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SUMMARY

Discussion of the proper boundary conditions to use in limited area
forecasting models requires knowledge of the properties of the governing
equations. The theory of Oliger and Sundstrom states that the primitive
hydrostatic equations commonly used are not hyperbolic and no local
boundary conditions can be chosen. This paper shows their result to be
incorrect, the equations are hyperbolic but not all the characteristics
involve the time variable. Implications for the boundary conditions are

discussed.



1. INTRODUCTION

Oliger and Sundstrom (1978) analysed the properties of various systems
of equations used in numerical weather prediction. They showed that the
compressible non-hydrostatic equations of motion are hyperbolic, as are the
shallow water equations. They derived appropriate boundary conditions for
both sets. The hydrostatic and anelastic systems were shown, however, not
to be hyperbolic. In the former case no choice of local boundary
conditions could be made which allowed a solution to exist; in the latter
case it was still possible to choose correct boundary conditions. In order
to derive these negative results, an attempt was made to derive periodic
eigensolutions and solve for their frequency in time. In this paper we
show that the hydrostatic equations are in fact hyperbolic, but that not
all the characteristics involve the time variable. This is why the method
used by Oliger and Sundstrom was unable to find them. We present a simple
version of the analysis in this paper and discuss the practical
implications. A fuller analysis will be published elsewhere (Cullen et al
(1985)).

2. THEORY

We write the governing equations using the z-coordinate system of

Hoskins (1975) and make the Boussinesq and hydrostatic appfoximations.

This gives, in standard notation:
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An upper boundary condition is needed at z = H, corresponding to zero
pressure. In this coordinate system z=0 is a constant pressure surface
near‘the ground; so that it behaves mathematically like a free boundary.
The dependent variable in (1) to (5) is §) - (u,v,0,w,¢) which can be
written as a function u = u (x,¥,z,t). The system (1) to (5) is fully
hyperbolic if there exist five characteristic surfaces, say C(x,y.z,t) = 0,

with normals

(6)
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such that, if u is given on Cix,y,z,t) =0, theﬂ'g cannot be extended
uniquely into the rest of (x,y,z,t) space. This definition is discussed in
detail in Courant and Hilbert (1962) (Volume 2, Section 6.3, pp 578-602).
Their results show that this system is fully hyperbolic if the determ}nant

of the matrix A vanishes for five normal directions, where
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Each row of this matrix corresponds to one equation of the system (1) to

(5), and is obtained by writing it in the form:
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where s involves only u and its derivatives tangential to C = 0. If det(A)
is non zero, then (8) can be solved uniquely, and hence n may be continued
from the surface C = 0 into the rest of (x,y,z,t) space. On the other
hand, if det(A) is zero, we can only solve (8) provided n is orthogonal to
the eigenvector subspace, and even then the solution 52 is not unique.
1)

Thus the surface C=0 is in this case the familiar characteristic surface of
a hyperbolic system. Data cannot be specified arbitrarily on the
characteristic surface and the solution u may have jump discontinuities
across it. We note that the system is actually a symmetric hyperbolic
system because A is symmetric; and also that z is the most "time-like"
variable with (x,y,t) being most "space-like". This is because only the g
component of the normal direction defined in (6) enters one of the rows of
the matrix A, and it is clear that det(A) is zero if y=0, which gives a
characteristic direction parallel to the z axis and independent of t. This
solution is excluded by Oliger and Sundstrom's analysis which only seeks
solutions proportional to eiut,

The complete solution for the conditions under which det(A) is zero is

8 + ux + v + w* = 0 (three times) (9)
or y =0 (twice) (10)
as may be verified by elementary expansion of the determinaht. Note that
in case (9) the normal to the characteristic surface C=0 is orthogonal to
(u,v,w,1); further, the projection of the normal onto (x,y,z) space is
orthogonal to the velocity vector. Therefore the projection of C=0 onto
(x,yY,2) space contains instantaneous streamlines, and C=0 consists of
particle paths in (x,y,z,t) space (see Courant and Hilbert (1962), Vol II,
Section 6.3a for a related calculation in compressible gas flow).

Comparison of this solution with that for compressible non—-hydrostatic flow



given by Oliger and Sundstrom (1978) shows the same three solutions of the
form (9), but the two solutions corresponding to sound waves are replaced
by the two solutions (10). Note also that there are no characteristics
corresponding to gravity waves, these only appear if the equations are
written in free surface form, or as equations for a multi-layer fluid
system with layer depths as variables.

The symmetric matrix A thus leads to three characteristic surfaces,
each consisting of particle paths. This means that there are three

ordinary differential equations, holding for three quantities along the

particle paths. One is obviously = 0 (equation (3)). The others
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and 9V/,5, .. Because (1) and (2) are nonlinear, these
quantities are not actually conserved along characteristics. Any
combination of these three quantities, such as the potential vorticity, can
be used instead.

There are two ordinary differential equations parallel to the z axis,
one is equation (4) for 9¢/5,, the other is an equation for D/pt (%V/52)
which is not a conservatioA law because of the nonlinearity of the system.
3. IMPLICATIONS

This analysis gives a much simpler prescription for thé correct
initial and boundary data for a primitive equation model, most of which is
in line with current practice. Only three variables can be given initially
since only three characteristics intersect t=0. These can simply be u,v,
and 6. Two coﬁéitions must be given in z, to correspond to the two
characteristics parallel to the z axis. These are normally ¢ at z=0 and w

at z=H, corresponding to zero pressure. In order to incorporate the

conditions of no flow through the earth's surface, the boundary z=0 must be



a
treated as free. An extra prognostic equation is written for the height of

the pressure surfaée z=0 allowing an extra boundary condition to be imposed
on w.

On lateral boundaries (parallel to the z axis) only three boundary
conditions can be given on inflow and none on outflow. The complete
solution is thus determined by giving u,v, and © where the flow is into the
domain in (X,y.,t), either in across the lateral boundaries or as initial
conditions, and two conditions on the upper and lower boundaries to allow ¢
and w to be determined.

The other implication is that discontinuities in components of u or
its derivatives may propagate along characteristic surfaces. Fronts could
be considered as discontinuities propagating along particle paths, though
real fronts do not take such a simple form as sharp shear layers are
unstable.

The analysis presented here suggests that the provision of correct
boundary conditions for the primitive hydrostatic equations is
straightforward and in line with some current practice as reviewed by
Haltiner and Williams (1980) (chapter 7). Only the fluid velocity has to
be considered in determining inflow and outflow poihts. Internal gravity
waves do not appear in the analysis because the spatial derivatives
associated with horizontal advection are given equal weight with those
associated with divergence and vertical advection. The usual linearisation
from which internal gravity waves are derived assumes strong stratification
and simple vertical structure so that the internal wave speed is still
large compared with the advection speed. These assumptions are clearly

restrictive.



This theory does not give any guarantee of the good behaviour of the
solution. Since lower order terms are ignored, the effects of rotation and
gravity are omitted. They have no effect on the basic mathematical nature
of the equations but a large effect on the actual solutions obtained.
pDifferent methods are required to determine what boundary conditions will
allow a balanced solution or will absorb particular kinds of waves, many
such are reviewed in standard textbooks.
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