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Monge - form surfaces, z = f£(x,y)

PART 2 - Curvature, Directions, Con jugate Directions,

Asymptotic Directions, Umbilics, Ceodesics, Tensor Formalism

R. DIXON

1s Introduction

- Part 2 will deal with the important topic of the form and use of operators on
a Monge-form surface., This part, Part 2, deals with a collection of items most of
which will probably not be required very often. They are gathered together in this

Part 2 for the sake of completeness. The notation is the same as in Part 1,
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curvature, and from (1) it is given by

2% Curvature

At any point P on a surface there are two directions such that the normal
at a consecutive point in either direction intersects the normal at P, These
directions are the principal directions and they are at right angles to each
other on the surface. Associated with these two principal directions are the
two principal curvatures K + Kb.

The two principal curvatures hﬂland ﬁfb are given as the roots of the
quadratic equation

(|+P"+92)2K9:’ [i¢p*q* [r(wg’)—z,bgs + LG+pYR-(rt-s*)=0 (1)

The sum of the roots
JT= Kg + Kb (2)

is either called the first curvature or the mean curvature and from (1) it is
given by

J = — |r(+92)-2 + tQ+p2) (3)
(|+P+g’)/3 [ ¥ Pys PJ

The product of the roots

K = h_'a Kb (4)

is called the second curvature or the specific curvature or the Gaussian

+€ -
K= = (5)
2 2
(1+p*+q?)
The brincipal direction corresponding to k:‘ is given by either

d Py KaJi+p*+q* - s

o - (+ Py Ji+p*+g* - + | (6)

do _ (1+9) K Ji+p®+ g?

4 Pk /iy - s o

The principal direction corresponding to 'Cﬁbis given by
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de _ _ pg Kb /i+p*+ g2 - s
“ (+pO KL /1+p +q%: = + (8)

dx _ _ ('*Q’)Kb‘/l+p°+qz il
W Pyk/irptgr - s (9)

A line of curvature on a surface is a line such that the normals at
consecutive points intersect. There are two orthogonal lines of curvature
through each point on a surface., The differential equation of the lines of
curvature is

[sC+p?)=7pg]d’s [e(e p?) -1 (14q?)]ddy 4 [Epg - s(eg?)[dy= 0

In any general direction, determined by the ratio dx/dy, the curvature of the
normal section is given by

K = { +dx? + 2$o(xc/y + l‘a/y"
N (11)

Jitpi+g? .(:+p2)dx2 t 2pg dxdy +(1+92)dy>

Ko and ki are the maximum and minimum values taken by (11) as the direction
given by dx/dy varies.

An umbilic is a point on the surface at which the curvature is the same
for any normal section, The curvature does not vary with the direction of the
normal section. At an umbilic the coefficients of (10) all vanish, giving the
three conditions

s+ p*)

*pg (12)
e+ p) = +(1+97) (13)

tpg = s(i+4?) (14)

3. Directions in general

At a point on the surface corresponding to the values (x, y), a direction
will be determined by increments Ax ana Ja) in the parameters x and y.
Some other direction will correspond to different increments §a¢ and dy .
For the first direction the small vector displacement is A_‘l_' y and its qength
is AS . For the second direction the small vector displacement is &7
and its length is d§ A Then since




CF}' = 1?7‘ dx + :;7" OCI
?Jc 1{y

(16)

the angle 6 between these two directions is given by

Btedr = (F )oxbe (%3N 0xdy+ bye)+ (B 29y,

i.e.

AsSscosb= EAxdx + F(Axdy + Aydx) + €Aydy s

and, from (21), (22) and (23) of Part 1, for a Monge form surface this is

As 8scos8 = (14 p?)Axdix + pq(bxdy+ Dydx)+ (i+9?) Ay dy (19)

The angle 9 is also given by

lArxJ-rl As Ss.4um6 = [‘K—I(Axc{y A\ycfx> (20)

i.es from (29) of Part 1

Asds am 8 = [i+p3+ 92 (Axd:\j- A\\/d’i:)
(21)

and then (18) and (21) yield an expression which is devoid of the arclengths,
namely

/i + p*+ g2 (Ar_fy -~ AJJ'::)

( +P’)Ax'd"x + rq,(Ax{y + A]‘f"> +(i+ 9’>A.Yd:f

tan @ =




An important special case is when one of the two directions is along one of
the parametric curves as this case gives the angle between an arbitrary
direction and the parametric curve. If the first direction above is along:
the parametric curve y = const. then Ay = O and (19) reduces to

Asds cos 8= (1+p*) Db+ Pq,Axa’:ij
(23)

But, from (31) of Part 1, we have in this case

As* = (+ P‘)Ax—z (24)
and so

As = /l-sz Ax (25)

Substituting this in (23) and cancelling out Ax gives

Vit p* §s cos B = (H-{:’)Jx + P?{y (26)

as the required expression for the angle between the direction determined oy
(J':c, é'y) and the parametric curve y = const, Similarly, from (21) we get

Ji+p2 dsam@ = Ji+ p*t+ gt ({y

and thus

(27)

G g o /1P 8
(i+ p’-)Jx + P9 Jd

(28)

and, of course, this could have been obtained directly from (22). The angle -
between Jx, y) and the other parametric curve x = const. is found
by putting X= o and a similar sequence of manipulations then leads to



,/H- 9* ds cooy = Pq,d'x + (a-rc;’)d'y

and

/,...cl,' Is amy = = /1 + p*+g? Sx

and

Ji+p?+q? dx
P%Jx_ + (I-fq,’){y (31)

From (19) it follows that the two directions (Ax, A\\D and (Jx,{\j)
will be at Ti‘ght-angteswhen

- x d: ) dx .
6+P’)§52§°+P‘L(5§c*3§)+(”1>=° (32)

If a family of curves on the surface is given by the differential equation
Pdx + Q 0‘:\/ = o (33)

where P and Q are any functions of x and y, then

x __Q
Jy— o - (34)

 and substituting this into (32) yields

(35)

[r3 - QCep]an « [0r99 - p38]ay = o



which is the differential equation of the set of curves which are orthogonal to the
family (33).

Any equation of the form

Pdx? + Qdxdy + Ry’ = o e

determines two directions on the surface, because it is_a quadratic in dx/dy.
If the two roots of (36) are denoted by Ax/Ay and 59:/{7 then

A | = _ _ Q@
Ay J:j = (37)
and
foe i
Av JU (= (38)

Thus from (32) it is seen that (36) determines two orthogonal directions if
(+p )R - pgQ +(1+g?)P =0 (39)

The angle between the two directions determined by (36) may be obtained in terms
of P, Q, and R by using (22), Dividing the top and bottom of (22) vy lxy'qy

gives
Ax da
TR i
o) A2 dx Ax .
(l-fP)Ay J..‘/ -+ Pg(zi-;-r 2:’\-;>+(n+q,>

and (37) and (38) may then be used to reduce this to

Ji+p+ 37 (@'~ 4 PR)
tam 0 = (41)

(+p*)R - P3Q + (1+9*) P

Now the differential equation of the parametric curves themselves is simply

tan 6 = (40)

oo dy =0 (42)
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which is (36) with P=R = 0 and Q = 1. In this case (41) reduces to
Ji+ pt+ g2 :
lem 6 =
P9, (43)

which is identical to (46) of Part 1, where this expression for the angle between
the parametric curves was found by a different route.

4e Conjugate Directions

If P and Q are adjacent points on the surface then in the limit as Q tends
to coincide with P the conjugate directions at P are the direction given by PQ
itself and the line of intersection of the tangent planes at P and Q, If, as
before, (A:C,Ay) and (d’x, Jd) specify two different directions on a Monge
surface
then they will be conjugate directions if

Aac(rx_._s Ax_*_d'x

P ———— —

e e + € = o (44)
TR 8y %y

Consecuently the two directions represented by an equation of the form (36) will
be conjugate directions if

TR-sQ + EP =o0 -

Again, since the parametric curves have the differential equation (42),
corresponding to P=R=0, Q=1 in (36) it follows that the parametiric curves are
conjugate only if s=o0

If a family of curves on the surface is given by (33), then from (34) and
(44) it follows that the differential equation of the conjugate family is

(sP-rQ)Ax + (tP - sQ)A\\] =0

B Asymptotic Directions

(46)

They are simply the directions which are self-conjugate and so in (44) we

put A‘x./Ay equal to 6x/d'\y to obtain the differential equation of the
gsymptotic lines as

e o Eodi®
‘rx+23x3+ y o )

There are thus_two asymptotic directions at each point of the surface and they
are real if s*- rt is positive,

From (42) and (47) it follows that the parametric curves will be asymptotic
lines if r = t = 0o and s g o.




6. Gendesics

Probably the most widely known definition of a geodesic on a surface is that
it is the path of shortest distance between two given points. Mathematically
this is not a particular useful definition. It is better to define a geodesic
as a curve whose osculating plane at each point contains the normal to the
surface. = Equivalently a geodesic on a surface is a curve such that the principal
normal to the curve coincides with the normal to the surface.

Unlike the other directions and lines discussed in the foregoing sections,
the geodesics are not uniquely determined at a point on z=f(x,y). Through any
point there is an infinite number of geodesics, each geodesic being determined by
the direction through the point.

From the preferred definition of a geodesic given above it follows that the
space curvature of a geodesic on a Monge-form surface is given by

K = (-r:c' + 2sx’y’ + by’ ) (19
fl*P‘*Q’

where the dashes indicate differentiation with respect to arc-length. This is

so because, from the definition, the curvature of the geodesic will be the

same as the normal curvature of the surface in that direction and so it is given

by (11) which then reduces to (48) by virtue of (31) of Part 1,

The differential equations governing the geodesics are
2 2 o ,‘ 2 Cal ¢ 2 _
(1+ p?+4*)x"+ prx' + 2psxy’ + pty’' "= 0

(1 breg)y+grxs 2952y’ + gty = 0 (50)

These two equations are really one differential equation as they are also
linked by (31) of Part 1 and they may be combined to give

(NP‘«*@’)%}: Pt(j‘f-::’f* (ZPS"’Q(%)Q*(P*‘Q?S)% -9 ()

Now y=const is one of the parametric curves. In this case (51) will be satisfied
only if qr=0, ie, the parametric curve y=const is a geodesic if qr=0., Similarly,
the parametric curve x=const is a geodesic if pt=0,

Te Geodesic Cuyrvature and the Torsion of a Geodesic

The geodesic curvature of a curve at a particular point is the curvature of
the curve relative to the geodesic which touches it tangentially at that point.
Denoting it by Fgé y for a Monge-form surface it is given by

s S Y 9T 295 ¢
=xl ‘+F+92 y”f —— xla.f Q’ S x:yl % ”-_P?r*_” y/Z)

1+p%9q a-r/a’+<;

— * Lo 5 (52)
-y' ,+P2+91 x”.‘. '*:2+11r’ + ——-f—s—;xy -+ y )

i+p+9 1+ p +<;3




Ts rf?;:? [(Hp‘)s - Pg{}x’ﬂ- [(Hp‘)t- (|+9*)1:]xiy'+ [Pqt - (a+q2)s:]y/'

The curvature of a geodesic relative to itself will naturally be zero and it is
seen that (52) does reduce to zero if (49) and (50) hold.

If e is the angle between the geodesic and the parameter curve y=const. then
the curvature of the geodesic relative to the parametric curve, in the tangent
plane is given by

ole o= ¢3,(cr-+.s)

ds G+p2)J1+p*+4? (53)

Then (52) and (53) can be added to give the curvature of the given curve relative
to the parametric curve y=const,.

The geodesic curvature of a curve of the family defined by (33) is given by

e 4T peB - (+9)P
-.m X ﬂl-fP’)Qz—- QP(Z’ PQ e (,.,.?z)PJ

Ky
(54)

: ' 2 py P - (+P*)Q
Ji+ PP 9% Y[ /(+P)Q - 2P4 PR + (1+47)P7

The torsion of a geodesic, regarded as a space curve, is the arc-rate of turning
of its binormal and is given by

(55)

8. Tensor Formalism

It is almost always possible to avoid the use of tensor formalism in these
matters but since many texts make use of it this Part 2 is completed by listing
certain basic quantities from z=f(x,y) in tensor notation., They are the covariant
and contravariant components of the metric tensor g{,and ththe Christoffel
symbols of the first kinﬁ.[tj,@ﬂand the Christoffel symbols of the second kind

.+ , where, i,j, and k range over the values 1 and 2, The Monge—surface forms
are covariant components of metric tensor

3::3‘*”2 ) 32 = 3:.""} > 922'."*93

(56)
contravariant components of metric tensor
1+ q2 22 t+ p?
Y= —? ) 9= 9%'= "'"‘—faj"—- 5 9 =_"—":P (57)
i+t p +q? bt peqg? Etp r gt

Christoffel symbols of the first kind
El,l_]zpr ,Ef,z’]:rq’ ,[z:z):]:Pt‘ ’Eaz)gjeq’t (58)
[lz,a]-.-[za,:jzps s D:z,n_]:[za,ajg 9 (59)

Christoffel symbhols of the second kind

P pr '- ' bs ! pt
a+p’+7f 2 nrﬂ.-‘-,—;;;;;;- b} F,,ﬁ‘- ¢+Fr+g= (€0)
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A study of the results presented in Parts 1 and 2 sheds quite a lot of light
on the role played by these quantities in the theory of surfaces
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