*, F to
denote the two sets of values which correspond to any given h, Q point
satisfying the strict version of (18). One set will be subcritical and
the other supercritical, but not necessarily respectively, and we refrain

from specifying which, so allowing us to have either choice available.

The pair of sets satisfies

R X e Q=ud =ud (19)
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from (5)1 and (8)2. Elimination of u from the first of each in (19)
recovers (14), and similar elimination of w gives the same equation
but with d* in place of d. Put otherwise, both d*/d and 1 are

roots x of

| A T s e

(V] e

This equation has roots 1 and %-F[Fi(S + Fz)%] , so that

*

o] £ o]

since u/u = d/d". Therefore F and F. = u*/(gd*)% are related by

- F"‘[(8+F2)"‘ + F]% : (21)

The asterisk may be transferred to the symbols without it in (20) and
(21). We shall need (20) and (21) later. They are also constitutive
properties, valid in the general sense described at the beginning of this
Section.

Non-dimensional measures of distance from the singularity of the
plane mapping u,d <> h,Q are | F -1 | in the u,d plane and G - 1

in the h,Q plane, where

oh 1 %
g = and A e P (22)
o 5 5
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Equation (22)2 follows by eliminating u and d from (4)2, (5)2 and
(8)2. and this is a constitutive curve, which we show in Fig. 6. It

shows that F depends on h and Q only via the quotient G. The

bifurcation set (11)3 has: Gl

5

G

L H

3 o

2F

l ~

% 1 2 3 3 F 5
Fig. 6 Constitutive function G = % 15‘,g + % F_% ;

We shall need another new variable k defined to be such that

gk - b) = h-3 (g)”
=gd[%F2+1—% ] (23)

h(1-3) = 3@*c-1) .

The non-negative expression on the right is another measure of the
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distance, measured now parallel to the h axis in Fig. 5, from the
bifurcation set (11)3 to an h,Q point which is constitutively
admissible in the sense of (18). The expression on the left of (23) has
the structure and dimensions of potential energy. Circumstances will
emerge in which k can be interpreted as the maximum height available to
the fluid in any continuous motion. This aspect will become prominent in
the presence of an obstacle whose maximum height is a. In Part II we
shall speak of free flows when k > a, and blocked flows when k < a.
The distance (23) from the bifurcation set is, however, a general
property available before a 1is introduced, and whatever be the motion.

That completes the description of those constitutive surfaces which
we shall use in these papers, and we conclude this Section with an
indication of the symmetric duality structure into which they and others
fit, to show the connection with other investigations.

The option is available of interchanging the roles of active and
passive variables in the Legendre transformation from - p(h,u) to
P(h,Q) described by (6), (7), (9)2 and (16). The associated inversions
of (16)3 and of (16)4 lead to another pair of Legendre dual functions

which we write as

R(d,u) = = u?d + = gd? , (24)
2 2
2
r(d,Q) = %% -%gdz. (25)

and whose properties are expressed in the following Theorem.

Theorem 6
(i) The four functions p(h,u), P(h,Q), R(d,u) and r(d,Q) are

related by Legendre transformations having the properties



(ii)

(iii)

(iv)

Proof

(i)

p=F=-uQ ; Qe g&-, u = gg-. (26)
pE R a-2 h=%, (27)
R+r=ud, Q=2 . i g% . (28)
PePiohd -h =3, a=. (29)

The transformations (27) and (28) are non-singular, and the
transformations (26) and (29) have an isolated singularity where
Fo=3

The constitutive surface R = R(d,u) has a subcritical part which
is jointly convex, and a supercritical part which is saddle shaped
but strictly convex with respect to each of u and d

separately.

The constitutive surface r = r(d.Q) is saddle shaped everywhere.
It has a subcritical part where r < O and which is concave in d
and convex in Q, and a supercritical part where r > O which is
convex in both d and Q separately. Each cross-section

Q = constant has an inflexion where F =1 and r = 0, and the

locus of these inflexions divides the two parts.

Equations (26) are available in (9) and (16). Equations (27) are
readily verified from (5). Equations (28) are then verified by
inverting Q = JR/8u, which is (8)2. as u = Q/d to determine

(25) from (28)1. Equations (29) are then readily verified.



(ii), (iii), (iv) These properties follow from (7).

aR 4 gk OfR d
2 3 2 2 2
Jgi'r “ (Fz—l)g : d.xr S 3Q : ag B Q : acr = é '
ad2 ada d4 m d2 an

In value r = %-(Fz—l)gdz, and this is the only one of the four

functions which can be negative. o

The analogous set of Legendre transformations in gas dynamics was
given by Sewell and Porter (1980). Such quartets of transformations have
been studied in general terms by Noble and Sewell (1972) and Sewell
(1987). Chynoweth and Sewell (1989) gave another example in
semi-geostrophic theory. Connections with variational principles were
indicated by Sewell (1963, 1969, 1987).

In the special case of flows over a flat bed the function gR
defined by (24) is an example of a certain hamiltonian, in a sense
defined for one dimensional flows by Benjamin and Bowman (1987) in a

class of problems which includes that case.

4. Balance of Mass, Momentum and Energy
We now require the balance laws of mass, horizontal momentum and
energy appropriate to the shallow water theory indicated in §2. As in

other branches of continuum mechanics, each of these has an integral form
in the first instance, which then imply either a differential equation or
a jump condition depending on whether more or less continuity is assumed

for the associated variables. Standard methods (see, e.g., Chadwick,

1976, Chapter 3) applied to our context lead to the balance laws which we
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now quote, using some variables which the constitutive theory of §3 has
highlighted.
The differential equations of mass and horizontal momentum balance,

in two dimensional vector notation, are

5 T v.g: =0 (30)
and

Su

gctve = wko (31)

respectively. Here v = (a/axl, 6/6x2), k 1is the vertical unit vector,

and

e=h+gb=—u2+gs. (32)

When the bed is fixed w is the vorticity 6u2/6x1 - 6u1/6x2. and g
is the acceleration due to gravity. When the bed is deemed to have the
local vertical component of the earth’s rotation, ® is the vorticity

plus that component, and the constant g also contains a centrifugal

term.

From (23) we find

k=l
g

[e -5 (gQ)"] and b=k~ (C-1DE-K) . (33)
Any given bed profile function in (1) will contain the obstacle apex

height a as a parameter, so that it will have the more explicit form

b(xl. X a). For consistency this must have the same value as (33)2. so

that

b(x;. X5, @) = k- (G- 1)(§- k) (34)
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This is another general constitutive relation, i.e. valid for all
motions.

Whenever e and Q are given, k will be given. The right side
of (33) can then be written alternatively as a single parameter function
of F or u or d or h, instead of G, by using (22), (4)2. (8)2
and (32)1. The maximum of each of these functions is k, when G = 1
and F = 1. Comparison of the maxima a and k appearing in (34) is
the starting point for our investigation of free and blocked flows in
Part II. One of the alternatives to (34) is

b(xl. Xy a) = m(u) where m(u) = = (e - %-uz) - g-. (35)

1
g
For given e and Q, this describes a dependence u(xl, Xg s a). In the
present paper we do not assume that e and Q are given.

We can regard the unknown variables in (30) and (31) as d and u,
and these equations are valid consequences of the integral balance laws
provided d and u are continuous functions of t, X1, Xy with
piecewise continuous first derivatives. In particular, this allows the
bed profile function and the free surface to have a finite abrupt change
in slope at isolated locations, but a vertical step in the bed is not
permitted.

Energy balance warrants a more detailed discussion because of the
uneven bed. It is informative to begin with an integration through the
depth. The energy flux pE into a material volume of fluid is the rate
of change of kinetic plus potential energy plus the work-rate of the
boundary pressures. For a cylindrical volume bounded by the bed and the

free surface, whose cross-section on the plane Xq = O 1is an area A



- 28 -

bounded by a closed piecewise smooth curve of length o with unit

outward horizontal normal n,

S

E . g? Hb [% u? + gxa]dxadA # %Hbs n.u dxdo

e ac J d[% u? + &]dA 55 Jp n.u do (36)

where we have used s =d + b and written
1

The context makes clear whether d is depth or a differential operator.
This e is the net potential energy per unit mass of all the fluid
particles which are momentarily above the considered location, because
b + %-d is the height of their centre of gravity. The analogy with
thermodynamic variables in a gas identifies the function e(1l/d, b) in
(37) as an internal energy, where b has the formal role of an entropy
(formal because b is an assigned parameter here, rather than being

unspecified a priori as in a gas). The associated enthalpy function

would be

x(p.b) = (2zp)% + gb = gs

so that

€ =" x "~ p/d and e = %-u s e~ T L g-.

In that sense it would be mutually consistent to regard € as internal
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energy and e as total energy = kinetic + potential + pressure energy,
with the representative particle now regarded as located at the centre of
gravity just mentioned.

The transport theorem applied to (36), together with (30) and (31).

gives
E = J (dé + p v.u - gd u.vb)dA . (38)

Both d/dt in (36) and the superposed dot in (38) denote differentiation
following the particle. Since energy balance requires E = 0 in a

continuous flow for every A, we obtain
de + pv.u - gdu.vb = O . (39)

Comparison of this with the standard energy balance differential equation
in continuum mechanics (e.g. (3.39) of Chadwick, op. cit.) identifies the
term gu.vb as analogous to heat removed as if by radiation from a
source within the fluid. It is evidently the rate of working of the
fluid against the slope of the bed.

In fact (39) is satisfied automatically as a consequence of (30),
since we have a barotropic analogue with (37) and p = %-gd2 from (3).

Now suppose that each of d and u experiences a finite
discontinuity across a curve which is propagating over the X{. Xg plane

with local velocity C m, where m is a horizontal unit vector. In

place of (30) the integral mass balance law implies the jump condition

[m.Q] = C[d] . (40)
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The square bracket designates jumps, in the sense illustrated by
[d] =d_-d_. of values on the two sides of the curve. We define the

plus and minus sides of the curve to be those into or away from which m

points, respectively. Momentum balance replaces (31) by a vector jump
condition. Its m component is
2 1. o
[(m.u)°d + 5 gd®] = C[m.Q] . (41)

and its component tangential to the discontinuity requires either
m.u = C (i.e. a contact discontinuity, which the particle does not
cross, which may be a shear layer or vortex sheet), or continuous
tangential velocity (cf. p.118 of Chadwick, op. cit.]}. A finite step in
the free surface is now permitted, but not in the bed function
b(xl. x2). which is still required to be piecewise C'.

If the particle velocity is normal to the discontinuity on one side
it must be normal on the other side, by continuity of the then zero
tangential velocity. At such a place of normal transit the momentum jump

conditions reduce to

[P] = C[m.Q] (42)

using (17)3.

When C # O the discontinuities are said to comprise a bore, and
when C = O they comprise a hydraulic jump. The word "jump" is thus
used in two different senses, general and particular, as is conventional.

It is customary to postulate that, since energy balance is not

satisfied at a bore or hydraulic jump,

E<O (43)



because of dissipative processes occurring there which are, in the strict
sense, outside the realm of shallow water theory. Various expressions of

(43) are derived in the next Section.

L General Properties of Bores and Hydraulic Jumps

(a) Velocity relative to the bore.

Some concise general results can be obtained by expressing the mass,
momentum and energy conditions in terms of the normal fluid velocity

component relative to the bore. We denote this by

¥ = nu-C. (44)

Theorem 7

We can choose w > O without loss of generality, and w > 0 at a

bore or hydraulic jump. Neither of the latter is compatible with a

contact discontinuity.

Proof
Conditions (40) and (41) imply
[wd] = 0 and [w'd+$gd®] = 0. (45)

At a contact discontinuity w = O by definition, and therefore [d) =0

from (45)2. so that there can be no bore or hydraulic Jump. This proves

the last part.

When w # O a contact discontinuity is excluded, the tangential

velocity must be continuous, and particles do cross a bore or hydraulic
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jump. By (1) and (45)1 the sign of w must be the same on both sides of
the bore or jump. We can suppose w > O henceforth, without loss of
generality, since if - w = (-m).u - (-C) > O we should only have to
reverse the jump sign convention after (40) associated with the bore

velocity Cm = (-C)(-m). o

Next we introduce the definitions

W2+gd, 6=Wd. $=W2d+l

=24
]

gd”® (46)

which mimic (17), and
& W
P 7
(2d)
which mimics the Froude number (4)2. The relation between ¥ and F is

(47)

F = Fcosd - B, where - (48)

(gd)%

and 6 1is the angle between m and u, so that m.u = ucosf.

Theorem 8
(i) There exists a constitutive surface P = P(ﬁ.a) shaped exactly
like Fig. 4 but lying in h, 9 7 space.

(ii) The balance of mass and momentum and the energy loss at a bore or

hydraulic jump imply that
0] = 0 (B = 0. i) ¢ o . (49)

(iii) Every bore or hydraulic jump can be portrayed by an arrow parallel
to the h axis as shown in Fig. 7, i.e. from the lower sheet to

the upper sheet so that

R

B and :

g (50)




(iv)

Proof

(1)

(i1)

Fig. 7 Arrow representing bore or hydraulic jump from lower

to upper sheet of P = P(ﬁ.a), with g = 1.

Every bore or hydraulic jump has the properties

[w] <O and [m.u] <O (51)

and

fd] > Q. (52)

The algebraic structures of (17) and (46) are exactly the same.
The trios differ only in that the parameter u > O in (17) is
replaced by w 2 O in (46). Therefore the same flow stress
function P(h,Q) which is parametrized by u and d in (17) can
be used to describe the constitutive surface P = P(ﬁ.a)
parametrized by w and d in (46) in bGP space.

When the area A 1in (36) is traversed by the discontinuity, the

usual limiting "pill-box" argument shows that



(iii)

(iv)
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[
E. = e + %-uz)wd + p m.g] (53)

= (%-w2 + gd + gb)wd] + C[wzd + %-gdz]

(C* + (ma(um)?wa] . (54)

N =

Mass and momentum balance imply (45), (49)1. (49)2 and continuity

of tangential velocity. Then, using [b] = 0 also, (54) becomes

E = [gw +gdlwd = [RI3. (55)

~

Here Q represents both values 6+ = Q_ on either side of the
discontinuity, and wd similarly by (45)1. Since 6 205 We
obtain (49)3 from (43), (45) and (46).

The jump must be along a line with constant Q and P values, by
(49)1 and (49)2. i.e. parallel to the h axis as shown in Eig. F.
It is from the lower sheet to the upper, by (49)3 and the
concavity and convexity of the sheets, i.e. because 8P/6h = d > O
and 8°P/8h* = 1/(1-¥2)g on each sheet by (16)5. The

properties (50) follow from (i).

From (50) the jump has the properties wi 2w = gd+w+ > w: by

(45)1. so that (51) follows. Then (52) follows from (45)1 in the

form

. +
[v] = -qfd] (R - (56)
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It does not follow from (50) that every transition is from a
subcritical to a supercritical flow, in the terminology introduced after

(4). Instead, the next Theorem is an immediate consequence of (48).

Theorem 9
(i) F>1 implies
| e | if 0 < cosfB < B+1 ,
§ Qe | if cos® < B+1 < O .
(ii) F <1 implies
Focd if 0 < B+1 < cosO ,

| D = ¢ o i B+l < cos6 < O .

| e G LR . el
(iii) F =1 implies F = e gl

(iv) F=F if cos6 =1 and B =0 :

| i.e. for normal arrival at or departure from a hydraulic jump. O

The last part means that in the case of normal transit across a
hydraulic jump, the arrow on Fig. 7 is repeated in Fig. 4 in h, Q, P
space. This is a graphical expression of the fact that energy loss
requires the jump to be from supercritical to subcritical flow in that

case.

Theorem 10

Mass and momentum balance imply that

E = elnulld]® . (57)
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Proof

It follows from (45) and (46) that

(d, »d)
[w] = —gtdzl- Bl & gy 4 (58)
and therefore from (46) and (55) that
(8] = - @ . E = -8 . (59)
+ - + -

6 W+ [E' E.]
3,4 = “od (60)
and therefore (57) from (59). o

The formula (57) provides an alternative proof of (50) from (43), as
well as having interest of its own in being a direct expression of E in

terms of [u] and [d].

Theorem 11

Mass and momentum balance, and energy loss, imply

[e] = [h] < C[m.u] (61)

at a bore or hydraulic jump.



Proof

From (3), (32), (37) and (44)

[e + %-uz]wd + pmu = ewd + pC (62)

so that from (45) and (53)
E = [e - C m.g]a ; (63)

The result follows from (43) since Q>0 and [b]l. =0 o

It follows from (51) and (61) that [e] <O if C > 0, but [e]

can be of either sign if C < O.

(b) Possible types of bore.

Theorem 12
Three main types of bore are possible, as shown in plan view in Fig.
8, and in a vertical cross-section containing m in Fig. 9. They have
the following properties.
(i) Particles overtake bore.
The fluid speed must be greater in the shallower water than in the
deeper water, but the latter cannot be at rest or moving parallel
to the bore. The shallower flow must be supercritical.
A hydraulic jump belongs to this type of bore, and has the above
properties.
If there is normal transit across a hydraulic jump, the deeper

flow must be subcritical, and the geometrical interpretation given

af ter Theorem 9 applies.
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(ii) Particles meet bore.
This can happen either on both sides (the deeper water could be at
rest, or moving parallel to the bore); or on the shallower side
only, while the bore has the same direction of travel as the m
component of the deeper water (the shallower water could be at
rest, or moving parallel to the bore). The hydraulic jump of (i)
can be regarded as part of the first case here.
In the first case also, if the deeper water meets the bore
normally and if O > B > -1, that flow is subcritical.

(iii) Bore overtakes particles on both sides.
The fluid speed must be greater in the deeper water than in the
shallower water, which could be at rest or moving parallel to the

bore.

Proof
Theorem 7 uses mass balance to justify m.u > C on both sides of
any bore or jump.
(i) A bore with C > O is moving in the m direction, but more

slowly than particles on both sides of it. From (51) and (52)

m.u > m.u DACI-0 with d <d (64)

including also a hydraulic jump (C = 0). The speed property
follows, since the tangential velocity is continuous. Also from
(64), O0<cos8 < 1<B+1, so F > 1 from (50) and Theorem
9(i). The last property follows from (50) and Theorem 9(iv).

(ii) A bore with C < O is moving in the direction opposite to m, and

so (by definition) will meet particles having m.u > O.

RS W e



mau > € >0 m:a 20> C 0> mia > €
particle overtakes bore particle meets bore bore overtakes particle

Fig. 8 . Possible bores when m.u > C, in plan view.

—_— S -
—_—
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13

=
5
e
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[=1

—& C - C - - C ——ro/
|
|
\
:
|

mu >myu >C20 mu >mu 202C O2mu_>mu >C
or
Ml D=0 om0
- ==+
or
mu 20>mu >C

Fig. 9 Profiles of possible bores, with m directed to the right.

Arrows represent the magnitudes and signs of m.u and C.
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Allowing for flow parallel to the bore (or still water), the three

possible cases, all with d_ < d+. are

RS U I L e (65)
S o0 Occp mag, > 6, (66)
Wl 2020 ) m.u D B (67)

The two equalities in (65) cannot occur simultaneously.

A hydraulic jump C = 0 can occur in (65) if m.u, > 0.

A bore cannot be such as to meet particles on the deeper side
only, while moving in the same direction as the m component of
the shallower water, because this would require

m.u, 20 >mu_>C which is precluded by (51) and (52).

The last special property in the Theorem follows from (50) because
the first hypothesis of Theorem 9(ii) is satisfied.

(iii) This is the case, also with s d+. in which

Q2 - pa > m.u_ b8 o (68)

The foregoing proof uses only the local properties of mass and
momentum balance, and energy loss. Some features of Theorem 12 are well
known, for example in one dimensional flow in a channel and over a flat
bed, but the proof given here applies to any two dimensional flow in
which particles cross the discontinuity, perhaps obliquely, and over an
uneven piecewise C' bed.

Evidently bores of types (ii) and (iii) may, in general, be

subcritical or supercritical on either side. This is because, apart from
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the special case mentioned in (ii), we cannot be sure in advance that the
hypotheses of Theorem 9 are satisfied.

It may be that bores of one type are more common in nature than
those of another, so that the stability of the various local types
becomes an issue, in association with boundary or other conditions at a

distance. Firm data is needed, and we reserve comment on this point.

(c) Solution of the jump conditions.
We now turn to the problem of expressing the properties on one side

of a bore in terms of properties on the other side.

Theorem 13

Mass and momentum balance and energy loss imply that

g say
[m.u] = -[d] g" |533 (69)
+ -
and
gd, ’ gd_ 8
C = 115 L G b (d+ s d_) = m.g+ il— (d+ o d_) (70)
- +
Proof

Conditions (40) and (41) imply

(2.9 = [d] [@w?d + } ao?]

which can be rearranged to give

d +.d
= gld)? [;dd‘]

[m.u]?
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Then (69) follows from (51) and (52). The bore speed formulae (70) then

result from inserting (69) into (40). o

We see from (69) that a knowledge of the depth on both sides of the
bore is necessary and sufficient to determine [m.u] uniquely, and
therefore also to determine [u] uniquely since the tangential component
of velocity jump is zero. By inserting (69) into (57) one obtains other
expressions for E, leading to (87) below.

It turns out, however, that for each particular type of bore
described in Theorem 12, the depth cannot be assigned arbitrarily on both
sides of the bore. Instead, the ratios of d, and d_ which can be
used in (69) are subject to definite restrictions which the following
Theorems 14-17 determine. Restrictions on the corresponding bore speeds
(70) are also implied.

We may say that particles arrive at the bore from the minus side if
m.u > 0, and from the plus side if m.u, < 0. We shall regard either
of these arrival sides as the known side in turn, but not both
simul taneously. That is, the values of d and m.u are regarded as
given there. The other side will be the unknown side, where the
restrictions on d and the consequent values of m.u are to be found.
To express properties on the unknown side in terms of those on the known
side, we nondimensionalize (69) with respect to the known side, in the
two cases, as follows.

We define nondimensional variables A and p on the unknown side
by the following expressions. The ratio A is called the strength of

| the bore or hydraulic jump.
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[ d [ m.u
ai - _+% m-u. >0
= (gd_)
X and £ = if (71)
d_ m.u_
f— maM a0,
d % BBy
+ (gd,)

The definitions are different in the two cases, and of course are not to
be used simultaneously, even when both are available as for bores of type
(ii). This A 1is the nondimensional depth on the unknown side, and the

component m.Q of the mass flow vector (8) on the unknown side becomes
this p after nondimensionalization.
We shall need the m component
.4

e Fcos@ = E (say) (72)
(gd)

of the Froude vector (4)1. and its values

m.u_ 2 m.u ~

%=F_ and -+%=F+

(2d_) (ed,)
on each side.
Theorem 14
The nondimensional version of (69) is
~ 1 %
po= AFC = (A = 1) EZ AN+ 1)] (73)

where Fc here denotes the supposedly given constant



and the domain of (73) is

The nondimensional version of (70) is

Proof
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B >0 if miu >0
(74)
B oS4 if mu <O .
N> if my >0,
(75)
] if mu. <0 .
B¥ = Fc - Eﬁ AN+ 1)] (76)
where B and B+ are the values of (48) in the respective cases.

The proof is just a transcription of (69) and (70). As may be
anticipated from the symmetry of (69), every function u(A) in (73)
belongs to the same one-parameter (Fc) family, but is required over

a

complementary domains (75), by (52).

The defining properties of the different types of bores in Theorem

12, namely (64)-(68), can be expressed in the nondimensional quantities

(71), as can (40) which becomes p - F_ =B (A-1) in the first case

m.u 20,

This transcription implies the following restrictions to
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wedges, quadrants or strips in the A,u plane. The use of (40) does not
narrow regions (79)-(81).

Nondimensionalizing with respect to the minus side as the known side:

[l c ) =& N b E X (77)
(65) + (40) > F yu>o0, R (78)
(66) %L 05 N (79)

Nondimensionalizing with respect to the plus side as the known side:

(67) > e 1> N0 (80)

(68) > OSw> Ak, 1 XA3>0 (81)

The following result is implied.

Theorem 15
The nondimensional jump conditions, for each type of bore, are

solved by that part of the curve p(A) in (73) which lies within the

region just determined. o

It remains to determine the explicit form of (73).

Theorem 16

(i) The function p(A) defined by (73) for all A > 0 and any given
Fc is concave. It has the limits p -0 as A -0 and p = -

as A - It has a single stationary maximum at A , say, where

m
~ ~
F

Am increases as Fc increases, and Am = 1 when S R 5

c
has a single positive value AO' say, where u(Ao) = 0, which

~
increases as Fc increases. In fact



(ii)

(iii)

Proof

(i)
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-

2 T ‘
3 [1 2 [4 + GFC ] cos 3 w] i Fc PAE0
)\O | if Fc =0 (82)
1 Nt o 1 2w o
| § [1 + 2 [4 o 6FC ] cos [§ Y - 3—':” if FC L6 PR

where cos ¢ = (QFC2 - 8)(4 + GFCZ)—% and: 0 <Y <

The value pu = FC is attained at A = 1 and at another value,

Al' say, where
1 f2.%
A o=iE [(1 + SFz) - 1] >0 (83)
which increases as Fc increases, and Al = 1 when ﬁc =

The bore speed function B¥(A) in (76) is a decreasing function
of A which is zero at Al.
Each branch of the cusped curve L=k A% intersects u = p(A)

once for any given Fc. The value of A, A+ say, at which

It = A% and p = p(A) intersect increases as Fc increases, and

~

A=1 when F =1. If F < LR R 4 Uaalr R
+ c (ot 1 m +

o2 XA CN CN. The value of A, A say, at which
c m =+ 1 =

~

nL=- k% and p = p(A) intersect increases as Fc increases,

and A_ =1 when ﬁc = = 1

The gradients of (73) with respect to A > 0 are

B'(Q) = F_-¢(A). where ¢(A) =L (0% + - 1)(2A% + 2) 7%

N —

and

HUA) = - 3(8N° + 1222 + 3n + 1)(2A2 + )% |

which establishes the concavity of ().



(i1)

(iii)
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-k
The function ¢(A) is such that d(A) ~ - %(2A) s as A -0,
$(1) =1, ¢(A) ~v2 A as A > and $'(A) > 0. Since
n'(A) = 0 implies ¢(A) = gc it follows that p(A) has a

stationary point, Am. for each Fc. having the stated

properties.

A similar argument shows that 1(A) has a zero AO 40
which increases as Ec increases, and AO = 1 when ﬁc = 0. The
equation u(ko) = 0 can be reduced to a cubic in AO and the

given formulae for AO with Ec # 0 follow by standard methods.
Using (73), u = fc at A =1 and where ﬁc = (%{Az + A))%,

which has the non-negative root Al with the stated properties.

The fact that C =0 at Al is immediate.

The equation pu(A) = + A% can be written as

£,00 = F_ (84)
where
%
X d %
fi(k)=(7\—1)[2;\] A

%
Since f,(A) ~ - (2n) as A0, f,(1) =21, £ () ~ V2

as A - ® and fi'(k) > 0, the roots Ai of (84) increase with
Fc and Ai =1 implies Fc =+ 1 respectively.

Now note that

A(+2)% - D2 - A - 1
2(2A% + 2\)%

£,(0) - () <8

for A > 0, with equality only at A = 1. Hence, using

A\

f+(x+) = Fc, u'(k+) = f+(A+) - ¢(A+) < 0 with equality only for

A, = 1. Since A, =1 implies Fc 3 o u'(k+) <0 for Fc |

~

and therefore A > A for: F.: 0]
+ m c
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g % & : J
Finally, (A, = A, and u(kl) = FC = f+(k+) from which it

follows that
% A+ Sl -
}L()\+) 5 ]J.()\l) - ()\+ = 1) 7\+ = 2—}\— 210
+

for A+ > 1. Hence for A+ >-1, ‘that is, for Fc i) s
u(k+) > u(kl) and since A, 2 Am we deduce that A Al for
| PR A (3
c
The remaining elements in the given inequalities follow from

earlier parts of the proof. o

As Theorem 15 indicates the inequalities (77) - (81), each applying
for one type of bore, select finite or infinite segments of the curve
B = p(A) implying a range of admissible Jump sizes. The significance of

%

the cusped curve p =+ A” in Theorem 16 (iii) arises from the fact

that, on the unknown side of the Jump,
%
u = FA (85)

from (71) and (72), and therefore in the two cases

Fj if Bg >0
2
AL:, - < (86)
2
. F? if mu, <O

Within the cusp, A® > 1, so that on the unknown side of the jump
IFiI <1 1in the two cases, and outside the cusp IFiI > 1. For each

bore type the value of Fi on the unknown side is thus decided by the
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location of the appropriate solution segment of pu = 1(A) relative to
the curve pu = #+ A%. Theorem 16 permits the following deductions to be
made from (77) - (81) for the solution of the jump conditions.

Examples of the various cases in Theorem 17 are plotted in Fig. 10,
which shows the physically valid segments of r(A) and B¥(A) as full
lines, and the nonphysical segments as dashed lines. The function

=z A% is also shown as a full line.

Theorem 17
(i) Particles overtake bore.
By (77), if E_ > 1 there is a range Al 2 A>1 of solutions
1(A), allowing E+ > 0 to be on either side of unity. Fig.
10(a) illustrates this with ﬁ_ = Weh 0 < ﬁ_ < 1 there is
no solution.
(ii) Particles meet bore.
By (78), if E_ > 1 there is a range AO 2 A2 Al of solutions.
In Fig. 10(b) ﬁ_ = 4. With 0 < ﬁ_ {1 there is a range
AO 2A>1 of solutions. In Figs. 10(c) and (d) ﬁ_ =1 and
0.2 respectively. All require 1 > §+ 200
By (79), there is a range A > AO of solutions for every ﬁ_ 201
In Fig. 10(e) E_ = 4. They allow E+ € 0 to be on either side
of -1,
By (80), there is a range 1 > AO 2 A >0 of solutions for every
F, <0. In Fig. 10(f) F, = -0.2. Theyallow F 30 to be on
either side of unity.
(iii) Bore overtakes particles on both sides.

By (81), there is a range 1 > A AO of solutions for every



(c)

{75 -

10

Physical functions

1(A)

0.75} 7

-1.25

and B;(A) (full segments)

together with p = + Ax (see Theorem 17).
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(h) +

Fig. 10 Physical functions p(A) and B+(k) (full segments)

together with p = % A% (see Theorem 17).

F+ o0 SRS 6 F+ < -1 they allow F_ { O to be on either side of
=1, but if F+ 2 =1 they require 0 > F_ > -1. In Figs. 10(g)

and (h) §+ = -0.2 and -1.2 respectively.

In each case there is a corresponding restricted range of bore speeds,
described by (76), with the known Fc and the range of A given above.
Figs. 10(a)-(e) show the function B _(A), and Figs. 10(f)-(h) show

B, (7). O

We can summarize these results as follows. When m.u_ > 0 and d_
are regarded as known, the three bores (64), (65) and (66) each have a

range of possible d+ values as described by Theorem 17 with A = d+/d_.
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There are corresponding ranges of m.u and C given by (69) and (70).
When m.u <0 and d, are regarded as known, the two bores (67) and
(68) each have a range of possible d_ values as described by Theorem 17
with A =d /d_. There are corresponding ranges of m.u_ and C
given by (69) and (70).

The cusped curve p = % A% which discriminates between the signs of
|§+| - 1 on the unknown side of the bore in Theorem 17 is the

bifurcation set associated with p extrema on a surface

[%]2 Y (87)

in a space spanned by v > 0, A > 0, u . This surface has the same
shape as that displayed in h, d, Q space in Fig. 3 where 210,
together with the mirror image of it in p < O . The variable v is

therefore
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By (5) and (88), v 1is a nondimensional version of h - l(g B EE

and is h+/gd_ or h_/gd+ in the case of normal transit across the bore
or hydraulic jump. This observation opens the way to converting the
solution segments of u(A) in (73) into other variables, by lifting the

segments onto the surface (87) in Fig. 3, and then projecting them onto
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other axes, and by duality into other spaces represented by, for example,
Figs. 2 and 4.

By inserting (69) into (57) we find that the energy loss at a bore
or hydraulic jump, when nondimensionalized according to (71), is

-
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recalling that A > 1 and A <1 in the two cases respectively.
In the case of normal transit the variable k defined in (23) has

the properties

e if ._>O.

=]
=
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by (71) and (88). We make significant use of (90) in the proof of
Theorem 2 of Part II.

Equations (72) and (85) show that p can have either sign. When
KL 1is used to describe a constitutive surface such as (87), in place of
the non-negative Q as in (14), the geometry invites the use of |§| =l
as the definition of criticality in place of the classical F =1 as
defined after (4). It is possible to take the view that it is more
natural to use the normal component m.u of velocity rather than the
absolute speed u in classifying flows as sub-critical or
super-critical. Corresponding changes in certain verbal descriptions,

such as some of those in Theorem 12, would need to be supplied. The
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differences between the definitions disappear in the important special
case of normal transit, for which |@.g| =u, but p could still have
either sign and ﬁ =k P

All the general properties of bores and hydraulic jumps derived in
this Section apply whether or not the bed is rotating because, in
contrast to (31), the spin of the bed does not appear in the general jump

conditions (40), (42) and (43) which we have solved here.
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