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Summary

The calculation of various measures of humidity from wet and dry bulb
temperatures is made difficult by the need to compute the saturation vapour
pressure. Complex semi-empirical equations due to Goff and Gratch are
available, but for many applications simpler and less accurate formulations
are required. In meteorology, there is a need to calculate the dew point
from the wet bulb temperature at synoptic obsgserving stationg, and this can
be conveniently carried out on a programmable calculator. For this purpose
an algebraically simple equation due to Magnus is shown to be most
suitable, and procedures for its use in calculating hunidity parameters at
an oﬁéerving station are described.

1. Introduction

The moisture content of the atmosphere is generally measured cheaply
and conveniently by means of a wet and dry bulb psychrometer.
Unfortunately, howevér, the calculation of alternative measures of humidity
such as the dew point (Tqg), vapour pressure (e) and relative humidity is

complex. The calculations are based on the Regnault equation

e = eg (Ty) - Ap (T - Tw)

where T = dry bulb temperature
Tw = wet bulb temperature
P = atmospheric pressure
A = a ventilation coefficient
and eg(Ty) = saturation vapour pressure at the wet bulb temperature.

The source of the computational problems is the saturation vapour pressurxe
(eg). This is related to temperature by an integration of the Clausius
Clapeyron equation, but this is made difficult by departures from the ideal

gas law and the variation of latent heat with temperature. Consgequently




semi~empirical formulae were derived by Goff and Gratch (1945) to enable eg
to be calculated to a high degree of accuracy. These equations have been
subject to continual refinement and the latest versions are given by Wexler
(1976, 1977). The Goff-Gratch equations apply, however, only to the
saturation pressure of water vapour in the absence of other gases. When
air is added to the water vapour eg ig increased, mainly due to the extra
forces of attraction between the molecules of air and water vapour. The
nagnitude of the effect at sea level pressures, however, is only about
0.5%. A complete account of humidity and moisture in the atmosphere is
given by Wexler and Wildhack (1965), while a useful summary is provided by
WMO (1966).

The Goff--Gratch equations are relatively costly to evaluate on a
regular bagsis and for many purpogses they are unnecessarily accurate.
Consequently, many attempts have been made to devise empirical
approximations in which simplicity is traded against accuracy. Some
workers eg Richards (1971), Lowe (1977), and Rasmugsen (1978) have aimed
for relatively high accuracy and developed high order polynomials. The
efforts of Richards and Lowe, together with some unpublished work by
Hooper, are reviewed by Sargent (1980). Algebraically simpler but less
accurate formulae were suggested by Tabata (1973), Revfeim and Jordan
(1976 ), and Blackadar (1983), but the longest established of these simpler
approximations is due to Magnus (1844). By incorporating an amendment due
to Bogel (19272), Buck (1981) is able to recommend the u.e of the Magnus
formula for a wide variety of uses and provides a choice of coefficients

according to the temperature range of intereat'and the accuracy required.




Buck also supplies a choice of equationg for taking into account the

'enhancement factor' which represents the difference in saturation pressure
between pure water vapour and moist air.

Many of the empirical approximations developed have assumed that the
calculations will be performed on a large computer. In this context the
gimplicity of an equation has been interpreted in perms of its speed of
execution. An IBM 3081 computer at the Meteorological Office, for
instance, can evaluate a sixth order polynomial in about the same time as a
single exponential expression. In operational meteorology, howéver,
calculations have to be made at synoptic observing stations in order to
convert from Ty (which is obsexrved) to Tq (which is required by the WMO
synoptic codes). These calculations have generally been performed with the
aid of either tables or slide rule, but they may be made more conveniently
on a microcomputer or programmable calculator. In this context algebraic
gimplicity is important as it minimises storage requirements and enables an
equation to be reversed in order to calcQ1ate temperature from saturation
vapour pressure as well as vice versa.

For routine meteorological purposes, the accuracy required of eg is
that equivalent to an error of 0.1 C in temperature. This is of the order
of 0.5% to 1%, and a number of algebraically simple expressions are capable
of achieving this accuracy. A number of such formulae are compared, and
the brevity, reversibility and accuracy of the Magnus formula is shown to
make it ideal for use witn a pocket calculator. It is also perfectly
suitable for routine climatological applications on ; large computer.

The precigion to which T and Tg are reported in the WMO synoptic code
messages was increased in 1982 from 1 € to 0.1 C. This increase in

precision made it possible for climatological collecting centres to




calculate the other humidity parameters direct from the messages, rather
than through internal reporting of Ty. This procedure therefore offers the
advantages of increased automation, but requires the recovery of Ty from T
and Tq and this is not straight-forward. The purpose of thig paper is,
therefore, threefold:-

(1) to compare some of the algebraically simple formulae for calculating
eg.

(ii) to describe and recommend a procedure based on the Magnuco formula
for calculating humidity parameters from T and Ty.

(iii) to describe a method for recovering Ty from T and Tq.

The recommended procedures can then be implemented either on a large
coﬁputer at a collecting centre, or on a programmable calculator at the
observing site.

2. Integration of the Clausius Clapeyron equation

The saturation vapour pressure is expressed as a function of absolute

temperature by the Clausius Clapeyron equation

ggg = ptp.dT
es RT2

latent heat of vaporisation of water = 2.50084 x 10~3 J.Kg~1l at

where L
0°C.

R = gas constant for dry air = 287.05 J.Kg~1

and E ratio of molecular weight of water vapour to that of dry air =
0.62198.
Difficulties in integrating this equation are caused by the fact that L is

not constant, but varies with temperature. If this variation is ignored,

and L is assumed to be constant then
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eg = exp (21.4 - gggl) (LY
T
where eg is given in mb if T is expressed in degrees Kelvin. This is the
equation used by Blackader (1983) to illustrate the calculation of humidity
parameters on a home computer.
A better assumption is clearly to make L a linear function of T,

eg L = [2500.84 — 2.34 (T - 273.15)] x 10~3 J.Kg~1

when eg = exp (55.17 ~ 6803 ~5.07 1nT) (2)
T

The performance of equations (1) and (2), when assessed against the
gsolution of the Goff-Gratch equations as given by WMO (1966), is
illustrated in fig 1. In this diagram, the dotted lines indicate the error
in eg which is equivalent to an error in temperature of 0.1 C. The
assumption that L is constant is seen to produce errors within the required
lipits for temperatures between -10 C and +35 C. The assumption that L is
a linear function of temperature, however, results in a considerable
improvement and produces errors well within the required limits over the
entire range of temperature examined.

3. Empirical expressions for calculating the saturation vapour pressure

The Magnus formula already referred to takes the form

eg = 6.1070 exp (_aT ) ¢3)
b+7T




In this and all subsequent equations, vapour pressure is given in mwb if
temperature is expressed in degrees Celsius. The most commonly quoted
values of the coefficients for evaporation over water are a = 17.3 and b =
237.3. Minimum RMS errorg in mb with respect to the Goff-Gratch values
over the temperature range —40°C to +40°C, however, are obtained by putting
a = 17.38 and b = 239.0 for evaporation over water and a = 22.44, b = 272.4
for sublimation from ice. With these coefficients, fig 1 shows that the
Magnus formula produces errors which are within the required range for all
temperatures examined above —-30 C.

Revfeim and Joxdan (1976) used the relation

eg = exp (7.076 ~ 2.47 (1.46 — 0.01T)2) (4)

and fig 1 shows that this formulation achieves the required accuracy over a
temperature range of -6 C to +43 C. Better resultg may be obtained by
using a quadratic in the inverse of absolute temperature,

ie eg = exp [ 19.163 — 4063.2 — 184089 ] (
T+273.15 (T+272.15)2

o
~

This form of equation was suggested by Tabata (1973), although the
coefficients used are those which minimise RMS errors (in mb) between +40
C. The accuracy of this equation is demonstrated in fig 1, where the
errors»produced can be seen to lie within the prescribed limits over the
entire temperature range examined.

Of the 5 equations congidered, fig 1 shows that those valid over the
narrowest range of temperature are those suggested by Blackader (1983) and
Revfeim and Jordan (1976). The widest range of applicability is attained
by the equation due to Tabata (1973) and that obtained from an integration
of the Clausius-Clapeyron equation with L a linear function of T. Unless

very low temperatures are to be regularly dealt with, however, it is the




Magnus equation which is recommended for use with pocket calculators. It
has the advantage of being algebraically very simple and hence reversible,
and, for temperatures between O C and 40 C, is the most accurate of all the
equations examined.

The enhancement factor for moist air has not been used in the above
calculations since the aim was to reproduce the solutions of the
Goff-Gratch equations. It is also ignored in the following sections in
order to maintain continuity with past and current Metecrological Office
practice. Its omission does not lead to any errors in Tg or the relative
humidity, while that in eg is equivalent to an error in temperature
neasurement of just less than 0.1°C. If it is wished to include the
effect, however, this can be achieved simply by increasing eg by 0.46%, ie
by replacing the constant 6.1070 in the Magnus equation by 6.1351.

4, Recommended preocedure for calculating humidity parameters from wet and

dry bulb temperatures

The starting point is the calculation of e from the Regnhault equation,
which requires a knowledge not only of T and Ty but also of eg (Ty). This
can be obtained from the Magnus equation by replacing T by Ty in equation

(3) to give

eg(Tw) = 6.1070 exp

17.38 Ty
239.0+Ty

for Tw 2 0°C and

eg(Ty) = 6.1070 exp| 22.44 Ty
272 .4VTy

for Tw < Q°C,

Since e = eg (Tq), the Regnault equation may be written as

es (Ta) = es (Tw) — Bp (T-Ty)




For measurements in a Stevenson screen the ventilation coefficient A is
0.000799, except when the wet bulb is frozen when it takes on the value
0.000720. It is important that accurate values of p are used otherxwise
relatively large errors may ensue. At relative humidities of 10%, for
example, the assumption of p = 1000 mb when the correct value is 950 mb
gives rise to errors of about 20% in e, 2%.-in relative humidity and 2°C in
Taq.

The second variable to be calculated is TG, which can be obtained from
the calculated value of e = eg(Tq) by using the transposed Magnus eguation
for evaporation over water:

Tg = 239.0 K
17.38- K
where K = 1lne - 1ln 6.1070.

The next step is the use of the Magnus formula for water to calculate
the saturation vapour pressure at the dry bulb temperature [eg(T)]. This
enables the relative humidity to be calculated as e/eg(T).

These steps may be rationalized and summarized as follows:-—

{1} Use the Magnus formula to calculate the saturation vapour pressure
at T and Ty.

(ii) Use the Regnault equation to calculate e = eg (Tq)

(iii) Use the transposed Magnus equation to calculate Tg.

(iv) Calculate the relative humidity as e/eg(T).

10



5. Estimation of the wet bulb from the dry bulb and dew point

The estimation of Ty, from T and Tg is a more complex procedure than
obtaining Tq from T and Tyw. This is essentially because the Regnaﬁlt
equation is expressed in terms of the depression of the wet bulb rather
than the dew point, and so can only be solved for the former by using an
iterative procedure.

Less accurate estimates can, however, be obtained ugsing an empirical
approach which takes advantage of the fact that Ty lies between T and Tg.
At low temperatures, when little water is available for evaporation, T, is
not much less than T, but at high temperatures, Ty is closer to Tq. In
other words, the ratio of the wet bulb depression to the dewpoint
depression always lies between zero and unity and increases with
temperature., A convenient linear representation of this change is given by

g;‘_’.}‘_‘! = 0’.34 +0.006 (T4TQq)

T - Ta
For values of T from -10°C to 50°C and dewpoint depressions up to 15°C,
errors in Ty obtained from this equation are always lesgs than 0.3°C.
Improved accuracy could be obtained by introducing a non-linear dependence
on (THrg) to the right hand side of the equation — the quoted relation
produces a wet bulb depression which exceeds the dewpoint depression at
temperatures above about 55°C and is negative at temperatures below about
—=25°C. It may be more expedient, however, to solve the Regnault equation
iteratively.

The Regnault equation may be re-arranged as
eg (Tw) +ApTy = eg(Tq) + ApT

Using the Magnus equation, this becomes

st




LTy b+Tq

All the terms involving T, axre now on the left hand side. The xight hand

side, involving terms in T and Tq, can be evaluated and set equal to a

value C. We can then define

-
>

F(Tw) = 6.107exp ___:‘:_IEL + ApTy — C (6)
b+Ty
which takes on the value O for a correct solution of Tw. This can be |
|
obtained using the Newton-Raphson iterative approximation: ‘
1Tw = oTw — F (Tyw)/F1(Tw)
where Ty and 1Ty are the initial and improved estiates of Tw

and Fl(Tw) is the first derivative of F(Tw).

ie F1(Ty) = 6.107 _ab exp| aTy,| + Ap €7)
(b¥1y)2 biTy o

b

The values of a, b, and A to be used in equations (6) and (7) are

determined by the value of Ty.

The calculation of Ty from T and Tg may therefore be summarized as
follows:
(i)  Make an initial estimate Ty = 0.5 (™4Tq)

(ii) Select the appropriate values of a, b, and A, ie.

2

if oTy 20°C A= 0.000799  a = 17.38

A = 0.000720 a

if gl <0°C




(v) Obtain an improved estimate 1Ty = oTw — F(Tw)/Fl(Tw).

(vi) Test for convergence of the procedure, ie |3Ty - oTwl<0.005
If this condition is not met, set Ty = 1Tw and repeat the procedure from
step (ii). The criterion is usually satisfied in 2 or 3 cycles.

6. Meteorological Office procedures

The introduction of new WMO synoptic codes containing dry bulb and dew
peint temperatures to 0.1°C created the possgibility of increased automation
by allowing the calculation of humidity parameters direct from the reported
values of T and Tg. This opportunity has been taken by the UK
Meteorological Office, whose archives of observations from synoptic
stations are now based on those contained in the coded messages, instead of
data keyed from manuscript tabulated returns. The wet bulb temperatures
archived are no longer those measured, but are now obtained from an
iterative solution of the Regnault equation. This peculiar circumstance
could only be avoided by the introduction, as a National practice, of the
reporting of Ty, as well as Tg in the syhoptic codes. The vapour pressure
and relative humidity are then obtained from a simple application of the
Magnus formula. Por voluntary climatological stations, for which the wet
bulb temperatures are still received in manuscript form, humidity
parameters are calculated using the procedures described in section 4.

The correct pressure to supply to the Regnault equation is that
observed at the station, uncorrected for altitude. At voluntary
climatological stations the pressure ig seldom recorded and so a value of
1000 mb is used. At synoptic stations, users of humidity slide rules are
instructed to assume a value of 1000 mb unless the pressure is less than
950 mb. Since the recovery of Ty from Tq is a reversal of a calculation

made with a slide rule, the value of the pressure used in this procedure is
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also set to 1000 mb. For consistency, therefore, all algorithms used to
calculate humidity parameters on pocket calculators should use a pressure
of 1000 mwb. If and when the preparation of synoptic messages is fully
automated at all stationg, then this could be replaced by the station level
pressure,
7. Conclusions

The problems in calculating the various measures of humidity are caused
by the d@ifficulty in evaluating the saturation vapour pressure. This is
related to departures from the ideal gas law and the variation of latent
heat with temperature; these make the Clausius Clapeyron equation difficult
to integrate analytically. Semi-empirical equations due to Goff and Gratch
(1945) are available for the accurate computation of saturation vapour
pressure, but these are relatively costly to evaluate on a regular basis
and for many purposes their accuracy is superflucus. Conseguently many
attempts have been made to devise simpler approximations providing only the
accuracy required. In these attempts, simplicify has been interpreted as
the speed and cost of evaluation on a large computer. In cperational
neteorology, however, there is the need to calculate dew point from the wet
bulb temperature at synoptic observing stations, and this can be
conveniently carried out on a programmable calculator. In this context,
algebraic simplicity is important and the brevity, reversibility and
accuracy of the Magnus formula make it ideal for such a purpose. The
Magnus formula is also perfectly suitable for implementation on a large
computexr and has been used for routine climatological calculations at the

Meteorological Office for many years.
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