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Standard test results for a shallow water model on the 
Fibonacci Grid 
by Richard Swinbank and R James Purser (NCEP / SAIC) 

Abstract 
Swinbank and Purser (1999, 2006) introduced a novel framework for global 

numerical models, named the “Fibonacci Grid”.  Those papers describe the 
construction of a model of the shallow-water equations, based on fourth-order 
accurate finite differences on the Fibonacci Grid.  The current report summarises the 
results from a suite of test cases for shallow water models that were defined in detail 
by Williamson et al. (1992), and is an expanded version of section 4 of Swinbank and 
Purser (2006).   

Introduction 
Swinbank and Purser (1999, 2006) introduced a novel method to cover a 

sphere with a set of points that are geometrically regular and essentially uniformly 
distributed.  The algorithm to generate this set of grid-points is based on Fibonacci 
numbers, and consequently this type of grid is referred to as a Fibonacci Grid.  By 
building a model of the shallow-water equations using this framework, Swinbank and 
Purser (2006) demonstrated that this grid could be used as a framework for global 
atmospheric models.  That paper described the geometrical properties of the Fibonacci 
Grid and the construction of a model of the global shallow-water equations, based on 
fourth-order accurate spatial finite differences and using a fourth-order Runge-Kutta 
time integration scheme.  

In order to make an assessment of the performance of the shallow-water model, 
we have carried out some of the standard tests defined by Williamson et al. (1992). 
First, we have tested the advection scheme of the model in isolation, by advecting a 
cosine bell pattern with a constant, specified wind field.  Secondly, we have carried 
out several of the standard test cases for the full shallow-water model equations.  
Those tests include: global steady-state nonlinear geostrophic flow; zonal flow over 
an isolated mountain; and the evolution of a zonal wavenumber-four Rossby-
Haurwitz wave.  A summary of some test results were presented by Swinbank and 
Purser (2006), but we present a fuller set of results here.  The test cases are referred to 
using the case numbers referred to by Williamson et al. (1992); the reader is referred 
to that paper for the precise definitions and parameter settings.  

For this paper, we present results produced at medium resolution (N=5000, 
grid-length approximately 226 km) and at high resolution (N=20000, grid-length 
approximately 113 km).  (N refers to the number of grid points in each hemisphere; 
the grid points are numbered from –N to +N, i.e., there are 2N+1 grid points 
altogether).  The most important model parameters for each resolution are 
summarised in Table 1. The results presented here are all produced using fourth-order 
accurate horizontal differencing both for the normal zone-differencing and over the 
polar caps.  Some of the tests were performed using both second-order and fourth-
order accurate spatial differencing.  Experiments showed that the second-order 
accurate version of the model was more numerically stable than the fourth-order 
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version.  However, the fourth-order solutions were superior, and we only show those 
results in this paper.   

Table 1 
Fibonacci Model Parameters 

Resolution N=5000 
(low diffusion) 

N=5000 N=20000 

Nominal grid length 
(√A) 

225.8 km 225.8 km 112.9 km 

Timestep 15 min 15 min 7.5 min 

Diffusion filter 
dilution factor 

0.0833 1.0 1.0 

Case 1: Advection of a Cosine Bell 
In this set of tests a cosine bell is advected once around the sphere, using a 

specified wind field that corresponds to solid body rotation.  The magnitude of the 
wind is chosen so that after 12 days the solution should exactly overlay the initial data. 
Several orientations of the advecting wind are specified: around the equator, directly 
over the poles and minor shifts from these two orientations.  The orientations are 
specified using a parameter α, which is that angle between the axis of solid body 
rotation and the polar axis.  We have run tests with α=0.0, -0.05, +0.05, π/2, π/2-0.05, 
π/2+0.05.  The values of α that are additional to those specified by Williamson et al. 
(α=-0.05, π/2+0.05) were included because the chirality of the Fibonacci grid means 
that those solutions are not just reflections of the solutions for α=+0.05 and α= π/2-
0.05.   

Figure 1 shows the advection results for the six different orientations.  In each 
case, the initial position of the cosine bell coincides closely with the position after the 
shape is advected completely around the globe.  There is a slight spreading of the bell 
shape over the 12-day period, as a result of the diffusion applied in the model.  The 
six plots look essentially indistinguishable, so later results from the advection tests are 
only plotted for α= π/2, where the advection was over the poles. All the model results 
are plotted by interpolating from the model grid to a one-degree resolution latitude-
longitude grid.  Since that resolution is finer than the model resolutions we have used, 
any structures on the model grid-scale will be visible in the plotted maps. 

In order to run the full shallow-water model, it proved necessary to run with 
rather higher diffusion settings.  Figure 2(a) shows the result of the advection with 
low diffusion and N=5000 (as Fig. 1), while Fig. 2(b) shows the advection tests with 
diffusion settings as required by the full model.  In that case, the diffusion has 
smoothed out the cosine bell much more strongly, although its position is still in very 
good agreement with its starting location.  Figure 2(c) shows the advection results 
with N=20000, again with diffusion setting used in the full model.  In that case, the 
finer grid means that the diffusion is having much less effect, and results are 
essentially the same as for N=5000, with low diffusion. 
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d) N=5000, Equator+0.05                                                         

                                                                                
a) N=5000, Pole+0.05                                                            

                                                                                
e) N=5000, Equator                                                              

                                                                                
b) N=5000, Pole                                                                 

                                                              
f) N=5000, Equator-0.05                       

                                                              
c) N=5000, Pole-0.05                            

Figure 1: Results of polar advection test for N=5000, with varying values of α: a) 
π/2+0.05, b) π/2, c) π/2-0.05, d) +0.05, e) 0.0, f) -0.05.  The dashed lines show the 
initial location of the cosine bell, and the full lines the final location, which should 

coincide exactly. 

                                                                                
a) N=5000, low diffusion                                                        

                                                                                
b) N=5000                                                                       

                                                              
c) N=20000                                           

 
Figure 2: Results of polar advection test at a) N=5000 and low diffusion (same as Fig. 

1b), b) N=5000, c) N=20000.  
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Figure 3: Statistical comparisons between polar advection test results and the true 
solution.  Statistics L1, L2 and L∞ are plotted daily from day 0 to day 12, through a 

complete revolution. Solid line – N=5000, low diffusion; dotted line – N=5000, with 
diffusion as in full model; dashed line – N=20000, with diffusion as in full model. 

 

Figure 3 shows statistical comparisons of the advection results with the true 
solution. We plot time series of the normalized absolute, root mean square and 
maximum differences, in terms of the L1, L2 and L∞ diagnostics defined by 
Williamson et al (1992).  These statistics are calculated from the output fields on the 
original model grid, assuming that each grid point represents the same area, i.e., there 
is no area-weighting in the calculations.  (As shown by Swinbank and Purser, 2006, 
this is a very good approximation.)  Figure 3 demonstrates that the error statistics 
grow quickly from the beginning of the integrations, as one would anticipate from 
errors dominated by diffusion.   

In summary, the results show that the advective processes are treated well on 
the Fibonacci Grid.  However, the steep gradients in the cosine bell pattern make it 
susceptible to the diffusive filtering.   

Case 2: Steady nonlinear geostrophic flow 
This case is a steady state solution to the non-linear shallow water equations.  

It consists of a solid body rotation in balance with the corresponding geopotential 
height field.  As in the previous test, Williamson et al (1992) specify a number of 
different orientations, in which the Coriolis parameter is a function of both latitude 
and longitude, i.e., the earth’s rotation axis does not necessarily coincide with the axis 
of the model grid.  Since these unconventional orientations would have entailed major 
recoding of the model, the case has only been run with α=0.0.  Results from case 1 
suggest that the model results are not sensitive to the grid orientation, so we would not 
expect results of tests with different values of α to differ significantly from those 
presented here. 

Plots of the height and wind fields (not shown) demonstrated that the flow was 
stable over the integration period (15 days), with little visible change.  Since the result 
should be a steady state solution, error diagnostics were calculated by comparing the 
flow during the integration with the initial data.  Figure 4 shows time series of the L1, 
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L2 and L∞ diagnostics; as in case 1, these statistics are calculated on the original model 
grid.  They all show a roughly linear increase with time; within the 15 day period of 
the run the errors remain small. 
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Figure 4: Statistical comparisons between height field and the true solution for the 

case of steady geostrophic flow.  Statistics L1, L2 and L∞ are plotted daily from day 0 
to day 15.  Here, and in subsequent time series, the dotted lines show results for 

N=5000, and dashed for N=20000.  

 

Case 5: Zonal flow over an isolated mountain 
In this case the initial wind and height field are exactly the same as for case 2, 

but an isolated conical mountain was imposed, centred at latitude π/6 and longitude 
3π/2.  In order to run this test, the model was recoded to allow for non-zero orography.  
The main aim of this test is to check for integral invariants, i.e. to check how much 
the total mass, energy and potential enstrophy vary during the integration.  Since an 
analytical solution is not known, Williamson et al have provided a reference solution, 
for comparison purposes.  

The case was run for 15 days. Figure 5 shows the simulated model height 
fields from run at N=20000, at days 5 and 15.  The results appear very similar to the 
supplied reference solution; this is demonstrated with the difference fields that are 
also plotted in Fig. 5.  Apart from differences resulting from interpolation errors in the 
vicinity of the mountain, there is a set of wave-like differences that originate near the 
mountain and propagate around the globe during the integration; a qualitatively 
similar feature was also found by Thuburn (1997). 

In this case, the error statistics were calculated from the data interpolated to a 
1° latitude-longitude grid, rather than the original model grid points, in order to make 
it simpler to compare the results to the supplied reference solution.  The “error” 
diagnostics (Fig. 6) show differences compared with the supplied reference solution. 
Further inspection shows that the large maximum (L∞) errors result from interpolation 
errors around the mountain, where the slope changes very sharply.  This is the only 
plot that appears materially affected by our calculating the error statistics on a 1° grid 
rather than the model grid.  
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Flow over Isolated Mountain; N=20000, day 5                                     
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Figure 5: The evolution of height fields for the case of zonal flow over an isolated 
mountain: a) simulation after 5 days (contour interval 100m), b) difference from 

reference solution after 5 days (contours interval 5m, omitting zero contour) c) and d) 
as a) and b) respectively, but after 15 days. 
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Figure 6: Statistical comparisons between height field and the supplied reference 

solution for the case of zonal flow over an isolated mountain.  Statistics L1, L2 and L∞ 
are plotted daily from day 0 to day 15.   

 

Figure 7 shows time series of three global invariants: total mass, total energy 
and potential enstrophy.  While the conservation of total mass is not enforced in the 
model, the statistics indicate that it is not a major problem; the total mass has changed 
by around 1 part in 105 after 15 days at N=5000, and an order of magnitude less at 
N=20000. Time series of the energy and potential enstrophy show significant 
decreases through the 14-day integration period, probably reflecting the strong 
diffusion. 
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Figure 7: Global invariants for the case of zonal flow over an isolated mountain.  The 

graphs show relative changes to the total mass, energy and potential enstrophy.   

 

Case 6: Rossby-Haurwitz wave 
Another test commonly applied to shallow-water models is the simulation of 

Rossby-Haurwitz waves.  The initial height and velocity fields are defined by analytic 
functions of latitude, longitude and various wave parameters.  In a non-divergent 
barotropic model the wave pattern moves eastward without changing shape.  While 
the Rossby-Haurwitz waves are not analytic solutions of the shallow-water equations, 
they evolve in a somewhat similar manner, progressing eastward with some change of 
shape.  Since the true solution is not known, we have again compared our results with 
the reference solution from Williamson et al. (1992). 

The Rossby-Haurwitz wave tests have been run at both medium (N=5000) and 
high (N=20000) resolution, each for a 14-day period.  Figure 8 shows the starting 
conditions (day 0) and results at day 14 from the two Fibonacci shallow-water model 
runs, along with the day 14 reference solution.  The medium-resolution results (Fig. 
8(c)) are essentially in phase with the reference solution (Fig. 8(b)), but the shape of 
the waves has changed significantly.  The troughs have become more intense and the 
ridges have become narrower, coupled with an increase in heights at high latitudes.  
The waves have acquired a noticeable poleward-westward tilt. This tilt is evidence of 
vacillations in wave structure that have also been found in solutions from other 
numerical models (see Thuburn and Li, 2000). There is a degree of asymmetry 
between the solutions in the two hemispheres that results from the chirality of the 
model grid.  There are other small asymmetries between individual waves within a 
hemisphere, which result from the asymmetric nature of the grid.  At high resolution 
(N=20000, Fig. 8(d)), the overall shape of the wave is closer to the reference solution, 
and the initial conditions, indicating the improved accuracy resulting from better 
resolution.   
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a) Initial conditions  Day 0                                                    
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Figure 8: Height fields from simulations of the Rossby-Haurwitz wave 

(contour interval 200m): a) initial conditions, day 0; b) day 14 from the reference 
solution; c) day14, simulation using N=5000; d) day 14, simulation using N=20000.  
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Figure 9: Statistics L1, L2 and L∞ for Rossby-Haurwitz wave simulations, compared 

with the reference solution for days 1 to 14.  

 

Figure 9 quantifies the errors from the two model runs; as in case 5, statistics 
were calculated using a 1° grid.  In this case, the errors grow relatively slowly at the 
start, as the solutions gradually diverge. This indicates that, for this test, the errors are 
not so dominated by the diffusion. The normalized errors L1, L2 and L∞ errors are 
much smaller than in the advection test, and probably more indicative of values 
obtainable in real-life situations.   

The time series of the total mass (Fig. 10) shows a similar magnitude change 
to that found for case 5.  Time series of the energy and potential enstrophy show 
stronger decreases through the 14-day integration period (by 0.15% and 2% 
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respectively at N=5000), indicating that the Rossby-Haurwitz wave is a more sensitive 
test for those invariants than the flow over the isolated mountain. 
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Figure 10: Invariant statistics for Rossby-Haurwitz wave simulations.  

 

Conclusions 
We have presented results from a shallow-water equation model based on the 

Fibonacci Grid framework.  The results demonstrate that it is feasible to build a 
shallow-water model using the Fibonacci Grid framework.  The first test shows that 
the Fibonacci Grid framework allows accurate advection results.  Although the model 
is not formulated to enforce conservation of mass, this does not appear to be a major 
issue.  However, the high diffusion required to run the full Eulerian shallow-water 
model demonstrates that the current model has limitations.  In particular, the results 
show that there is a significant decrease in total energy and potential enstrophy. 

As outlined by Swinbank and Purser (2006), there are a number of avenues 
that could be explored to develop a model on the Fibonacci grid that could potentially 
perform better.  The current framework may be used for higher-order finite difference 
schemes.  Other possible developments include the construction of a semi-Lagrangian 
model, a finite element model or the use of Arakawa-type finite difference schemes 
that would conserve enstrophy and energy.  The current results are only a first step 
towards the exploitation of the remarkable geometry of the Fibonacci grid. 

Acknowledgements: We thank one of the referees of Swinbank and Purser 
(2006) for encouraging us to carry out a more complete set of tests and John 
Truesdale for help with the shallow-water model reference solutions. 
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