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Regression on non—orthogonal analytical base functions, orthogonal analytical base
functions, and principal components. A

R DIXON

1. _Introduction

Much of the utility of principal components rests upon the theorem which states
that a set of ordered eigenvectors will be more efficient on average at extracting
variance from a dependent data set than any other set of linear functions of the data.
Met O 11 Technical Note No 93 presents experimental evidence which, even though it
relates to independent data sets, suggests that it may be desirable to study the
conditions of validity and practical range of application for this theorem.
Principal components have attracted wide interest since they were intxoduced into
Meteorology in the fifties, but at a fundamental theoretical level there is a grey
area containing questions which have remained largely undiscussed. This Note raises
one such question, the assumptions as to the nature of the residuals when principal
components are used in regression.

N.Bs This paper hgs not bgen published. Permission to quote from it must be obiained
from the Assistant Director: of the above Meteorological Office Branch.




2 Estimation using non-orthogonal analvtical base functions

Let there be a data vector h h (h,, h-;, sl hm) and a set of

analytical base functions F. ’F,,..--.., F . These analytical base functions
can then each be evaluated over m discrete po:.nts of a physical domain to form the
m x 1 base vectors F. L PR Badoidll R It may then be supposed that the "true"

relationship between the data a.nd the base vectors is given by

—
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h=F.a + 2 (1)

where T is the matrix of column vectors
mn
] 1 ’

a is the coefficient vector

r is the vector of residuals which arises because we are considering the C28€ where
m > n and so the functions cannot fit the data exactly.

The belief that (1) is the true structural model for the data may be based on
physical reasoning, on some previous experimental evidence, or it may simply be
postulated faute de mieux, Whatever the reason the problem arises of estimating a,
for a itself is generally unimown. A well=known and much used estimate is the
ordlnarj least squeres estimate (OLS) 2 2 given .by

(3)

If the residuals in (1) are such that, in the population

e (4)

and
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E(I.t):o- Em (5)
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where I is the unit diagonal matrix, E is the expectation operator, and @ is a
scalar, then

E(a)=2a (6)

and

E(@"%)(@‘s)‘“ s a Mmnimum (7)




(6) states that g is unbiassed, whilst (7) states that the sampling variance -
co-variance of the difference between the estimate a and the true unknown a is a
minimum amongst all such linear unbiassed estimators., Clearly (6) and (7) are very
desirable properties for an estimate of a for they minimize the risk that one has a
bad estimate.

If the residuals in (1) .are such that (4) holds but in place of (5) we have

E(+%)= e*02 (8)
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where ﬂ is a more general matrix than I then the OLS estimau‘l:ef_z'a.~ given by (3) does
not have the property (7). The soIution vector which does have the desirable minimum
sampling variance property (7) I will denote by 2 and it is given Dby

a = (F-aT )L Fo b o)
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Under the condition (8) it is the solution vector & which has the property

; E(:Q;" _a_-)(§ - g_,)~ (s a mmimum (10)

E3
a is the fact the least-squares solution to a transformed version of the "true"
relationship (1). The transformation is

O3 s 0% Fea 0 35 (11)

Thus if it is known, assumed, inferred or believed that ()8) holds then the least-
squares fitting procedure must be applied to solve (11 ) not (1) if the minimum
variance solution is to be otaineds This transformation of (1) by taking the
scalar product of the square-root_of 2! through (1) is known as prewhitening,
and the whole process of finding a is referred to as generalized least-squares(GLS)
and g is known as the GLS estimate of 2

. It should be noticed that getting the best solution vector is dependent upon making
a correct assumption as to the nature of the residuals. Furthermore, it is the
residuals in (1), the "true" model equation, about which assumptions have to be made,
not the ggsiduigs which are obtained as a result of the fitting, i.e. as the result
of using a or Ze With laboratory data it may be that a scientist can b: reasonably
sure of his assumptions because the data have been produced by a well understood and
controlled process, but with meteorological data often produced by processes which
are only imperfectly understood and over which we have no control the difficulty is
a very real one, The residuals from the fitted process have to be used somehow to
infer the validity or otherwise of the assumptions on the true residuals, That is to

say for example that if it is assumed that (1), (4), and (5) hold then the residuals ®
in =
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h = F.
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have to be used to test the validity of the assumptions (4) and (5) about the unknown
residuals r in (1)s It is something of a chicken and egg problem and it has a
voluminous literature.

The OLS solution to (1) may be specified by the following two equations

.’Z’. = F’é + 2 (13)
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O = [P (14)
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This follows since, by virture of (14), taking F. through (13) leads in effect
straight to the OLS solution (3). Equation (14) requires the residual vector ?

to be orthogonal to the columns of F., The fact that (13) and (14) together specify
the OLS solution to (1) is of central importance to the theme of this Note, as will
emerge in Section 4.

e Estimation using orthogonal analytical base functions

The model (1) is now replaced by
h=0-b + 1 (15)
’ mi mn ni ™i

where gI? is the matrix of orthonormal coclumn vectors
mn

$=(gi@:idsi----12.) (16)

the ﬁﬁ.vectors being orthonormal in the simple sense that

@ P = I (17)
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The OLS estimate for 3 is then

@'é (18)
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which is computationally convenient in the sense that each coefficient in b is obtained
by a simple scalar product

b
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The use of orthogonal base vectors has done nothing to change the considerations
as to the nature of the residuals, The arguments of the previous Section still apply
and D will be the unbiassed minimum variance estimate of b if and only if 842
and (5) Hold. Indeed in most applications (1) and (15) will be the same mode because
the (P — matrix will be obtained from the F matrix by some factorization process such .

as the Gram-Schmidt or Householder algorithms so that

F=®-C
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and b and a, and b and a will be related by the simple linear transformation
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However the use of orthogonal base vectors does give rise to a useful artifice.
We can generate a full set of m @ - vectors to form the m x m matrix

@ = (2:.’92:‘ Qs!""i?ﬁ"") (22)

with the ¢ — vectors orthonormal in the simple sense that

§°§ = T (23)
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The data vector h can now be completely represented in terms of these ¢,4 as

h =bg, -+ b:?:*""*bm¢m (24)
mi mi "y mi
There is no residual vector as the data is fitted exactly. We can now suppose that
the terms in (24) have been ordered according to some principle and we can then
decide to discard all but n of these terms and represent the data as

: h=b¢, +b,gs+----+b,g&, (25)
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This is quite 'legitimate mathematically ac the orthogonality of the ¢A makes their
individual contributions independent of each other. Furthermore the ?rderin;; and
| selection principle which has decided the terms to be retained in (25) may have some
\ apparently quite sound physical reasoning behind it and we may feel justified in
| arguing that the discarded (m - n) terms can contribute little but noise. Nevertheless,
| this artifice needs to be examined more closely.

Although the representation of h in terms of n vectors is often written as in (25)
above, yet (25) is not strictly correct. Since n € m the terms can no longer fit
the data exactly and a vector of residuals must be introduced. Thus strictly speaking
(25) has to be written as
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= r itself in

where the use of the different diacritic ¥ over the r merely indicates an absence
of any gommitment, at this stage, as to the nature of the r in (26)., But the nature
of the r in (26) can in fact be elicited, for if the representation (24) fits the
data exactly whilst the regresentation (26) fits it leaving a residual ¥ it follows
that this residual vector I is itself represented by the discarded Q terms and

that
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Now, since all the @ -vectors in (24) are orthogonal to each other, all the
=vectors in 5273 are orthogonal to all the @ -vectors in (26). This. means that

26) is orthogonal to all the Q ~vectors in (26). Thus if we express
This fact, and (26) itself, in matrix-vector form we have
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o = - r (29)
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But these two equations have a familiar look and referring back it is seen that they
are the analogues, for the orthogonal case, of equations (13) and (14). Equations
(28) and (29) are in fact the . two conditions which specify the OLS solution to (15),
This follows because taking @. through (28) leads by virture of (29) and (17)
straight to (18). Thus we may drop the non-committal diacritic ¥ =and rewrite (28)
and (29) with the appropriate diacritic as

"~ A
?r‘g:b b ; (30)
oc=0-1 (31)
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: This Section brings out the fact that the artifice of selecting from a complete
set of orthogonal base vectors, or ordering and truncating the sety, and forming the
coefficients of a data set representation by taking scalar products (19) is fully
equivalent to the OLS process and implies the same assumptions on the residuals,
This last point is erucial, for it is not obvious and may easily be overlooied.

4. Zstimation using Principal Components

In this case instead of using base vectors derived by evaluating a set of analytical
functions over the discrete points of the domain we derive the base vectors directly fron

2 set of data vectors. Taking N data vectors h,, bh,,h,,~---- L and viewing
these N vectors as m x 1 column vectors we asselble them to form the dependent data
matrix
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H = (b.."b,:'b;;:' """ .:b-N) (22)




Now by taking the scalar product eH we can form the symmetric matrix C, where

NC = ,,','LE,. (33)

The effect of forming the scalar product has been to eliminate the N-space., Also if
the components of the individual h vectors have been measured from the individual
means of each vector then C is the covariace matrix of the data. C can now be
factored into

N\- U (34)
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where

A = Siag (A, Xa, D5, - Oon) (35)

is a diagonal matrix of eigenvalues ofﬁH.H and

U = (gi:gz:ys:'-'-:g‘" (36)
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is a moda.l matrix, the columns of which are the eigenvectors corresponding to

p — RN S . ithout loss of generality we can assume tha
As § Without 1 £ 1 that
)\ >>\z >A3 >---- >)\,m The modal matrix U has the property
Lo d
v-uv = 1 (37)
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Since the u; are m~vectors they can be used as base-vectors for the respresentatior
of any other m-vector, In particular they may be used as base vectors for the
‘representation of the individual vectors of the dependent data set, so that we have

3

hi » b,; v, + byu, + b:i. Ugt-=~-+ bt 68 13,00, N _i38)
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where the bij are sets of coefficients (not, of course, the same as the be in Sectio:

3).

The m equations (38) may be rewritten in matrix~vector notation as

H UB (3

mm mN




From (39) and (37) it follows that

o~
U-H =8B (40)
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and that therefore

B = H-U (41)
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and consequently

BB = Lo (42)
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But from (33) this is

mm

B-B = U-NC-U (43)
mN Nwm mm mm
and now, using (34) and (37) again, this comes to

B-B = NA (44)

m N N

/\ is the diagonal matrix of eigenvalues and so it transpires that the row vectors
of B are orthogonal.

These are the basic equations and relationships of principal component analysis
and using them one can prove the main well-known theorem to the effect that such a
set of ordered eigenvectors will be more efficient on average at extracting variance
from the dependent data set than any other set of linear funtions of the data. Note
the words "on average" in this statement of the theorem. It does not follow that the
theorem is true for any particular individual data vector taken from the set.

In the light of this theorem it is natural to attempt to obtain an economical
representation of the data vectors of the set by truncating (38) on some criterion.
Thus dropping the subscript and taking h as a typical data vector we will have

v
b= Blg-l o baga+ ---+b.,,g,, e (45)
i G oy ™ m™i
or in matrix-vector form
b 4
b = Uob + T (46)




the coefficients being found by taking the scalar producfs

b. = g-o h (47)
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Notice that since the n terms cannot fit the data exagtly it has been necessary

in (45) to introduce the unspecified residual vector r. In the gene?al li?erature
of principal components, including the meteorological literature, this residual
vector goes virtually unacknowledged in the theoretical discussion. Here the main
theoretical point to be made is that once placed plainly in evigence as in (45)

or (46) it does not long remain unspecified. It is clear that r, being composed of
all the discarded u terms, is orthogonal to each of the column vectors of,yﬂand we
are in fact dealing with precisely the same situation as in the case of

equation (26) in Section 3 on orthogonal analytical base functions. The argument
following (26) applies equally in the case of (45) and leads in exactly the same way

to
~

’1 = LJ' !2 + 5?
o e ,,. ~ (48)
o = U-f (49)

In other words the truncation of the complete set of eigevectors and the formation of
the coefficients as scalar products (47) leads to the OLS solution. We have in fact
found the OLS solution to a model

h= U-b + =2 (50)
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which has not been explicity postulated.. The general argument and

terminology of the principal component approach somewhat obscures the, fact that a
model has been postulated, but such is the case and the OLS solution b found by the
above procedure will be the desirable "best" (i.e. minimum variance) solution only
if (5) applies, just as in the cases of the analytical base functions dealt with in
Sections 2 and 3., In other words a principal component enthusiast has as much of an
obligation to state and test his assumptions concerning the residuals as does an
enthusiast for polynomials, fourier terms, exponentials, etc.

The principal components concept appears to have come over to meteorology from
psyvcholeogy and biology and in these sciences the basic theory, equations (32) to
(44), has been presented has been presented with a subtle difference of emphasis.,
In the presentation as given in Section 4 the condition (44), revealing the
orthogonality of the rows of the coefficient matrix B, emerges as an almost incidental
consequence of the use of eigenvectors. In the presentation favoured by psychologists,
biologists, and some meteorologists the condition (44) is made a central requirement.
Indeed, it is sometimes referred to as the "principal component property". It is then
shown that the eigenvectors of the sample covariance matrix are the only tase vectors
which permit this., Mathematically there is nothing to choose between the two
approaches., The argument and terminology accompanying either of them tends to obscure

the point made in this Note.
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