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NUMERICAL MODELLING OF BALANCED ATMOSPHERIC FLOW
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ABSTRACT
Atmospheric flows of importance for weather forecast ng
mostly characterised by a requirement of ‘balance' in which the @hreq
dimensional wind field can be determined implicitly from the pressure
and moisture distribution. A mathematical definition of balance is
described based on a Hamiltonian formulation which requires that

sufficiently large fluid parcels remain close to a minimum energy

configuration. The resulting evolution equations are an approximat forn

of the equations of motion. Numerical solutions of the equations
describing balanced flow are presented and compared with those w
balance approximation is not enforced. There are large dif »

cases where’ the balanced equations have a’ingg ar sqlu'ﬁi—gma'




1. INTRODUCTION

This paper discusses a strictly mathematical approach to the

problem of numerical weather prediction.In many areas of computational

fluid mechanics ,it is becoming widely recognised that knowledge of the

mathematical properties of the desired solution is essential for

successful computations.A number of recent numerical methods are

realisations of proofs of the existence and uniqueness of solutions to

the governing equations and are thus guaranteed to converge to those

solutions as the resolution of the calculations is increased.The most

common example of such methods is the finite element method for elliptic

boundary value problems. Temam(1977) describes thi:.a.;re]:atimship Sory

Navier-Stokes equations. Majda(1986) shows how this phi

Reynolds number.
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In order to achieve the maximum predictability in a computer

simulation, we must first define a subset of atmospheric motions which
we expect to evolve independently: this can be done in terms of
horizontal and vertical scale. The complete Navier-Stokes equations are
integrated, together with whatever forcing terms are necessary. A grid,
or spectral truncation, sufficient to represent the desired scales
accurately is chosen and smaller scales which can be resolved, but not
accurately treated, are filtered out. Such procedures are described in
standard textbooks on numerical weather prediction, e.g. Haltiner and
Villiams(1980), Pielke(1984). It is found that a definition purely in
terms of spatial scale is not sufficient and that the time scale must
also be restricted. Browning and Kreiss (1985) derive conditions under
which solutions of the Navier-Stokes equations for the atmosphere will
vary slowly in time and find it necessary to require smooth vertical
structure. This is too restrictive an assumption to describe atmospheric
structures associated with significant weather which are often almost
discontinuous..

Cullen et al. (1987) attempted to remove this restriction by
characterising wegther-producing motions as solutions of a set of
Lagrangian equations derived from considering the average motion of
fluid parcels and requiring those parcels to remain close to a minimum
energy configuration. The equations obtained are one of many different
types of "filtered equations" developed by dynamical meteorologists to
describe subsets of atmospheric motions relevant to weather. The
solutions obtained from that model can be discontinuous and can also
allow fluid parcels to jump discontinuously between two equilibrium

Positions.They cannot be obtained by integrating the Navier-Stokes

equations numerically in a way that forces the solution to stay smooth.
The equations are a strong candidate for describing an independent
subset of atmospheric motions for two reasons. They contain no
horizontal derivatives in the evolution equations. The only derivatives
are rates of change following fluid parcels. They therefore do not rely
on possibly unrepresentative estimates of spatial derivatives in the
atmosphere. Secondly, in two-dimensional flow, the minimum energy
configuration can be predicted independently of the remainder of the
flow provided there is no mixing. In three dimensions, the minimum
energy configuration can only be affected by non-equilibrium motions in
a significant proportion of the fluid. Other systems of filtered
equations, for instance those reviewed by Gent and McVilliams(1983),
appear to break down if the assumptions used to derive them fail
anywhere in space.

In this paper we discuss how the theory of Cullen et al. can
be applied to practical numerical weather prediction. The system of
equations is implicit and nonlinear. It is possible to use Lagrangian
numerical methods to solve them in special cases. This allows exact
solutions to be obtained. However for practical simulations it appears
necessary to use Eulerian numerical methods on a fixed grid, or spectral
truncation. Iterative methods of solving the implicit equations are
described here. Similar implicit problems have to be solved in steady
flow simulations in engineering. It is well known, however, that it is
often easier to solve them by integrating time-dependent equations to a
steady state. An analogy in the weather prediction problem would be to
follow the slowly varying solution predicted by the implicit nonlinear

equations by integrating a more general set of equations in which the



time dependence is explicit.This corresponds to the standard method of

designing weafher prediction models where the spatially-averaged Navier-

Stokes equations are integrated in such a way that a slowly varying

solution is produced. Ve compare the two approaches.

Section 2 describes the mathematical model of Cullen et al.

and the solutions it gives. A case in which the solution exhibits

singular behaviour is {1lustrated. Section 3 describes finite difference

methods for approximating the solutions and compares them with finite
difference procedures used to solve the more general explicit equations.
Section 4 gives illustrative results and Section 5 discusses practical

implications.

¥ MATHEMATICAL MODEL

2.1 General principles

The conventional approach to numerical weather
prediction starts from the compressible Navier-Stokes equations in an
appropriate coordinate system and then derives averaged equations
appropriate to the scales being resolved by Eulerian Reynolds averaging,
Pielke (1984). Descriptive texts on weather, however, find it more
natural to use a Lagrangian description and discuss the behaviour of air
masses. Thus thunderstorms can be forecast by identifying situations
where cold, dry air flows over warm, moist air resulting in convective
instability of the air column. The mathematical model used here averages
the equations over air parcels: the parcels are then assumed to be
sufficiently large that they can be assumed to remain at all times in a
minimum energy configuration. This assumption excludes most types of
transient wave motions such as gravity or inertial waves. Observations

suggest that most of the energy in such waves is concentrated in scales

not normally resolved by weather forecasting models and that they rarely
have a direct effect on the actual weather as described in a forecast.
Such motions, however determine the shapes of individual clouds.
2.2 Yariatiopal formulation
The equations are first derived for motions in a three
dimensional system rotating with angular velocity Q in the presence of a

gravitational potential T. The energy of the fluid can be written as

B'=gdICalyl <+ "0 +1)] 2.1

In this expression dI' represents a volume increment
dadbdc in particle label space (a,b,c) (alternatively it can be regarded
as a mass increment), U is the internal energy of the fluid and can be
written U(a,s), where o is the specific volume and S the entropy.

(u,v,w) represent velocity components. Shutts and Cullen (1987) derive
conditions for the energy to be stationary with respect to infinitesimal
particle displacements. The displacements y are assumed to be
instantaneous and adiabatic so that the entropy is conserved. In such a
displacement in a rotating system the velocity components except the
component parallel to the axis of rotation will change due to the

Coriolis effect. Shutts and Cullen show that the resulting equation is

§Y = - 2Qxy 2.2)

The change in E due to the displacement is then

6E = ([ §Gkivi®) + C, 6T + 6T 1. 2.3)



N\ Gy phapepecific heat .of air at constant volume.: jCif g Shutts and Cullen show that the condition for this

the change in geopotential energy experienced by a parcel ’ stationary point to be a minimum is

splacement we have & X Qx? 0

= % ‘
nuity equation for a perfect gas and the first law of : Q = 2Q%M - awSep 2.7
s for an adiabatic displacement are then used to give M= 20(r - QD) - Qxw/Q 2.8)
= -pba = - pa¥. X and r is a position vector. These conditions for a minimum energy state
2 18 used to show that : thus require the horizontal wind to be geostrophic and the vertical
| v.6y = x. (@Qxy) i 4 | pressure distribution to be hydrostatic.

E In order to make forecasts it is necessary to find
equations for the time evolution of the atmosphere using the assumption
that it is close to a minimum energy state. Salmon(1985) derives
evolution equations from Hamilton's principle though he does not

at rigid boundaries and the vanishing ‘E" connect his treatment with energy minimisation. VbagivE‘aﬁsliﬂﬁtkyﬁ£ 
‘atmosphere, the condition for an 4 : different Hamiltonian formulation based on the energy arguments. Th;syié;;

described in detail by Shutts(1987). The Hamiltonian for general motions

2.5) . : b is given by

Soll,

where (u, v,mmvekm
oriented so that the z dire
So(a,b,c) is t

evolution

sty




(u—QyAX/T + (viQx)Ay/aT + waz/yr ldlr -
(u-Qy)3x/3 Variations with respect to x,y and z give the Euler

el equations of motion; variations with respect to u,v and w give the
definitions u = 3x/37 required for consistency and the variations with i
respect to o and § provide the thermodynamic definitions of pressure and
temperature in terms of internal energy. : u e B o

Ve now wish to restrict the action principle to deal
with motions close to minimum energy. This is done by making two
approximations.The first is to neglect the kinetic energy of the
component of motion parallel to the axis of rotation and the
corresponding term in the action integral.We then transform the
principle into canonical coordinates. Define
M=2x+v

N=29y -u Sf 8w Aesis

from components of (2.8). Then Shutts(1987)

approximation to the Hamiltonian:

H = fdf [%(2Qy-W)=

- To(S-So)] . e




5y: 2020y~ + 39737 + aap/ey pressure to be differentiable but do not require that M and N are

(\§)

g aghyE + aap/dz = 0 continuous.Since it is only necessary to know M,N and S for fluid
i~ relations (2.5 showing that :
- 3 3 irnctaticC Ieciaviie= e 52 = o i i 5 i i
These are the geostrcphlc and hydrosta parcels which fill the total available volume,the requirement on the ,
mate Hamiltonian js indeed associated with motions close %O pressure can be relaxed to differentiability almost everywhere; with M, N E

the approxi

The evolution equatiOﬁS are O and S undefined on a set of measure zero.

minimm energy-

4 .3 Properties of solutions
with respect 1o ¥ and N: . .

oo
~

sx: 3N/a1/29 - -20x) = 0 It is simplest to explain the properties of this model

§N: -aW/ar/2Q # 2ey-1 = 0 2.18) by examining a two-dimensional version. Consider a domain in the (x,2)

wn that in the special case wherevf# 1 plane with rigid boundaries. Following Hoskins(1975) write the equations

1t can be sho

: tly th mi-geostrophic si i inat i i 3
axis of rotation the equations are exactly the semi—ge P using a vertical coordinate which is a specially chosen function of

2 . 3 uluins ntum b g : > = !

equations derived by Hoskins(1975) by replacing the actual momentum DYy pressure so that the equations transform into a set like those for an g

i j i of tion. These i ssi ; ; : :

its geostrophic value in the unapproximated equations of moOtio 1 incompressible fluid.The unapproximated equations are then |

i 2.12). Sal (1985) derived a
equations conserve the energy given by (2.12). Salmon(1963’ 4

similar set of equations to (2.14)-(2.18) from a slightly different Du/Dt + 3g/8x - 2Qv = 0 (2.22)
Dv/Dt + 2Qu = 0 (2.23)
Hamiltonian formulation. e o
The remaining equations to close the problem are not Dw/Dt + 34/3z — ge* = 0 2.24)
; Dy = 2.25)
approximated and are given by the constraints: DS/Dt 0 2
Da/Dt = O (2.26)
J((x,y,2)/(a,b,C)) = & (2.19 u.n = 0 on boundaries. (2.27)
2.20) Any solution of these equations is an area-preserving

S = So(a,b,C) s
rearrangement of the fluid, because of (2.26) and (2.27). The
i it respect to rearrangement preserves the entropy S and the absolute momentum
M= (v+2Qx) following fluid parcels. The energy that can be attained in
454 Shuiga 2.21) such a rearrangement is stationary when the geostrophic and hydrostatic

relations (2.5) are satisfied. For this problem (2.3) takes the form:
together with a knowledge of the function U(a,S) for a perfect gas.

af/ax = 2Qv (2.28)

The system of equations (2.17) to (2.21) contains noO

]

A’z ge= 2.29)

spatial derivatives.The definitions (2.14) to (2.16) require the

...13..

...12._




minimum of the energy These equations are to be solved in a region of the (x,2) plane whichr

oy 1a\mx
shrinks laterally with time, its area being proportional to e “*. A is

GW/ax) (35/82) - (BW/3z) (3S/3x) 7 0 2.30)

as7az 3 0.

Given general initial data not satisfying (2.28) and

the moisture content of the air, g« is the saturation moisture contentl

i oL

and L the latent heat of evaporation. Figs. 1 and 2 illustrate a

5 O

3 4!2;29) Y £ will be conserved and the solution will not be solution. The data is approximated by a piecewise constant distribution
ek » tut.l mm £ e

of M,S and q. The solution will then remain piecewise constant when

2kl to ch minimum energy. If a dissipative mechanism for u and w is

integrated in time, provided that a single value of g« is used for each

ST LT ]

:Iml uded but no mixing of X and S allowed, the solution will tend

element. Cullen and Purser(1984) prove that the equations have a unique

ically to that of the system (2.23),(2.25)-(2.29). This reduced

is the two-dimensional version of the approximate equations piecewise constant solution which satisfies the stability _qondit;\qg: -

(2.30).

ritten so far,they describe a steady unidirectional

; 2 T T
A 4 Ml SR AR

In the solution shown ?15.1 ;l;gsj;rate:s:,tlge»_initial ;

strophic and hydrostatic balance. A nmon-trivial problem can

33 qnd

}5‘.)’ = M'.aﬂ AR

by Holt(1987). The equations are:

2y
RN ¢

(2.3
(2.32)

(2.33)




energy is still conserved. If parcels jump, u

diéééhfﬁudus though such as fronts, or the convecting solution illustrated above. Different
ggudvzliare undefined and a well-defined amount of energy is ’ - types of weather are important at low latitudes and it would not be
aiésipaﬁa“l‘he'se solutions are not likely to be solutions of the surprising if different approximate formulations were needed there.
B“larianfarn of the equations, even in a weak sense; numerical coliViS NN In operational forecast models, it is most common to

fore be very difficult. The rest of

1 there
cc_mventional methods wil distinguish weather-producing motions in terms of normal modes. The

by
: iders how finite difference methods on a fixed mesh can

|
papel‘ cons unapproximated equations are represented as a finite-dimensional system \
§ y ]

Ca 1 ; fully Lagrangian method used to joni ]
be used to solve the problem. The fully Lagrang ] using finite difference, finite element or spectral methods. This system
5‘“!;l;e solution in Figs.1l and 2 is inherently first order accurate %

g

is linearised about a state of rest and normal modes of the resulting

FRE : ticable for operational
and does not at present appear prac ¥ equations calculated. These modes may correspond to sound waves, gravity

: 3 fmstiag models. waves, or slowly propagating waves associated with weather systems. The

initial data is then prepared by requiring the initial time tendencies

of the unwanted modes to be small or zero. Two ways of doing this are
normal mode initialisation, (Temperton and Williamson,1979), and the
bounded derivative method, (Browning and Kreiss, 1985). The latter paper

shows rigorously that the procedure only makes sense if the vertical

structure is smooth because only then is the linearisation about a state

of rest reasonable. It is again difficult to see how this procedure oo

makes sense in the presence of discontinuities or convection.

A simpler procedure used,for instance, *"Eﬁ%“éﬁ gﬁ&’% ;

 The pressure distribution has to be

nal component of the horizontal wind

allows the system to reach tl 4
;nd w would be d




85 METHODS OF SOLUTION
3.1 demtgeﬂﬂmmeguﬁnﬂnﬁ

Ve first set out 2 solution procedure for the system
(2.23),(2.25)—(2.29). The procedure is designed so that it can readily
be applied to a three—dimensional model by using an alternating
direction method. The aim in this paper is to relate the procedure to
methods of solving the unapproximated equations (2.22)-(2.27).0nly the
detail needed to make the comparison is therefore given; a much fuller
description is given by Cullen(1987). A second order finite difference
algorithm is described. A similar procedure could be developed using
higher order finite difference methods,finite element,or spectral
methods.

The first requirement is to set up the grid to represent
the geostrophic and hydrostatic relations (2.28) and (2.29) in the most
natural way. This suggests that S,¢ and v are arranged on the grid as
shown in Fig.3. Equation (2.26) is then replaced by its Eulerian form

du/ax + dw/az = 0 (3.8
We will use a rectangular domain -L¢x¢L,0¢z<H. The boundary conditions

(2.27) then become

0 at x

[
1"

tL

w

0 at z = 0,H, (3.2)

These equations suggest the arrangement of u and w On the grid shown in
Fig.3. Note that if the grid has N layers between the upper and lower
boundaries, there are (N-1) independent values of w that can be computed

for each value of x. This number has to match the number of constraints

that have to be enforced between the v and S fields. These constraints

can be written

-18~

2Q3v/az = ge” IS/ ¥%. (343>
The form of this constraint suggests the arrangement of v and S on the
grid shown in Fig. 3. There can only be (N-1) values of S in each
column. This grid arrangement can be easily extended to a three-
dimensional model
The procedure for advancing the solution for one
timestep consists of four stages. Equations (2.23) and (2.25) are

stepped forward in time:

v! ve - (u¥v + 2Qu)at 3.4

S' = 8° - (uy¢gsSat (3.5
The operator u.¥ denotes ud/dx + wy/az. The values of u appearing on the
right hand sides of (3.4) and (3.5) are those at time level 0. Those of
S and v can be averages of values at time levels 0 and 1. Any forcing
terms, such as that in (2.34), are also added at this stage. V' and S'
will not satisfy (3.3). Before imposing this constraint by calculating a
new value of u and correcting v’ and S', it is necessary to enforce
(2.30) on the values at time level 1. If this condition is not satisfied
the equation for the new value of u will not be elliptic. 1t is very
difficult to enforce (2.30) without somewhere creating values of S and v
out of the range present in the original data. Since (2.25) states that
S is at all times a rearrangement of the initial data, this is
undesirable and may lead to computational instability. A simpler
procedure is therefore followed. The values of S in each vertical column
are adjusted so that 38/3z 2 0. The adjustment conserves the vertical
integral of S and imposes zero gradient in regions of negative
gradient.The values of (v+2Qx) are similarly adjusted so that

3 (v+2Qx)/3x > 0. This conditions are implied by (2.30) but are not




: tisfy it. Vrite the values of S and v after adjustment i b v* and S* will not exactly satisfy (3.3) and so the correction step must
ent to sau: ! . ] J

be iterated. The final iteration can be combined with the predictor step

g2, v2 are Dow corrected to satisfy (3.3), by calculating " for the next timestep, because equations (3.9) and (3.10) have the same
el gL 6% Vo ’ ' ?

vfd&ldﬂ? that sat
_using a subset of equations (

jsfies (3.1) and (3.2). The calculation is i form as equations (3.4) and (3.5).

3.4) and (3.5), namely k| 3.2 Solution of the primitive hydrostatic equations

- (ueav/ax +2Qu)at 3.6 | In this section we describe how equations (2.22)-(2.27)

.7 .k d 11y be solved
(w=3S/3z) 0t 3.7 S | would normally solved in the context of a weather prediction model.Ve

; 1) and (3.2) mean that u can be written in terms of a ‘,_‘ relate the procedure closely to that set out abave for the semi-

which vanishes on the boundaries. We seek a correction ' geostrophic equations. It is usually assumed that the ‘'solution of the. ;.syk

+;

more general set of equations will automatically include those o

jes the equation ; v
0)aby/azl + (ge=)a/exl (36y/ax) (3S/9z)) = R/at2 semi-geostrophic equations, as well as allawing other types afaation ¥Bise

(3.8) Lok ‘ the appropriate circumstances. In most operational models the only

motions that can be resolved arehydrqstatiﬂc

in the (x,z) plane.The equations can be made e

for the cqn‘strain‘t:_i el ade e bet? e

J'u dz»:? sk 5{.“‘-.7?4 aﬁﬁvm ’aﬁ«s
implied by (2.26) : nd @.27) 1:

b o 1) Vs ‘vsé

used, the size of the

e R s g 4 e =Y




 In a purely two-dimensional problem, the arrangement of

on the grid could be the same as shown in Fig.3. However,in
he ce-dimensional problem with these equations there are no separate
y variables. The continuity equation and boundary conditions

-izi"'%ake’the form (3.1) and (3.2). In a three dimensional problem the
-al arrangement would be to hold u and v at different points-the C
d of Arakawa and Lamb(1977).This conflicts with the requirement that
be arranged to suit (3.3) and that the number of degrees of

W ﬁiéhéé'%‘.‘he"nunber of geostrophic constraints. It is

scessary to compromise. There is no general agreement as to

(3.12)

(3.13)

g fast-moving gravity waves. It is
L , s
ion of the vertical advection

- dict v T
‘at this stage. In order to

tion as suggested by (3.12

TNB .

)

TR . g
AR

- Lax-Vendroff is us

e e b

by an explicit -em:!,%u?ki}uﬂ"" que

equations. It is therefore necessary to adjust the vertical profiles of
S to ensure that 38/dz > 0.It is not considered necessary to perform
horizontal adjustment or to attempt to enforce (2.30), though recent

work e.g.Thorpe and Emanuel(1985) suggests that it may be advantageous.

It is usual to combine this adjustment with a more sophisticated attempt
to represent the effect of convective clouds on the atmosphere.

The third part of the solution is given by:

vE = vE - (wdv/dz)at ; (86T . -

82 = 82 - (WiS/$z)at SRy 155 0
38218z = ge® s L2
u® = u? - QF/Ax - 20v@)at RNy e

Jus/x + Awe/dz = 0 > AL IR e

The solution of (3.17) must be modified to enforce §u dz = 0. The degree

S5 %
22

2

of-freedon tiat allows this, is the unknown value of § at z=0. (3.17) is

first solved with §=0 at z=0. Let the resulting vertical mean of u® be

@ e

SR e

U. The equation for the surface value g« of ¢ is then

A2galdx= = JU/dx

with boundary conditions

d#x/dx = 0 at x=1L

obtain (2.22)-(2.27). In ope:

~



diction of wave motions

( ne v'i..:pn,v‘(,a.;a.). and providing explicit pre

by the seni-geostrophic system.

This description suggests a number of purely numerical

t]mst may arise in simulating a solution close to that of the

g;Qgh;Q‘equations by using a primitive equation model. It is
1ﬁle‘§p.define an arrangement of variables on the grid that is
'u; rhe definition of geostrophic balance and is also suitable
. cit calculation of the ageostrophic wind. If (3.14) to
.«<ggggdered as an explicit iteration towards the solution of
of convergence can be shown to be very slow unless the
f;the motion is large, typically several km; Cullen and
 is thus a risk that a primitive equation model

unrealistically large amount of transient gravity and

NUMERICAL RESULTS
4.1 Front formation
In this section we compare results from finite
difference solutions of the semi-geostrophic equations and the primitive
hydrostatic equations in two two-dimensional test problems. The first
problem is to simulate the evolution of a two-dimensional air-stream
under the action of a large scale deformation field. The deformation
rate is periodic in time so that a given cross-sectional area through
the air-stream undergoes alternate compression and expansion. The data
are chosen so that the semi-geostrophic solution forms a discontinuity
which propagates into the interior of the fluid, as in the casee
illustrated by Cullen and Purser (1984). As the defornation reverses, the

discontinuity weakens and eventually the initial data is recovered The

total energy will be conserved over the cycle. As discussed in section b

2, this solution represents the minimum energy state that can he reached

'a. ‘

by the two-dimensional primitive eqnations without nixing Thus,
solving this problem using finite difference agpraxi tions tei,i

By
the semi—geostrophic or to the primitive

solution should be obtained up ! till {; |

SET bR




e energy lost from the basic state

equations some of th slight differences near the boundaries because of the use of extra

ﬁ ‘the primitive
may appear as inertia-gravity waves. boundary conditions.

The seni—geostrophic equations for this problem are :

Results from the primitive hydrostatic equations are
shown in Fig.5. After the initial compression the entropy field is very
similar to the semi-geostrophic model. However, the cross-frontal
circulation does not fall to near zero as the deformation rate drops to
zero at the maximum compression, but remains near its maximum value. In
the expansion phase the circulation changes gign as in the semi-
geostrophic model but overshoots the value reached during compression.
The expansion phase, therefore, leads to a much greater spreading out of
the entropy gradient. By the fifth cycle the compression gives almost =

Th imitive vertical isentropes, while the expansion spreads the ent ropy & sient
e pr gradi

vt

the left hand side over the whole domain.
o e le

The difference between these solutions can be explained

=

by their different responses to a time-varying deformation. The ?ﬁﬁ-"“

geostrophic model produces a cross-frontal eircuii‘&ioi”ﬂ’ﬁ%"e rﬁm by Ehel’ ¢

‘..geostrophic integration are shown » s

' e variation in the deformatic

mmaan so that the maximum compress:lun of
. - RS ieR f oF a0 ks

shown here the time-sca
equations were solved on a dale] : : | » :
' fac it 8 h ' l@‘é*tha diff

AR gaad

at the




.2 Nountain floW

The second problem to which we compare solutions is that

The basic flow is in
: ver a mountain ridge.
,tm—dtnnsional flow O

bal with a pressure gradient parallel to the ridge. This
c ance

ent is maintained at a constant value and provides the

passnre gradien
of energy for the proble
The problem is restrictive as a model of the real

n. The ridge is chosen to be a typical

m all the air has to flow across the ridge. In many

= a large proportion flows round the mountains and does
jcant vertical displacement. The problem has been
A by Cullen, Chynoweth and Purser (1987). They show

solution concentrates the flow across the

W in this problem; it is

i"‘k

B
P

040100 o e bacnonsn 6 e i 4

the energy in unbalanced wave motions; or dissipate the energy by sub-
grid scale eddy diffusion terms, or by the vertical adjustment which
maintains 3S/4z ? O-the condition for gravitational stability. It is not

known under what circumstances which process is dominant.

The semi-geostrophic equations to be solved in this

4.9

“4.10)

LRI Y7

gt

the ridge. Because of (4. 7) and
L3 & o e el AR RS i
in the isentropes ( S contours

w0

téi'pﬂ"ﬁ:id ﬁ-’én b




has been reduced. Most of the
its passage Over the ridge but the slope

ss the ridge is confi

ned to the lowest model layers.

enhanced flow acro
Fig.7(b) shows the wind parallel to the ridge. The upper air maximum has

been reduced to 25ms~'. There ig an upstrean barrier jet at low levels
~ been s

of 12ms™': downstream there is a region of uniform negative v of about
~ 5ms~'. This results from the bulk displacement of air to the right of

ed in the absence of the ridge. Since X

 the position it would have occupi

~ is determiped as a

function of t by (4.9) for each parcel of air, an

 jincrease in x must be compensated by a decrease in V.

The implied cross-ridge circulation (u,w) is shown in

Ap.flc)and (d@). The perturbation to u is less than 1lms~' almost

except near the ridge top. The maximum value is there about

tream of the ridge the basic 15ms™' is reduced to less than

vertical motion is mainly confined to the vicinity of the

tongue of values up to 13cms~' extends up to the top of

dge; this is almost certainly caused by numerical

f the primitive hydrostatic equations is
field shows a large amplitude hydraulic-
| am jump. Overturning of the

t W&Q,gq;, adjustment procedure.

negative values generated above the ridge top where the hydraulic flow
is dragging air down and to the right across the ridge. There is an
extra region of positive values below the main jet, where the air
downstream is swept back towards the ridge in a type of rotor motion.
The horizontal cross-ridge wind, Fig. 8(c) shows the hydraulic flow and
the downstream rotor. There is a region of retarded flow upstream
similar to the semi-geostrophic model. The vertical motion, Fig. 8(d),
shows the motions discussed above, together with some wave motions
propagating away from the ridge.

These two calculations have produced very different
solutions. The adjustment step in the semi-geostrophic solution which
enforces monotonicity of (v+2Qx) is used at most time-steps and
,together with the removal of small scales from the (u,w) field used to
provide a first guess at the next time-step, allows the energy to be
removed quite effectively. However, there are noticeable errors in the
colution above the ridge, indicating that the scheme has not removed all
that is required to reach the minimum energy configuration. In the -
primitive equation integrationm, mch_qi'tgg';amﬂ.sapma.im Ehe sadisow
hydraulic flow and is dissipated in the downstream jump d:xhnmahm;v y

vertical adjustment procedure. A similar mechanis implied in '

semi-geostrophic model when fluid *
primitive equation solution drags ai
above the ridge, while the semi-g



5.  DISCUSSION

The integrations shown illustrate the difficulty of

maintaining balanced flow in 2 numerical integration under conditions
,@ere o Bpiancad solution is not smooth, or when the forcing varies on
,‘ time-scale comparable to £-'. In the case of time-varying forcing, it
is not known ‘whether the atmosphere remains close to balance only if the

r of magnitude greater than £,

time-scale is an orde as would be

required by linear theory, OT whether nonlinear effects allow balance
‘ui!;lth more rapidly varying forcing. When the balanced solution is not
sﬁoth. there will be at least a local breakdown of balance in the

e. However, the strong gradients mean that the real flow will

@g nanin two-dimensional either. In the solutions of the primitive

ations illustrated, the response has to be on scales

model and has to be smooth and two-dimensional. These

m e the balanced solutionm, which is not smooth, and

mm problem which has to be solved in numerical
= isional and many of the perturbing

T

lanced response is: primarily [a;i2e

~area of the cross-section. The

are not well resolved. In the case of
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