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Abstract.

In this paper, the role of horizo:tal deformation and the associated
frontogenetic ageostrophic circulation in suppressing the development of
non-linear waves is assessed. Unless linear barotropic frontal waves can
become non-linear, the associated horizontal transports of momentum will
not be sufficient to halt frontogenesis or to create non-linear mixing
processes such as vortex roll-up. The analysis of Dritschel et al. (1991)
suggests that such non-linear phenomena will not occur if the waveslope
remaine small. Using the linear model described in Part 1, a simple
relationship between optimal waveslope amplification over a specified time
period and the amplification of an initially isolated edge wave is found.
Using this relationship, we investigate how strain affects the dependence
of optimal waveslope amplification on wavelength and the time of entry of
disturbances to the front. It is found that waves entering the frontal zone
when it is intense can experience more steepening than those appearing
earlier in the development of the front. The most rapidly growing waves
enter the front with a wavelength about three times the width of the front.
As the front collapses the ratio of wavelength to frontal width rapidly
increases.

For strain rates greater than 0.6x10_55_l. the model predicts that
wave slope amplification greater than a factor of e is impossible. More
generally, the analysis shows that no amplification is possible for strain
rates greater than a quarter of the Coriolis parameter. Thus, our prototype
model describes how fronts can achieve structures which would, in the
absence of frontogenesis, be highly unstable to along front disturbances.

The variation of optimal growth with wavenumber and the time of entry

of disturbances to the front is explained using diagnostics based on a



mathematical model of Bretherton’s qualitative description of wave growth
in terms of the interaction of counterpropagating edge waves. Notably,
these diagnostics yield a prediction for the frontogenesis rate required to
completely eliminate wave steepening. The technique is relevant to the

problem of predicting the minimum attainable cross-frontal scale of a front

from the large scale forcing,




1. Introduction

As discussed in Part 1 of this paper, (Bishop and Thorpe, 1993),
horizontal deformation acts to reduce the growth of frontal waves. In this
paper, we assess the tendency of such waves to achieve non-linear
amplitudes. It is important to assess the likelihood of vortex roll-up not
only in the description of the dynamics of the wave but also to investigate
whether such processes may prevent frontal collapse to a discontinuity. The
dependence of these processes on the deformation rate will be found. For
moist fronts, the possibility exists that deformation acts both to increase
the potential instability of the front by intensifying the potential
vorticity extremum and to suppress waves whilst this intensification
occurs. If at a later stage in the frontal development the deformation
ceases then the highly unstable structure would be expected to break out in
waves. This sequence of events suggests that deformation is crucial in
allowing frontal instability to occur but only after deformation has
ceased.

The work of Dritschel (1988, Appendix B) and Dritschel et al. (1991)
suggests that wave disturbances on vortex strips are unlikely to lead to
non-linear processes such as vortex roll up while the wave slope of such
disturbances remains small. The major aim of this paper is to determine the
frontogenesis rates required to eliminate the possibility of significant
frontal wave steepening before a2 front collapses to a singularity.

The results help in the understanding of whether there is a process,
other than viscosity, which limits the horizontal scale of fronts. Using
models that implicitly excluded the effects of along front waves and
surface friction on frontal collapse, the high resolution numerical studies

of Gall (1987) and Garner (1989) were unable to identify any such process.



Along front waves capable of producing down gradient fluxes of heat and
momentum might be capabie of halting the frontal collapse process. The
frontal wave model of Part | explicitly represents the linear phase of down
gradient horizontal momentum transport produced by barotropic eddies. If
these eddles are capable of significantly deforming the {ront, then
non-linear processes such as energy transfers to different wavenumbers or
vortex roll-up may prevent the front from collapsing and thus iimit the
average cross-frontal scale of the front. If, however, the waves remain
linear then by definition, they will have a negligible effect on the
dynamics of the front and hence its eventual collapse.

Observations such as those of Shapiro et al (1985) demonstrate that
frontal widths of the order of a kilometer are possible. Thus, to
successfully mode] the effects of along front waves in such a situation one
would have to extend the aforementioned numerical models into a third
dimension - a difficuit and computationally expensive task. In this
respect, the analytic model used in this paper is an ideal prototype model
for investigating frontal wave behaviour near the point of f{rontal
collapse.

Dritschel et al (1991}, (hereafter DHIJS), studied the stability of a
barotropic vortex in a linear deformation flow. Whilst this situation is
probably relevant to - stratospheric flows, tropospheric vortex strips are
almost universally caused by the ageostrophic response of the atmosphere to
the thermal frontogenesis caused by deformation fields. This ageostrophic
circulation causes the vorticity of the strip to increase (usually quite
rapidly} in time. In DHJS’s model the vorticity of the strip remains
constant in time. For relatively small and large values of vorticity their

vortex strip is stable and unstable, respectively. But as we shall see, it



is misleading to assume that the stability of a vortex strip whose
vorticity is changing in time will be a simple average of these two
extremes of Dritschel’s model. This is because one must take into account
the relationship between the width of the strip and its vorticity as
governed by Kelvin's circulation theorem. The model to be considered in
this work implicitly includes such considerations.

The plan of the paper is as follows. A brief review of the model
developed in Part | is given in § 2: readers familiar with Part 1 need not
read this section. In § 3, we formally define a measure of the non-linear
aspect of frontal waves, identify its relationship with wave slope and
derive a simple expression for its maximal amplification over a specified
time period. The parameter space of maximal amplification is described in §
.4, The variation of maximal amplification with wavenumber and on the time
of entry of the disturbance onto the strip are described in § 5. This
section also contains a diagnostic analysis of these results in terms of a
mathematical model of counter propagating edge (Rossby) waves. The edge
wave analysis leads to an expression for the maximum instantaneous growth
rate of the non-linear aspect of waves and it is used (also in § 5) to
predict the strain rate at which increases in wave slope become impossible.
In § 6, we discuss the size of the horizontal scales "selected" by the
models intensifying PV strip. Section 7 concludes the paper with a
discussion of the effects of surface friction on the instability and a
calculation of maximal streamfunction growth.

2, Review of analytic model.

The analytic model developed in Part | provides a description of

frontal wave development on an evolving frontal PV strip, The evolution of

this frontal vortex strip is that which would arise {from a saturated front



with nearly parallel M and 6a surfaces, a barotropic low level layer and an
along front wind in close geostrophic balance. In order to apply analytic
techniques, it was necessary to assume thermal structures yielding discrete
regions of uniform low-level vorticity, separated by transition regions. As
the analysis in Part | suggested that model cold fronts had very similar
stability characteristics to model warm fronts, in this paper we shall only
concern ourselves with the occluded front. Furthermore, since the analytic
model assumes that interaction between barotropic waves at low levels and
those at upper levels are insignificant, we shall only be concerned with
regions 2 - 6 of the low-level barotropic layer. Regions 2 and 6 are broad
regions of wuniform but weak anticyclonic vorticity which surround the
uniform strong vorticity of region 4. Regions 3 and 5 are the very narrow
transition regions between regions 2 and 4, and 4 and 6, respectively. The
front is assumed to lie 'along the y-axis. h
We partition the horizontal wind by writing
(u, v, w) =(-ax + Ea +u, ay + Fg + v, w+ w) (2.1)
The (-ax, ay, 0) part gives the horizontai deformation wind field. In this
paper, we take a to be a constant. The along front geostrophic wind is
denoted by ;‘. We use ;;a and ;;s to denote the geostrophic wind in the
transition regions 3 and S5, respectively. The (E., ;z' w) part defines the
momentum  associated with the developing front. The cross-frontal
ageostrophic circulation is described by E'a and w and we define an
ageostrophic streamfunction ¥ such that (E‘, w) = (8y/dz, -8¢/dx). As is
evident from eq. (B.1) of Part }, in the barotropic layer
u = -243‘/1“. (2.2)
The symbols u’, v/ and w’ define the flow associated with frontal waves. We

assume that the irrotational part of this flow plays only a passive role in



the dynamics and more usually deal only with the non-divergent part of this
flow which we denote by (u'r, v'r. 0). We express this part of the flow in
terms of the perturbation streamfunction ¥’ by setting (u'r, v'r) =

(-a¥' /78y, 8V’ /8x).

Generally, we use the geostrophic coordinates (X, Y, Z, T)
(x + 7‘/f. ¥, 2z, t) and the deforming geostrophic coordinates (X’,Y’',Z2’,T’)
= (Xexp(aT), Yexp{-aT}, Z, T) to describe the system. In terms of the
deforming geostrophic coordinates the width of the frontal vortex in region
4 is the constant L, while the width of the transition regions 4 and 6 is
the constant 3L. The corresponding (time varying) widths in Cartesian
space are Lc and aLc. respectively,

The absolute vorticity in regions 2, 4 and & is denoted Ej where } =
2, 4 or 6 according to the referenced region and may be written,

EJ = f[l - Ejexp(ZaT' )].-l. (2.3)
where f is the Coriolis parameter (here assumed constant} and E.I denotes
the constants which relate temperature gradients in deforming geostrophic
coordinates to the vorticity of the low-level flow. For the occluded front,
Ez = Es = -0.092 while IE'4 = 0.5, Thus, at T* = 0 the relative vorticity of
the front is assumed to be equal to f; subsequently, it monotonically
increases with time until becoming infinite at 7° = tc. According to (2.3),
at = 0.347 or equivalently, t = 9.63 hr/la x 10° s"). Sometimes it is
heuristically useful to describe development in terms of the
non-dimensional time Tn, where Tn = T'/tc.

Of particular importance to the stability of the front are the
vorticity jumps between regions 2 and 4 and regions 4 and 6. To represent
these jumps, we define BEn such that, (for the occtuded front}), .,

8 =8, -8, =% -C. (2.4)

4 2 4 6



Frontal waves are defined entirely in terms of ¥'. Let \ll'z, ll'" and
\I"G denote ¥’ In regions 2, 4 and 6, respectively. In regions 2 and 6, we

take

L
W'z(x. y, t) = G(-Lc/z. t)exp[l [-—% + x]]exp[tl [y - p'(t)e'a’t]] (2.5a)
‘P’ﬁ(x. y, t) = G(LG/Z. t)exp[l [—; - ]]exp[tl [y - p‘(t)e-at]] (2.5b)

where the wavenumber, 1, is real and p’{t) is a complex function playing
the role of an integrated complex phase speed in deforming coordinates. The
G(x, t) function, referred to in (2.5a) and (2.5b) defines the horizontal
structuire of ¥’ in region 4, to be precise,

Glx, t) = C exp[—ch/Z] [f.R(tlsinh[lx] + cosh[lx]] (2.5¢)

and

\P"(x. ¥y, t) = Glx, t) exp[u [y - p'(t)e"at]]. (2.5d)

In (2.5¢), € is a complex constant defining the initial phase and amplitude
of the wave, R(t) is a complex function defining the evolution of the
horizontal structure of the wave and p’ gives the complex phase speed of
the wave at x = 0. Note that x and t are taken to be non-separable and
consequently, in the terminology of Farrell (1984), non-modal solution
types are possible.

Note that these forms of ¥’ imply that the perturbation vortlcity &’
(= v2¥’) is zero in regions 2, 4 and 6. In the transition regions 3 and 5
the vorticity is non-zero. Because the along front scale of the vorticity
perturbations is many orders of magnitude larger than the cross-frontal
scale {’' = v'x in these regions.

The integral of perturbation vorticity across the transition regions
multiplied by exp(aT’), 6]. is of particular dynamical importance. As shown

in Part 1, the inviscid vorticity equation requires that



J . X ¥d - =
T : u’ e acn(4 =0 (2.6a)
D a = 4
T~ art Y. oy (2.60)

where in equation form,

0 = ‘_é..‘_é- ol * ~= :£-_ _,_l: «T’
Qa = [vr( 2) vr( > EL)]e and 05 [vl_(z + SL) vr(2)]e . (2.7
The relationship between the 5} and ¥ defined in (2.7) implies a very

simple relatlonship between Q. and the parameters R and p’; viz.,
A = Yy _ ¢+ _ ] ’
Q:l = CIJI'.R(T ) l]cxp{tlo[Y p'(T )]}. (2.8a)
65 = Clol-IR(T’) - llexp{ilo[ ‘- p' (T )]} (2.8b)
where Io = lexp{aT’). The significance of the R parameter can now be seen.
It determines the amplitude ratio of the edge wave in region 3 to that in
region S and also the phase shift southward, Ay, of the edge wave in region
5 relative to that in region 3, {(cf Part 1, § 3).
Using (2.8) and {2.5) in (2.6) yields equations for R and p’; viz,

; I v _ )
'uu[[g-—;,] - F’] =R an[ 0_" -e l‘sinh(.u.)] -1 SE'e ¥ cosh(u) (2.9a)

3¢

dR L v _ Lyv _ -
I = %€ RE|2 2 - e Hsinh(u) |+] == - e Pcoshlu)|[+iR 6T ™"  (2.9b)
n oy b= 3
8& ¢

where ln is a constant such that the along front wavenumber ! = loexp[—aT')
and for the occluded front, v = 8 = O while v = (v _ - v )exp(-aT’)/2.
s s n g5 g3
Another important parameter in these equations is the non-dimensional
wavenumber 2u. It is simply the product of the wavenumber and the width of
the strip ILc. In terms of the strip width in deforming geostrophic
coordinates, L, 2u = 10e~2¢xT (f/f4).'. = 1"L. Furthermore, when a‘q’n 5 E‘ - f,
it can be shown that | v /8 = p.
On n
Eq. (2.9) together with (2.5) define the development of frontal waves

on the evolving. vortex strip. Throughout this paper, solutions to (2.9)
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were obtained using a fourth order Runge-Kutta integration scheme. Finally,
readers may find the symbol table provided in Part 1, which concisely
defines all the symbols introduced here, a useful reference in reading the
rest of this paper.

3. Wave slope and its maximal amplification.

The work of DHIS suggests that wave disturbances on vortex strips are
unlikely to induce non-linear processes such as vortex roll-up while the
wave slope remains small. In this Section, we deduce the maximum possible
amplification, 4m. over a specified time, Tr of an approximation to the
root mean square wave slope.

In Appendix A, we show that the order of magnitude of the displacement
of the edges of the strip, £’ r is related to aj by the equation
E,Jl = o T’

o e Re[aj(T‘ l]/aEn
where O indicates order of magnitude. Differentiating this equation with

respect to y, one finds that
ag’
_.!. =0

ay
Noting from (2.7} that 6] is the integral of the perturbation vorticity

0 te'“r'ﬂe[éj(r' )]/aEnI. (3.1}

across the transition region j multiplied by exp(aT’), one can see from
(3.1) that the edge slope has the same order of magnitude as the integral
of perturbation vorticity across the transition regions divided by the jump
in basic state vorticity across these regions multiplied by the along front
wavenumber. Thus, the implication of (3.1) is that in order for a wave to
become non-linear the vorticity associated with the wave perturbation must
(at least) amplify faster than the vorticity of the front itsell. Since the
increase of frontal vorticity approaches infinity as the front collapses to
a discontinuity, the growth rate of a wave must match this extreme

frontogenesis rate if it is to become non-linear. This indication of how

11



frontogenesis might damp non-linear mixing contrasts with the impression
one might gain from Fig. 5 of Part 1 which illustrates how normal mode
growth rates of the frontal are increased by f{rontogenesis. This apparent
competition between  stabilising and destabilising effects strongly
motivated us to perform precise calculations to determine the conditions
under which one or the other effects would dominate.

The mean square of the right hand side of (3.1} is

2n/l .
-aT
2, l le 1 ~ .11 ~ .. 117
=Ty = T = i{[ﬂe[oa(r ]]] + [ﬂe[Qs(T }]] } dy ;
4
o n
hence, —2aT’
— loe I~ 2 ~ 212
2(T’) = —:—-—[g[loal LA ]] . (3.2)
n

Eq. (3.2) invites another interpretation of how frontogenesis reduces wave
slope; viz., the exp(-2aT’') term may be attributed to the wave flattening
due to the cross front compression and along front lengthening due to the
pure deformation (-ax, ay) in the basic state wind while the I/GEn term is
attributable to the cross-frontal compression caused by the convergence of
the cross-frontal ageostrophic wind of the basic state.

We may now use (3.2) to express the amplification, #, of wave slope

over a specified time TI_ as
8 {0)
4 = exp(-20T ) F [— (3.3)
Scn(Tr)

where !
) [e (T )"+ o (T 1]z

~ 2, 4= 2] °
[Q,(0)}"+ jo (0]
Since F is the only parameter that depends on wave growth, for a given
Tr, A is maximized whenever F is maximized. Since the governing eq. (2.6)

is linear in ¥ and any finite disturbance having zero vorticity outside

a
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the transition regions, may be represented as a sum of two linearly
independent solutions for ¥’. It is easy to deduce the coefficients of two
such [unctions in order to maximize F. As is evident from (2.5), a
particular solution for ¥ Iis characterized by its initial R value and as
is evident from the RT diagrams presented in Part 1 (Fig. 6), any two
solutions having different initial R values, denoted RI(T’) and RZ(T').
will be linearly independent.

With 8% = 0, (2.9b) predicts that if R(0) = R (0) (where the e
superscript denotes the complex conjugate) gives

R = R(T) (3.42)

for all time. Using this result in (2.9a), one may also show that with

pl(o) = pz(o) = 0, .
[—uopl(T‘)] = [-uopz(‘r']] , (3.4b)
for all time. We let these symmetry properties guide our choice of basis
functions and let our first and second basis functions have initial R
values RI(OI = -i and Rz(O) = {, respectively. An idea of the temporal
behaviour of these modes may be gained from the RT phase diagrams presented
in Part L

Denoting the 6, values associated with Rl. 6:“ and 551, and those

associated with Rz’ by 632 and 552, we may define any edge wave

configuration in terms of a sum of these basis functions; viz.,
clg:n + czg:!z' (3.5a)
lem +c (3.5b)

Ot
]

3

(=1
H

5 2°52'

Qﬁ [(4 - j)[Rl - l]exp{un[Y' - p’l(T')]},
sz [(4 - j)iR2 - l]exp{ilo[‘k" - p‘z('r')]},

and where c, and c, are the coefficients of the basis functions associated

where

13



with Rl and Rz, respectively.

Note that with RI(OI = =i and Rz(Ol = {, the initial structures of the
corresponding 'l"l and 'Il‘z waves have =zero ﬁj at the west and east
boundaries, respectively; i.e.

031{0) = 052(0) = 0. (3.6a)
Also note that the symmetries, (3.4), imply that at any T',

3,=0, and that §_, = 3. (3.6b)

Using (3.5) in (3.3), gives F as a function of ¢ and c,: For convenience,
we normalise [153(0]|2+|55(0)lz] to unity by taking

iv

c, = % sin(8) and c, = % e  cos(B),

{the (1/2) is due to the fact that |651(0)| = Iasz(o)l = 2). The values of
B and v which maximize F for a given initial H, and integration time Tr may
then be determined by inspecting the derivatives of F with respect to § and
v; (cf. Bishop 1993b, for more details of the method).

The relationship between the maximal amplification of F, F'm. and the
chosen basis functions is remarkably simple and is isomorphic to the
expression for the optimal growth of strained baroclinic waves given in
Bishop (1993b), viz,

F = %[lésl(rru + |531(Tr)]] (3.72)
or equivalentty, (using (3.6b)),

F_= %[|532(Tr)| + |552(rr)|]. (3.7a)
Having normalised [|63(0)|2+|65(O)|2] to unity, taking note of {3.6a} and
comparing the forms of (3.3) and (3.7), it is evident that a theorem
similar to the Triangle Inequality Theorem for vectors applies to edge wave
amplification; viz,

The amplification of the sum of the squares of the edge wave amplitudes

is less than or equal to the amplification of the square of the sum of

14



the edge wave amplitudes of a wave that lnitially had zero edge wave

amplitude at one or the other boundaries.

The maximisation procedure reveals that the initial R value, Rm(D). of

the maximally amplifying wave is
sin(A)

Rlu(O) = 1_“'66;(;\_.)-' (38)
where
A= arg' [5 51(T.-)631(Tr)e"p [-Zuop;l]]. (3.9)

and p;l is the real part of p;. Note that since A is real, Rm(O) is real.
From eq. (2.8), it may be deduced that if R is real then 53 and 55 have the
same magnitudes. Furthermore, for waves on the occluded front, (2.9) can be
used to show that if R is initially real it remains real for all time.
Thus, {3.8) and (3.9) imply that the amplitudes of 53 and 55 are equal for
maximally growing waves.

Furthermore, (2.8) can be used to show that the initial phase shift
southward of the eastern vorticity wave relative to the western wave,

Axm(g). may be written
bx_(0) = 2tan” [leo)].

As we shall discuss later, the Ay value of optimally growing short
wavelength initially decreases and sometimes passes through -180° before
the end of the time, Tr. When this happens, it is meaningful to say that
the western wave has overtaken the eastern wave. To iInclude this
information in our expression for the optimal initial phase shift, we let n
equal the number of times the Ay value of an optimally growing wave is
observed to pass through -180o over the time 'I'r and then set
ax_(0) = 2tan"[Rm(0}] + nx180. {3.8)

In the following section, we use the aforementioned equations to

1S



investigate the nature of maximally growing waves and hence the stability

of an evolving f{ront.

4. The parameter space of maximal amplification.

A fundamental assumption of stability theory is the existence of an
"initial disturbance”. Conceivably, such disturbances could enter the
frontal vortex strip at any time during the development of the front. In
recognition of this we take Am to be a function not only of the strain
rate, o, but also of the time of entry, T‘, the non-dimensional wavenumber
2u°{T°) at the time of entry and the residence time, Tr, of the waves on
the front. Note that Ta = 0 denotes an entry time when the relative
vorticity in region 4 is equal to the planetary vorticity.

In order to gauge the amount by which a wide range of disturbances can
grow on the front, we shall define and calculate a number of different
extrema of the Tunction Jm. Firstly, we set T' = 0 and use Jlla, o, 2;10(0)]
to denote the surface of maximum values of Jm[u. Te. Zpo(Tc). Tr] over the
range of residence times Tr between O and twk. where tWk is the time at
which the assumption of laminar, inviscid flow is deemed to be untenable
due to the extremely strong frontal gradients.

Unfortunately, available theoretical bases for deducing what this twk
might be are stil! in their infancy. Also, Appendix A of Part 1 suggests
that thermal! wind balance will breakdown when both the vorticity and the
strain rate are high. At such times, the model’s rate of f{rontal
intensification is fikely to be unrealistic. Nevertheless, since we wish to
illustrate how much an idealisation of {rontogenesis can stahilize wave
growth and since normal meode theories give growth rates proportional to

vorticity, we overestimate the vorticity value at which our model becomes
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inaccurate and take tw to be the time at which 8'5‘/8x reaches 64f.
Assuming that the initial relative vorticity Is equal to f at ‘l'e = 0, tWlt =
9.41 hrs/(axi0®s). The Tr and Axo values which produce the Jl surface will
be denoted Tl_l and Axm. respectively.

Having found how, with T°=0. strain affects disturbance growth at
different wavenumbers, we shall investigate how changes in the entry time
of disturbances affect growth by calculating the maximum values of Am with
respect to both Tr and guotre). for a range of T' and «'. This maximum will
be denoted by Az(a. TO) and the values of Tr. Ax(Te) and 2;10(1") associated
with it will be denoted Trz' Axoz and 2"02’ respectively. Finally, we shall
focus our attention on the maximum of Jz over Te. Jafa) and denote the
parameters defining it by Trs' Azoa' 21103 and TeJ.

In summary:

. Jm[u. Te, ZuofTu). Trl is the maximum possible amplification, in the
time Tr. of a wave which on entering the frontal zone at 'I'e has the non-
dimensional wavenumber 21.:0('1") and Is subject to strain of strength a.

. Jlla. 0, Zuo(O)l is the maximum of dlm with respect to the residence
time for Te = 0. (cf, Fig. 3)

. Jz(a. TO) [s the maximum of Am with respect to the residence time and
the non-dimensicnal wavenumber at the time of entry. {cf. Fig. 5}

4 43(0:) is the maximum of "z with respect to the time of entry; (cf

Fig. 6).

'While the expressions of § 3 apply directly to the 'J"e = 0 entry time, the
argument is equivalent for any entry time and the appropriate maximal
amplification equations for Te # 0 are obtained from those in § 3 by simply

replacing T=0 by T=T
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5. Description and interpretation of the effect of strain on growth.
Fig. la, in depicting dll{a.. 0, 2‘“0(0”' shows how strain affects the

lu ol 2“0(0)) curve

maximal growth of T = O disturbances. The Jl(l.OxIO-ss-
lies coincident with the In(d4) =0 line as, remarkably, this strain rate is
encugh to complelely suppress wave steepening. The other curves show how
weaker strain rates allow more growth. For a = 0.8x10"%s™ and 0.6x107%s™
maximum growth occurs at infinite wavelength. The a = 0.4xt0°s™! curve has
two peaks one at infinite wavelength the other at 2;10(0) = 1,92 t 0.025.
The types of growth occurring at these two peaks may be distinguished by
diagnosing the type of edge wave im:era\ci:ionz causing the growth.
A simple way of doing this is to (a) write 63 and 55 in the form
63 = -ZClocos[loY' + ?S(T')]explra(T')]. {5.1)

55 . -ZCchos[luY’ + ?3('1") + Ax] exp['ls('l")l. (5.2)
where T, Ty ?3 and Ay are strictly real; (b), use (2.7) to deduce the
streamfunction field induced by each of these waves, (c) deduce the time
r:;\te of change 75, Ty ?3 and Ay by substituting the expressions for the 51
waves and their induced streamfunction fields into (2.6). Details are
provided in Appendix B. As menticned in § 3, for the occluded front, the
fastest growing waves have equal amplitudes in regions 3 and 5, i.e, ¥, =
7. = 7; for such waves (B.4) shows that y is controlled by

3
97 . (6En/21 exp(-2p) sin{Ayx). (5.3)

ar’
Thus, in accord with the ideas of Bretherton (1966), growth is proportional
to the product of a scale term S, equal to exp(-2u), and a. phase term, P,
equal to the sine of the counter shear phase difference between the two

vorticity waves. Whilst actual optimal growth represents the maximal value

2A more detailed discussion of edge or Rossby wave diagnostics is presented in
Bishop (1993b).
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of the time integral of the product of $ and P, some insight can be gained
by considering what sort of structures would maximize the time integral of
Just S or P alone. Obviously, ultra long waves maximize S and the uo=0 peak
on the a = 0.4x107%s™" curve must partially be a result of this fact. The
structures likely to optimize the time integral of P are those that allow
Ax to remain near 90°. Subtracting (B.4b) from (B.4d) one finds that the
eq. for Ay corresponding to (5.3) is
MY . st |1 - z[l"v'] . exp(-Zu)cos(Axl]. (5.4)
n 5En

An analysis of this eq. shows that there is a K and H, such that for p >
B, 8(Ax)/8T° < O for any Ay and that for O < p < Mo 8(Ax)/aT" » O; l.e.
if du/dT* was zero then for p > B, the two vorticity waves would be
continually advected past each other in a cyclonic sense, whereas if 0 < p
< " they would propagate past each other in an anticyclonic sense”. If r
<u< K, and if Axnm is the positive value of Ay that makes a{ax)/3T’ = 0,
then provided that Ay = -Axnm, Ay is always attracted toward Aznm. This
attraction is graphically illustrated in Fig. 8 of Part 1 for the special
case of waves with Zpo(()) = 2.1 and Axo = 179° Also, B and H,
respectively correspond to the long and short wavelength cut offs for the
normal mode instabilities that would be supported by the front if the
deformation was switched off. The normal mode characteristics of a cold
front whose stability characteristics are very similar to the warm . front
studied here are illustrated in Fig. 5(a) of Part 1.
Setting 9(ax)/8T’ = 0 in (5.4) and solving for Axmn yields

cos”{[o 2] - 1] exoten)]

3Note that when an tends to 674/8x, lu;nfafn tends to p and,

Ay =

consequently, B tends to zero.
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(5.5)

cos"{ [211 - l] exp(2u.)}

Thus, Axnm will be near 90° whenever 21 is near [. Such wavelengths allow

Ay to remain near 90° longer than any other. Since 2p monotonically
decreases with time, growth peaks at Zuo values larger than 1 partially
result from increasing the time integral of the phase term. Note that such
increases in the time integral of P are obtained at the expense of S which
decreases exponentially with 2u. For future reference, when growth results
mainly from a maximization of the S or P term, we shall refer to such
growth as "S type" or "P type" growth, respectively. Thus, the 2u0=0 and
the 2p = 1.92 peaks on the a = 0.4x10°s™! curve are characterized by S
type and P type growth, respectively.

As we shall see, the variation of P type growth with both wavenumber
and entry time may be understood In terms of a trade-off between enhancing
growth by keeping Ay near 90° for as long as possible and the possible
growth enhancement achievable by letting Ay be near 90° when the vorticity
of the strip is very high. The RT diagrams of Part 1, together with (5.4)
and (5.5) tell us that when the 2u value of a wave is equal to 1, the
mutual interaction of the edge waves Tavours a counter shear phase shift of
90°. Thus, if the 2u value of a wave reduces to I at a time when the
vorticity of the wave 1is very high, its P type growth will be
proportionally higher. However, as the dashed lines on Fig. 2 show, 2p
decreases as the vorticity (or Tn = T'/tc) increases; consequently, waves
whose 2u value becomes equal to one when the vorticity is high begin their
development at a very high wavenumber where sustained growth is impossible.
Also, as the vorticity (or Tn) becomes larger the pericd of time over which

21 equals one becomes shorter and furthermore, if 2p reduces to unity just
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before frontal collapse there will simply not be enough time available for
significant P-type growth to be realised. Nevertheless, there will always
be a strain rate small enough to ensure that there is enough time for the
extremely large growth rates achievable by late developing waves to produce
net wave steepenings In excess of those which develop earlier. The
implication of this is seen in Fig. la; viz, as the strain rate is reduced,
the net growth of short wavelength waves increases.

It is possible to use our edge wave diagnostics to give these ideas a
quantitative basis. It is of more than passing interest to do so, since, as
we shall see, the relevant mathematical expressions give rise to a strict
upper bound on the growth rates of frontal waves,

Differentiating the natural log of (3.3) and using (5.3} leads to

alin(a) _ gy _, _ dmeS)]
—ar’ T ar ar’
= (8T 2ng; L2z .7
= (GCH/Z) e sin(Ay) f[cz + QJ. (5.6)

The last term in this equation is negative definite and is proportional to
(/f). Since [Ez + EJ always has the same order of magnitude as anlz we
have the rather general result that:

There is always a strain rate that can completely suppress wave steepening.

This is true even when the front has a structure which, in the absence of

stratn, would support infinite normal mode growth rates.
Thus, (5.6} shows that, in principle, there is always a strain rate capable
of suppressing barotropic mixing and hence of allowing the front to
collapse to a discontinuity provided other mixing processes do not become
active.

By maximising the first term on the right hand side of (S.6) by

setting 2u = 0 and Ay = 90°, using (2.3) and (2.4) and noting that infinite
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vorticity is reached when exp(2aT’) = 1/5’4, one can show that the minimum

strain rate, a required to entirely prohibit growth is given by
« (aT", 20 = L ——-_:_‘ : ;z e 2k, (5.7
4 2
Thus, as the f{ront intensifies larger strain rates are needed to suppress
wave steepening. At the point of frontal collapse (when the vorticity is
infinite !) all frontal wave steepening is suppressed il a/f = 1/4,

The variation of @ . on the (Tn. 2u) plane is illustrated in Fig. 2.
The evolution of a variety of different non-dimensional wavenumbers with ‘I‘n
is also depicted on this diagram. Note the increase and decrease of «
with Tn and 2u, respectively. The diagram shows how, as was mentioned
previously, a wave with an initially large wavenumber is bound to decay
until the strain rate required to completely suppress growth becomes larger
than the strain rate acting on the front.

For example consider a frontal wave which at 'I'n= 0 had 2pu = 3.0 and is
developing in a strain rate of 0.2x10°°s". Tracing down the corresponding
dashed 2u isoline reveals that it is not until ]I"n becomes greater than
about 0.32 that the 2 curve for this wave crosses the a = 0.2x107%™
isoline. Thus, growth only becomes possible once Tn becomes greater than
about 0.32. At this time the 2u value of the wave equals 1.8 and hence, the
wave is poised ‘to experience P type growth on a relatively intense front
and there is tc(twk/tc- 0.32) = 31.6 hr left before the integration Iis
stopped. Fig. 3a indicates that waves with approximately this wavelength
can grow faster than all others. Thus, the example illustrates how early
decay can be compensated for by waves whose wavelengths allow them to
experience P type growth at a time when the front is relatively intense.

Fig’'s 1b - 1d show the residence times, Trl, and initial phase shifts,



Axm, corresponding to the J‘ curves as a function of Z,un. As would be
expected from the fact that at large wavelengths 3(Ayx)/3T" > 0, maximal S
type growth occurs with Axm less than 90° and with TI_l about half of twk.
Such initial phase shifts allow the waves to achieve a 90° phase shift at
some stage of their development. Conversely, since at 2u > 1 we have
8lAx)/8T’ < O for Ay > 900, maximal P type growth usually occurs with Axm
greater than 90° and with 'I'rl considerably more than half of twk. Note that
whilst the P type waves begin dévelopment with 8(Ay)/8T’ < 0, the basic
state flow forces their non-dimensional wavenumber to rapidly decrease;
consequently, they end their development like $ type waves with 3(Ayx)/aT">
0.

Fig's 1lc and 1d Indicate that as a increases Axm becomes closer to
90° for both S and P type waves. This might have been expected on the
grounds that the range of Ay over a fixed non-dimensional time period, «T”,
gets smaller as o Increases. Consequently, with a smaller Ay range at large
o, Ay must start nearer 90° in order to stay near 90° during development.

A striking feature of Fig. lc is the very large initial counter shear
phase shifts at short wavelengths. For example, for « = O.leo'ssdl, the
initial counter-shear phase shift of the fastest growing wave is at
(720+184)°; {occurs at 2}10(0) = 3.32). Thus, the vorticity wave on the east
boundary moves more than two wavelengths north of the vorticity wave on the
west boundary before locking on. During this overtaking phase the
non-linearity of the wave actually decreases with time. This can be seen
from Fig. 2 which shows that growth cannot occur until 2u £ 1.8 and T® =
0.35 Tn. As mentioned previously, this initial decrease in waveslope Iis
compensated for by the rapid P type growth that can occur at the time when

2u is near 1 and the front is intense,



Initial decay periods can be avoided by letting the front be disturbed
at a later time in its evoiution. This helps explain wly, as is illustrated
by the a = 0.2x10"s" and 0.4x10"°s™ curves for Jz(a. Te) on Fig. 3a, P
type growth increases with Ta until T' becomes so close to tWll that there
is simply not enough time left for significant growth to occur.

Fig's 3b and 3c detail the variation with 'I'e of the initial horizontal
structure parameters, Zpoz and Axoz' respectively. Note that for
a = 0.2x10™°s™), it only takes a small increase in T_for the P type growth
of the large 2;102. "overtaking" type modes to be surpassed by the P type
growth of the smaller 2].!02 "non-overtaking” modes. This characteristic is
because (a), even with Te = 0, the growth of the large 2;1oz modes only
slightly exceeds the non-overtaking growth peak near 2"02 = L9 and (b), as

Tc increases, the 2;102 near 1.9 become subject to higher aEn values at the

time when Ay = 90°,

The « = 0.8x107°s"' and 1.0x10™°s™ curves in Fig's 3(a) and ()
indicate that S type growth also increases with T . For a = 0.6x10"°s", P
type growth exceeds S type growth for Te between 11.0 and 14.5 hrs, only.
This indicates that the increase of P type growth with ]"e is greater than
that of S type growth.

The maximum possible P type growth over all possible Te for strain

1

rates between 0.2x10°s’< a < 0.6xI0°s™" is described in Fig. 4a. Since

at a=0.6x10""s"' maximal P type growth is only slightly less than maximal S
type growth, this curve is approximately equivalent to ln[nd:(a)l. The
initial and final dimensional wavelengths of these waves are depicted in
Fig. 4b. These dimensional wavelengths, Ad. were calculated using

X =5 s Le'“r'(f/{‘)

i
d M e u
An examination of the governing eq's shows that our stability analysis is
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almost independent of L, provided the evolution of the vorticity is
unchanged‘. Thus, in considering Fig. 4b, one should bear in mind the
dependence of the dimensional wavelengths shown on our geophysically
relevant but otherwise arbitrary choice of L. A general result evident from
Fig. 4b and not dependent on our choice of L is the fact that the
dimensional wavelengths of the fastest growing waves are relatively
unaffected by the strain rate.
6. Scale Selection

The extent to which a shear flow can "select" certain wavelengths out
of a broad spectrum of background noise depends on its ability to grow one
particular wavelength more than another before any of these other waves
become non-linear. Fig. la shows that with ¢ = 0.2x10"°s™, our shear flow
can produce amplifications > 70 for wavelengths shorter than (21:/1.‘7)ch°
and longer than (21[/6.0)ch° where L, is the Cartesian width of the vortex
strip at the time (Te=0) when the vorticity was equal to f., For the
occluded front considered here, Leo = I73 km. Thus, if for all p and entry
times, the waveslope, =, was such that 0.02 < E(Te) < 0.}, all wavelengths
shorter than 640 km and longer than 181 km could produce E(Tr) > 0.1,
However, since longer wavelengths have their rapid growth period earlier
than shorter wavelengths, it is possible that they could prevent
potentially faster growing short wavelengths from developing by iInducing
vortex roll-up before the shorter wavelengths entered their rapid growth
phase. If this did not occur then a situation (similar to that described by
Grabowski and Clark 1991) might develop whereby an initially monochromatic
disturbance is disturbed late in the life of the front as a shorter

‘Wlth reference to Part 1, the temporal dependence of the low-level vorticity
of region 4 is unchanged by L provided that A/L is kept constant.



wavelength mode grows over it.

With @ = 0.4x10 s ', 4 = 2.3 so that with 0.05 < (T ) < 0.1, only a
relatively short band of wavelenkths near 200 km will be capable of making
(T} > 0.1 With a = 0.6xl07s" the width of the band of wavelengths
around 175 km capable of making E(Tr) > 0.1 will be even narrower. For « >
0.6x10"°s™! the very small optimal growth rates indicate that frontal waves
are incapable of significantly changing their slope.

7. Discussion.

The stability analysis of a simplified moist front suggests that the
steepening of waves on frontal potential vorticity strips is strongly
suppressed by frontogenesis. The (u=-ax, v=ay) part of the flow tends to
flatten frontal waves by comp_ressing them and extending them in the cross
and along front directions, respectively. The cross-front amplitude is also
compressed by the ageostrophic circulation. This circulation increases the
vorticity at the front whilst decreasing the width of the vorticity strip.
The enhancement of frontal wave growth that would result from the vorticity
increase is offset by the effect of the narrowing of the vortex strip on
the coupling between the vorticity waves on either side of the strip. Thus,
the net effect of these processes inhibits the genesis of non-linear
frontal waves. The present work quantifies these effects for an idealized
front.

A semi-analytic expression for the optimal growth of the root mean
square of frontal wave slope during frontogenesis has been obtained. With
this expression, the abitity of frontogenesis to suppress wave steepening
has been explored. The results have been interpreted with the aid of

diagnostics which quantify Bretherton's (1966) counterpropagating edge (or

Rossby) wave view of shear instabilities. They show that growth Iis
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proportional to a scale term which Increases with the wavelength and a
phase term which is equal to the sine of the countershear phase shift of
the two edge waves. This leads us to distinguish between S type optimal
growth which is achieved by maximising the scale term at the expense of the
phase tex:m and P type optimal growth which is achieved by keeping the two
edge waves in a growth configuration as long as possible at the expense of
the scale term. The P type growth is more strongly affected by
frontogenesis than S§ type growth because it depends on an approximate
counter balance between the propagation speeds of edge waves and the
advective effects of the cross-frontal shear. It is this counterbalance
which is strongly affected by the rapid change in the ratio of wavelength
to frontal width produced by frontogenesis.

The edge wave diagnostics also lead to an expression for the minimum
strain rate required to completely prevent wave steepening at any given
time or wavenumber. This minimum strain rate increases with wavelength and
with the vorticity of the frontal vortex. Remarkably, at the point of
frontal collapse, when the vorticity of the front is infinite and the
associated normal modes have infinite growth rates, it only takes a strain
rate of f/4 to annihilate the possibility of wave steepening at any
wavelength. (It is intriguing to note the similarity of DHIS's
corresponding result that steepening on a purely barotropic vortex strip is
completely suppressed for a/(f; f) = 1/4 {our notation)).

The diagnostics help explain why it is necessary that waves
experiencing P type optimal growth must experience initial decay in order
to have non-dimensional wavelengths well suited for growth at a later time
when the vorticity of the front is very high. Letting the disturbance enter

the front at a later time removes these Iinitial decay periods and this
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accounts for the simulated increase in wave steepening as the time at which
the disturbance is assumed to enter the front is increased,

One can speculate that although frontogenesis acts to suppress frontal
waves it also acts to allow ‘the potential instability to develop. This is
analogous to deep convection v\:here an inversion will cap the boundary layer
for a period during which the moisture content and potential Instability
increase markedly. When the inversion dissipates, deep convection Iis
triggered. Similarly, during moist frontogenesis frontal waves are
suppressed while the moist circulation Iintensifies the potential vorticity
and hence the potential instability of the strip. If later in the frontal
lifetime the frontogenesis is diminished, frontal wave instability Is
triggered.

It is mainly the presence of ageostrophic convergence which
distinguishes the vortex strip studied in this paper from that examined in
DHIS. It is tempting to attempt to isolate the da.mping effect of
ageostrophic convergence on instability by comparing the present results
with those of DHJS. This cannot be done because, whilst the vorticity of
their strip is constant, in our case the vorticity rapidly amplifies. Thus,
since amplification rates are proportional to the vorticity, the
"potential” wave amplification of two strips with or without ageostrophic
convergence is different. A better way of isolating such affects is
discussed in Bishop (1993b).

It is of interest, however, to note that in the absence of
ageostrophic convergence, the slope of waves on a frontal vortex strip with
vorticity equal to 4f, subject to a strain rate a = 1x10"°s™ could amplify
244 times in 44 hrs (cf. Fig. 4 of DHIS). Our experiments show that when an

equivalent strain rate acts on our idealized thermal structure, frontal
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waves can only steepen by a factor of 1.8. Note however that barotrepic
type instability is not the only source of frontal waves and that the
results in Bishop (1993b) suggest that baroclinic growth would not be
damped by strain nearly as much as the barotropic growth discussed here.

The role of non-zero low-level wind shears may be included in our
model by letting the lowest kilometer behave like an Ekman type boundary
layer; the kilometer above this layer then remains as the barotropic seat
of frontal wave development. Calculations (not presented here) show that
the main difference this boundary layer introduces is that the height Zc at
which 8y/8Z is zero is lowered. Thus, if for the same reasons as for the
inviscid basic state, we take vg(X'.Zc.O) = 0, the evolution of vorticity
above the boundary layer has the same dependence on «T’ as that for the
inviscid basic state. Consequently, the stability characteristics are found
to be equivalent to those of the inviscid basic state. Note however that
such simplified boundary layers appear to significantly affect the
stability of the strip when the strain rate is allowed to vary in time;
this will be discussed in future work.

In certain circumstances measures of frontal wave growth other than
the amplification of non-linearity will be more useful. For example, one
might be more interested in the growth of the perturbation horizontal
streamfunction. Fig. S5 shows the maximum possible amplification of
streamfunction amplitude for waves entering the frontal zone at Te = 0,
over a variety of non-dimensional wavenumbers. Notable differences to the
corresponding amplification of wave slope, (cf. Fig. la), include: (a) the
complete absence of long wavelength S type growth and a shifting of P type
growth peaks to even shorter wavelengths and (b) whilst possible growth

still decreases as the strain rate is increased, significant P type growth
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now occurs for all strain rates.

The significant long wave S-type growth of edge waves is not apparent
in the streamfunction field because of superposition effects. For S-type
growth the eastern and western edge waves are initially in phase with each
other. In this configuration, the streamfunction field induced by the
eastern wave reinforces that induced by the western wave, As the edge waves
grow, however, they become more and more out of phase with each other.
Their growth ceases when they become 180% out of phase with each other. In
this configuration the induced streamfunction fields cancel each other out.
Apparently, the transition of the edge waves from a configuration where
their induced streamfunction fields are superposed to one where the induced
fields cancel each other out cancels the net growth in the streamfunction
field that might have been associated with the edge wave growth alone.

The present work is also relevant to that of Grabowski and Clark
(1991) who made numerical investigations of wave growth on the intensifying
shear layer of a buoyant bubble. In particular, it provides a precise
description of the process they refer to (cf. their p.543) whereby smaller
scale disturbances are selected at a later time during the intensification
of a shear zone.

Our prediction that low-level frontal waves should occur on a wide
variety of  horizontal scales is confirmed by the climatology of
extratropical cyclone sizes compiled by Nielson and Dole (1991). They also
find that the size of cyclones has some relationship to their age and that
typically, in the initial stages of development, "two small scale cyclones
are located along a front, separated from each other by 450 km..". Since
stability studijes jndicate that baroclinic type frontal waves have a

preferred scale somewhat larger than this (~ 1000 km, cf Joly and Thorpe

30



(1991)), it seems likely that the 450 km waves observed by Nielson and Dole
(1991) may have amplified via a barotropic mechanism similar to that
examined here. The same could be sald of the 100 km wave cbserved by Neiman
et. al. (19%91).

To ‘conclude, the prototype model predicts that transitions from linear
to non-linear development are most likely to occur when the strain rate is
small and that the wavelength at which non-linear development occurs is
likely to decrease as the strain rate increases. Transitions from linear to
non-linear development are very unlikely when the strain rate exceeds
0.6x10 %™, The results support the hypothesis that atmospheric
frontogenesis rates are capable of strongly reducing the mixing efficiency
of barotropic eddies. In doing so, they describe how moist frontogenesis
can create flows which would, if the frontogenesis ceased, be strongly
unstable. To test these propositions against observations, a counterpart to
the model’s horizontal deformation field must be identified in the data.

This problem will be addressed in a subsequent publication.
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APPENDIX A: Relationship between strip displacement and Qj.
In this Appendix, we obtain the relationship between 61 and the
position of the edges of the strip Ej by

(a) finding the relationship between u'r and the Lagrangian derivative

of EJ:

(b) using this result in (2.6) which relates the Lagrangian evolution
of 6] to the perturbation velocity u'r and

(¢) integrating (2.6) with respect to time following the along front
flow.

The relationship between u’r and the x-component of the velocity of
the edges can be found by noting that since dx/8X’ = exp{-aT'’ )f/E‘. the

x-coordinate of the edges in Cartesian space, EJ, can be expressed without

loss of generality as

g = e-ar'[flf‘] [52:(; - 4) s ",]- (A.1)
where n} is the displacement of the edges in deforming geostrophic
coordinates from their undisturbed position and J) equals either 3 or 5
depending on the transition region referred to. We can then relate nj to
u’r by noting that the total zonal wind at the edges of the vortex strip is
equal to the Lagrangian derivative of EJ. Comparing the expression for this

speed given by (2.1) gives with the one derivable from (A.1) yields

Dg . D{f/T)) ’ Dn
_ — s -oT _anl T -aT =) )
a€J+ u+ul =g OCEJ"' e [(J 4)2 + "]] or— * °© [f/ 4]01.,. (A.2)

Using (2.2) and the fact that f/C = |l - exp(2aT’) E where
. 4 4

explaT’) E, = (vf)a’\?'/ax'. it Is evident that
. D(f/T)
-aT L a7 5= _ -
e [(] - 4)‘-2' + TIJ]—D]'T;— = Zu.v‘(EJ,t)/f = u-(EJ:ﬂ.

Thus, this expression together with (A.2) implies that
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’ Dn
w =T [f/c ]DT, se” [f/c ] T!. (A.3)

r
where the approximate equality in (A.3) comes from the neglect of
non-linear terms in the Lagrangian derivative. This leads to a linear
prediction of the position of the edges.

The simple relationship between 'nJ and 61 may now be seen by using

(A.3) in (2.6) to obtain

Dn ¢, \De

Integrating this equation with respect to time following the basic state
flow from T; to T’ and setting
’ - = - AalF = ’
n J{To {4 - 1) [Q.I [C4/ (r 6«‘;“)] ] (To)
yields

[c /(fGCJ
n (T4 - ) = - [ [c J(f8E )]](r‘) . J' 3 DT'.  (A.S)
DT’

0

Note that since the 5 value of a growing wave will reach its maximum
amphtude at the final time T'. it follows that

[c /(8¢ )] [c /7 (f8g 1] .
JlQ DT’ |o(r')| I =L DT’ < lQT)]/f. (A6)
0

DT’

Since the last term in (A.6) is smaller than the amplitude of the first
term in (A.5), (E4/6_c-n > 1), it follows that
=0 [oj[c4/(facn)]](r )l. (A.7)

Thus, denoting the displacement of the edges from their equilibrium

0| nJ(T' |

positions by E'j. (i.e. E'J = Re[EJ(T') -0 - 4)Lc/2)]. (A.7) may be used

in (A.1) to show that

e T's /8% |. (A.8)
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APPENDIX B: Edge wave dynamics.

The cartesian forms

L L
b4 [ c
-(03/2!°)exp[-l [—- + x]] for x z - 5 »
16L c Lc Lc
¥ - -(Q /21 ){l + —COS[GL ( F=— + x]] for - 5 zx e - 5= - 8Lc,(B.la)
~ [ ("¢ c
-(03/210)exp -l [2— + 6Lc + x]] for x = - 5 - GLG.
and
. - Lc Lc
-(Qs/Zlu)exp _—l T x]] for x = i-
ISL - c I_c
v o= -(Q /21 ){l + _COS[GL { ] 5 X 5 5 * 6L (B.1b)

L
-(O /21 )exp[ [— + 61. - x]] for x = 2—° + 6L

clearly satisfy (2.7), since they also satisfy the boundary condition that
¥’ decreases monotonically with distance away from the frontal vortex, \I"a
and W’s may be referred to as the streamfunction fields induced by the edge
waves 53 and 55, respectively. Before wusing (B.1) in (2.6), it s
algebraically useful to note that as a consequence of common trigonometric

relations, (5.1) and (5.2) may be rearranged to prove that,

o~

53 = Qs[cos(Ax) + tan[loY' + ?3 + Ax]sin{ﬁx)] exp(‘a's - 15). (B.2a)

Q5 = 63[:05(&7() - tan[loY' + SPS]sin(Ax)]exp('rs - ¥ ) {B.2b)

Transforming (B.l1) into deforming geostrophic coordinates, (B.2) may be
applied to prove that at transition region 3,

av’
3Y" ~

oo Ot

3{[1 + e-!Lcos(Ax)exp_(rs— 13)] tan[loY’+.‘P3] + sin(Ax)exp('ars— 13)} (B.3a)

whilst at transition region 5

av’ 65 KN

— = - ¢ _ N _

577 > { [l + e c:os(AJI:lexP(‘a‘3 15)].tan[loY +?a] sm(l.\x)exp(y3 75]},{3.%)

The edge wave dynamics implied by (2.6) and (2.7) are now easily deduced.
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Using (B.3a) and (5.1) in (2.6) and recalling that IL = 2u leads to

8y
s = (5T /2)exp(-2plexply - 7). (B.4a)
8?3 _ B
- i !ovn - (6cn/2)[1 + exp(-Zp]exp(ws = 73)]. (B.4b)
whilst using (B.3b) and (5.2) In (2.6) leads to
] iy 3
s+ = (8T /2)expl-2plexply - 7.), (B.4c)
8?3 Ay - =
7 i 7 i !ovn + (acn/z) [l + exp(-Zu)exp(';s - 13)]. (B.4d)
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Fig.1 .
Variation of 1n[J1) with initial wavenumber, 2u°(0), for a variety of

strain rates, «. In this and subsequent diagrams line labels 0.2,
0.4, 0.6, 0.8 and 1.0 pertain to strain rates of O.leo-ss-l,

1

0.4x107°s ", etc.

Time, T;l. over which amplificatlion Jl occurs as a function of
Zub(D).

The initial phase shift southward, AxOl (in degrees), of the

eastern relative to the western wave required to produce the Jl

amplificatlion.
Details of the phase changes shown in (c) for 0 = Zno(O) < 2
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wavelengths were obtained by assuming the vortex strip to be 173
km wide at the time the vorticity equaled f.
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