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The MOGREPS short-range ensemble prediction system: 
Verification report  

Trial Performance of MOGREPS January 2006 - March 2007 
Neill Bowler, Marie Dando, Sarah Beare & Ken Mylne 

 
1. Introduction 
MOGREPS (Met Office Global and Regional Ensemble Prediction System) is 
an ensemble prediction system (EPS) designed for short-range forecasting to 
provide a capability for assessment of uncertainty and the generation of 
probability forecast products over the time-scale of 1-2 days. It is designed to 
complement the ECMWF EPS which provides the same service for medium-
range forecasts over lead-times of 3-15 days. MOGREPS grew out of an 
initial feasibility study in 2002-03 which considered the requirements for a 
short-range EPS and designed the framework for a LAMEPS (Limited Area 
Model EPS). The aim of the project was to provide a near-mesoscale 
resolution ensemble to address the uncertainties which are important to short-
range forecasting, with a particular emphasis on more severe or extreme 
events which have a high impact on many Met Office customers and which 
often require the higher resolution of a regional model to be adequately 
represented. The North Atlantic and European (NAE) version of the Unified 
Model (UM) was chosen for the regional ensemble to provide coverage of the 
main region for development of weather systems affecting the UK and Europe. 
After a period of research on perturbation methods, the LAMEPS 
Implementation Project was initiated in 2004 to implement the developing 
system in the Met Office operational suite in time for a full trial beginning in 
September 2005. The purpose of the trial was to assess the quality of the 
NAE ensemble for real-time forecasting, and in particular to assess whether it 
was able to offer improved uncertainty and probabilistic information for the 
short-range than was already available from the ECMWF EPS. It was 
considered essential to run the trial over a substantial period of at least a year 
to produce valid statistical samples for probabilistic forecasts. The year-long 
trial was formally completed in September 2006 and a preliminary verification 
report was completed and presented as MOSAC Paper 11.5 (2006). After the 
trial MOGREPS continued to run and this full verification report, which is a 
Key Deliverable of the Met R&D Programme, draws on data up to March 2007.  
As the name implies, MOGREPS provides both a global and a regional 
ensemble capability, but the main interest in MOGREPS is in performance of 
the higher resolution NAE ensemble for high impact events. The global 
ensemble exists mainly to provide the lateral boundary conditions for the 
regional ensemble, so the emphasis in this report is mostly on the regional 
NAE ensemble. Some verification of the global ensemble was provided in the 
preliminary report in MOSAC Paper 11.5 (2006), and showed that the 
ensemble is performing well. Aside from its original purpose of supporting the 
regional ensemble, global MOGREPS is also now run routinely out to 15 days 
as part of the Met Office contribution to the WMO research programme, 
THORPEX. Under the Met Office THORPEX project, Watkin et al (2007) 
reported that the 15-day MOGREPS was competitive with the ECMWF EPS 
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although overall slightly less skilful. Since the ECMWF EPS is a much more 
mature system this is a notable achievement and offers encouragement that 
the global ensemble should provide good support for the regional ensemble.  
As noted above the high impact events of interest to customers are often also 
severe or extreme weather events. In practise probabilistic verification of 
extreme events is not possible because sample sizes are so small, but 
emphasis in the report will be given wherever possible to performance for 
extreme events.  
The verification results in this report are split into three sections, divided by 
the systems which have been used to analyse the performance. This choice is 
motivated by the fact that each of the verification systems is attempting to 
provide different information. Section 2 of the report provides a brief 
description of MOGREPS, while section 3 introduces the main verification 
diagnostic tools which are used in subsequent sections. Section 4 uses the 
station-based verification system and looks at the categorical verification of 
the ensemble forecasts. This assessment can be made on the ECMWF 
ensemble in addition to the global and NAE MOGREPS ensembles, allowing 
a comparison with pre-existing capability. Section 5 uses the station-based 
verification system, but looks at the ability of the spread of the NAE ensemble 
to predict the skill of the ensemble mean forecast. Section 6 uses the area-
based verification system, and looks at the overall performance of the NAE 
ensemble in more detail, using the maximum possible number of verifying 
observations to focus as much as possible on more extreme (and hence 
generally higher impact) events. Section 7 presents some preliminary results 
for verification of tropical cyclones in the 15-day global version of MOGREPS. 
Some conclusions are drawn in section 8. 
 
2. Description of MOGREPS 
MOGREPS consists of two ensembles, one global and one regional using a 
higher-resolution LAM covering the North Atlantic and Europe (the NAE 
ensemble). The NAE domain is shown in figure 2.1. The resolution of both 
ensemble systems has been chosen to be approximately half the resolution  
 
 

 
Figure 2.1: Map showing the domain of the Met Office's models.  The NAE 
model covers much of the north Atlantic and Europe, and is shown in a darker 
shading here.  (Also shown is the UK meso-scale model area in a lighter colour.) 
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of th ite.  
The  the 
mid-l ution 

the NAE 

r breeding method (Toth and 

turbations from the global ensemble and adds them to the latest 

ut only the Random 

e corresponding deterministic models in the Met Office operational su
global ensemble is run at N144 resolution (approximately 90km in
atitudes) with 38 vertical levels, which compares with N320 resol

and 50 levels for the deterministic global model.  The NAE ensemble is run at 
24km resolution and 38 vertical levels, which compares with 12km resolution 
and 38 vertical levels for the deterministic model.  Both ensembles are run 
with 24 members (unperturbed control plus 23 perturbed members). 
The run times of the ensembles are offset by 6 hours to distribute the 
computing burden more evenly through the day.  The global ensemble runs at 
00 and 12UTC and the NAE ensemble at 06 and 18UTC.  Thus 
ensemble takes its LBCs and initial condition perturbations from a 6-hour 
forecast of the global ensemble. For a short-range ensemble to be useful in 
an operational framework it is critical that the forecasts are available as early 
as possible after data-time, and this arrangement allows the NAE ensemble to 
be run immediately that the new NAE analysis becomes available (rather than 
having to wait for the global ensemble to run first). Global MOGREPS 
forecasts are run to 72 hours ahead and NAE MOGREPS to 36 hours for 
results presented in this report, although the latter has more recently been 
extended to 54 hours to fully encompass Day 2. 
Initial condition perturbations for MOGREPS are generated using an 
Ensemble Transform Kalman Filter (ETKF) (Bishop et al., 2001). This may be 
thought of as a natural generalisation of the erro
Kalnay, 1993), in which the perturbations determined for each cycle are a 
linear combination of the forecast perturbations from the previous cycle. This 
mixing allows the perturbations to be orthogonalised, and has been seen to 
lead to improved performance over error breeding (Wang and Bishop, 2003). 
The ETKF calculates the new set of perturbations from the forecast 
perturbations using a transform matrix. The perturbations are rescaled to 
ensure they are consistent with observation errors in 4D-Var using a variable 
inflation factor. The ETKF provides a set of perturbations which are added to 
the Met Office 4D-Var analysis to provide the initial states for ensemble 
members.  
In the current implementation of MOGREPS all initial condition perturbations 
are calculated in the global ensemble. The regional ensemble takes the 6h 
forecast per
NAE analysis to provide the initial conditions. It is planned to introduce initial 
perturbations calculated within the NAE ensemble in the near future, but this 
will not affect any of the results presented in this report. 
Uncertainty due to model error is addressed in MOGREPS through stochastic 
perturbations to the model, mainly to the parameterised model physics. Three 
schemes are implemented in the global ensemble, b
Parameters (RP) scheme is currently employed in the NAE ensemble. The 
RP scheme targets uncertainty due to the choice of tuneable parameters in a 
number of parameterisation schemes in the UM. Parameter values are based 
on empirical results but are subject to uncertainty. In the standard UM 
implementation parameter values are held constant at a chosen value, but 
under the RP scheme they are allowed to vary smoothly from time-step to 
time-step in a random fashion within the error bounds of the empirical 
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estimation of the parameter values. The global ensemble also employs a 
Stochastic Convective Vorticity (SCV) scheme and a Stochastic Kinetic 
Energy Backscatter (SKEB) scheme. The SCV scheme addresses uncertainty 
due to the impact of organised convection and is most appropriate in the 
tropics and for lower resolution models, so is not employed in the NAE. The 
current SKEB scheme was found to be ineffective in the NAE model, so was 
not implemented. A new SKEB2 scheme is under development and is 
expected to be implemented in the NAE in the future. 
It is important to emphasise that uncertainties in initial condition and model 
are not independent, as the impact of stochastic physics perturbations is 
propagated into the initial condition perturbations of the next cycle through the 

ities. MOGREPS forecasts are also stored in the FSSSI database for 
 

OGREPS was initially implemented in August 2005. Since then there have 
ificant upgrades which could have had some 
rmance. Upgrades affecting the NAE ensemble 

ETKF.  
MOGREPS is supported by a comprehensive display system which allows 
forecasters to view a wide range of forecast fields and products such as 
probabil
a large set of sites around the UK and Europe, and a few elsewhere around
the world from the global ensemble only. 
 
2.1 Upgrades to MOGREPS 
M
been a small number of sign
impact on the verification perfo
are as follows:  

Date Description of Change Expected impact on NAE 
Ensemble 

Oct 2005  to Upgrade global EPS
UM6.1 

Minor 
 

June 2006 ant reduction in 
nsemble spread over mid-
titudes – improvement. 

Local ETKF  
 

Signific
e
la

“ SKEB introduced to global 
PS E

Minor 

The introduction of the local ETKF in June 2006, which is believed to have 
signi antly nsemble over Europe, is 
the only change believed to have had a major impact on performance during 

fic reduced the over-spread of the NAE e

the verification period. Many of the verification results presented are based 
only on the later part of the trial period after this change (including the period 
after the formal end of the trial in September 2006) so the results are 
expected to largely reflect the performance of the current system at the end of 
March 2007. However note that the results from the Area-based Verification 
system presented in section 6 include data from before this change in order to 
capture as large a sample as possible for rare events, which may have some 
impact on the results reported in that section. 
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3. Description of verification measures 
A number of verification methods are used in this report, and a brief outline of 
these will be given here. A more detailed description of almost all of the 
verification methods used in the world today can be found on Beth Ebert’s 
web pages at 
http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html  
 
3.1 Brier skill score 
The Brier skill score (BSS), reliability score and resolution score are used to 
assess forecast quality. These scores derive from the well-known Brier score 
(Wilks, 1995, p262) 

( ) ( )2 2

1 1

1 1 (1 )
I I

i i i i i
i i

BS N p o N o o o
N N= =

= − − − +∑ ∑ o−   (3.1) 

o  is the sample climatological value of the probability of the event, that is 

1

1 N

k
k

o o
N =

= ∑         (3.2) 

N is the total number of forecasts, and ok is the probability that the event was 
observed (either zero or one).  io  is the frequency with which the event was 
observed, when the forecast probability fell into category i.  Ni is the number 
of forecasts of the event in the same category, I is the number of categories 
and pi is the forecast probability.  The BSS is derived from the Brier score as 

1skill
ref

BSB
BS

= −         (3.3) 

The in-sample climatology is usually taken as the reference forecast, which 
gives 

skill resolution reliabilityB B B= +       (3.4) 

where 

( )2

1

1
(1 )

I

resolution i i
i

B N o o
o o N =

= −
− ∑       (3.5) 

measures the propensity of the forecast to give high or low values of the 
probability (as opposed to forecasting climatological values) and 

( )2

1

1
(1 )

I

reliability i i i
i

B N p o
o o N =

= −
− ∑       (3.6) 

is a penalty function for departure of the forecast from perfect reliability. The 
Brier skill score is a useful measure of the skill of a forecast, since it cannot be 
hedged, which is one the reasons it is the skill score used to define the 
probability of precipitation KPT (Met Office Key Performance Target). 
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3.2 Attributes (reliability) diagrams 
A natural companion to the Brier skill score is an attributes diagram. This
consists of the standard reliability diagram and also includes reference lines
related to the algebraic decomposition of the Brier score and Brier Skill sc
(Wilks, 1995). 
The reliability curve shows the frequency with which an event was obs

 
 

ore 

erved 
 occur, plotted against the frequency with which it was forecast to occur. 
he curve for a perfectly reliable ensemble will lie along the diagonal line with 

istogram is known as the sharpness or refinement 

d line marked ‘no resolution’ in section 6 is related to the 
resolution term in the decomposition of the Brier score (see above). See 
figure 6.1 on page 33 for an example. The no resolution line represents the 
sample climatology of the observations - points falling o  lin te 
forecasts that are unable to resolve occa  
lik nce 
between the reliability curve and the no resolution line the greater the 
resolution of th
the sum of th
between the points on the reliability curve and the no resolution line. The 

r 
points along this line  is equal to , and the forecast has no skill. 

3.3 Relative opera
Plots of the relative operating characteristic (Mason, 1999) show the hit rate 

ility of precipitation greater than 50%). The hit rate and false alarm rate 
are defined as follows 

to
T
gradient 1:1. The h
distribution, which provides information regarding the frequency of use of 
each probability value. 
The horizontal dashe

n this e indica
sions where the event is more or less

ely than the overall climatological probability. The larger the dista

e forecast. The resolution term of the Brier score consists of 
e weighted average of the square of the vertical distance 

vertical dashed line in section 6 is located at the intersection of the perfect 
reliability line and the no-resolution line and marks the climatological forecast 
probability of the event. By definition such a forecast has no resolution and 
perfect reliability. The dashed diagonal line that sits midway between the 
perfect reliability line and the no resolution line marks the line of ‘no skill’. Fo

resolutionB reliabilityB

ting characteristic (ROC) 

(H) against the false alarm rate (F) for different confidence levels (such as 
probab

aH a
c

b
F c d

= +

= +

         (3.7) 

where a, b, c and d are the standard contingency t

 

 Event forecast Event not forecast 

able values shown in table 
3.1.  Values at different probability thresholds define a series of points, which 
are often joined by straight lines.  A measure of the skill of a probability 
forecast is the area under the ROC curve (from (0,0) to (1,1)). 

Event observed a (hit) b (miss) 

Event not observed c (false alarm) d (correct rejection) 
Table 3.1. Contingency table for a categorical forecast. 
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It has been proposed (Wilson, 2000) that rather than calculate the area under 
a ROC curve based on a series of straight-line segments that a parametric 
curve be fitted to the data, and the ROC area be estimated as the area under 
this curve. This estimate should provide the limiting skill of the ensemble as its 

ificati rical  

ta is based on the probability of gross error for an 
observation, as determined by the data-assimilation system. 
 
Data from FSSSI includes MOGREPS global and regional forecasts as well 

ata is restricted 
 the same way. Table 1 lists the quantities that are verified, and for each of 
ese quantities whether the verification is performed against UK only, or UK 
nd European stations. An ted for whi s are 

ve a sm ence from European stations, but still be 
presented are for the validity times of 

d. 
 

size tends towards an infinite number of members.  The parametric fitting is 
taken from a straight line fit when the empirical hit and false alarm rates have 
been transformed to standard normal deviates. It is this parametric fit which is 
used in this report. 
 
3.4 Spread and skill 
One of the key aims of an ensemble from a forecaster’s perspective is to 
predict the skill of the deterministic forecast. Ideally, when the spread of the 
ensemble is small then the forecaster can have confidence that the 
deterministic forecast will be reliable, whereas when the spread is large it is 
more important to express uncertainty and make allowance for errors. There 
are two aspects to spread and skill. Firstly the spread of the ensemble should 
match the error in the ensemble mean forecast on average. This is a common 
assessment, based on finding the average spread and error of the ensemble 
forecast for a particular lead time. This type of verification is touched upon in 
section 6. The second type of assessment looks at whether the spread of the 
ensemble provides an accurate prediction of the error in the ensemble mean 
on any given instant. This is assessed by looking at the correlation between 
the spread and error, and is considered in section 5. 
 
4. Station-based ver on – catego verification and comparison
with ECMWF 
Verification was performed using data from the station-based verification 
system. This system takes the ensemble forecast data from the site-specific 
forecast database, FSSSI, (which has been interpolated to the station 
location) and verifies this against the observations at each site. Quality control 
of the observation da

as forecasts from the ECMWF ensemble. The station-based verification is 
performed against observations at a set of 79 sites in the UK and Europe. For 
a number of quantities the ECMWF forecasts are verified against UK stations 
only, and in order to perform a comparison, the MOGREPS d
in
th
a y results presen ch European station
available will ha
mainly based on UK stations. All results 

all influ

0Z and 12Z combine

8/60 



UK stations only (56 sites) UK and European stations (79 sites) 

Variable Validity 
time 

Threshold Variable Validity 
time 

Threshold 

Wind Speed 0Z Force 5, 6, 
7, 8 & 9 

   

Wind Speed 12Z Force 6, 8 
& 9 

Wind speed 12Z Force 5 & 
7 

Temperature 0Z > 5, 10, 
15, 20 
< 2, -2 

Temperature 0Z < 0, -5 

Temperature 12Z > 20, 25 
< 5, 2, 0, -
2 

Temperature 12Z > 10, 15 

12h accum 
precip 

0Z > 0.1, 0.5, 
1, 5, 10, 
20 

   

12h accum 
precip 

12Z > 0.1, 1, 
20 

12h accum 
precip 

12Z > 0.5, 5, 
10 

Table 4.1. Quantities for which only UK stations, or UK and European stations 
are used in the verification. 

 
Reliability tables have been calculated for each day of the verification period, 

 are the 5% and 95%. The forecast probabilities are binned 

and ECMWF ensembles, which have approximately 
qual skill. 

and these were re-sampled to provide confidence intervals. The confidence 
intervals shown
into 10% bins, which allows comparison of ensembles with different numbers 
of members. Although binning the forecast into 10% bins aids comparison 
between the ensemble systems, some advantage for the system with more 
ensemble members (ECWMF in this case) will persist. If, on any given 
occasion forecasts are not available from any one of the forecasting systems, 
then the verification is not calculated for any system. This ensures that exactly 
the same data-set has been used for each of the systems. 
 
4.1 Precipitation performance 
Figures 4.1 to 4.4 show the Brier skill score, reliability and resolution for the 
three ensemble forecasts. The results are for probability forecasts of 12h 
accumulated precipitation greater than 0.5, 1, 5 and 20 mm respectively. For 
accumulations of 0.5 mm (figure 4.1) the NAE ensemble has a similar 
resolution to the ECMWF ensemble, which is better than the global ensemble, 
though not significantly. The NAE ensemble is significantly more reliable than 
the global ensemble, which is significantly more reliable than the ECMWF 
ensemble. Overall, this means that the NAE ensemble is significantly more 
skilful than the global 
e
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Figure 4.1. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components as defined in equations 3.5 and 3.6 for the NAE, global 
and ECMWF ensembles for forecasts of 12h accumulated precipitation greater 
than 0.5 mm. The verification period is 1 July 2006 to 31 March 2007. 
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Figure 4.2. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of 12h accumulated precipitation greater than 1 mm. The verification period is 1 
July 2006 to 31 March 2007. 

 

 
Figure 4.3. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of 12h accumulated precipitation greater than 5 mm. The verification period is 1 
July 2006 to 31 March 2007. 
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Figure 4.4. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of 12h accumulated precipitation greater than 20 mm. The verification period is 1 
July 2006 to 31 March 2007. 

 
The reliability and sharpness diagrams for 12h accumulated precipitation 
greater than 0.5 mm for forecast lead times of T+30 (NAE) and T+36 (global 
and ECMWF) are shown in figure 4.5. All three ensemble systems are over-
forecasting the occurrence of light precipitation – the NAE and global 
ensembles having similar levels of bias, and the ECMWF having a worse bias. 
Since the verification is performed against a series of stations, some over-
forecasting of light rain may be expected (since the precipitation would need 
to be down-scaled to a specific site). Thus, the bias seen in the global 
ensemble would be expected to be greater than for the NAE ensemble (since 
it is lower resolution) and the ECMWF ensemble would be worst affected 
(since it is transferred to the Met Office at 1.5 degree resolution). In fact, 
results from the area-based verification system against Nimrod analyses (see 
figure 6.1) indicate that the NAE ensemble is not over-forecasting light rain, 
when the observations are averaged over grid-boxes of similar size to the 
model grid. The resolution is unlikely to be the whole story, with some of the 
poor reliability of the ECMWF ensemble most likely due to modelling problems. 
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Figure 4.5. Reliability and sharpness diagrams for forecasts of 12h accumulated 
precipitation greater than 0.5 mm over the months of July 2006 to March 2007. 
The lead time of the forecasts is T+36 (global and ECMWF) and T+30 (NAE). 

 
4.2 Precipitation results month-by-month. 
 
The Brier skill score for the three ensembles are shown in figure 4.6, month-
by-month for forecasts of 12h accumulated precipitation greater than 0.5 mm. 
This shows that the lack of reliability of the ECMWF ensemble for low rain 
accumulations is most prevalent during the summer months. Figure 4.7 shows 
the Brier skill score (and its components) for forecasts made between 6 
November 2006 and 31 March 2007. For this period, the performance of the 
ECMWF ensemble is much improved, relative to the other models, with 
performance better than the global ensemble (though not significantly). The 
NAE ensemble still performs better than the ECMWF ensemble, though not 
significantly. The relative performance of the models changes less with the 
changing season for higher precipitation thresholds. 
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Thus, we may conclude that the MOGREPS ensembles are not biased in their 
forecasting of light rain, but that the ECMWF ensemble is affected by a bias in 
the Summer. 
 

 
Figure 4.6. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of 12h accumulated precipitation greater than 0.5 mm. The verification period is 
for each month from July 2006 to March 2007. 

 
Figure 4.7. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of 12h accumulated precipitation greater than 0.5 mm. The verification period is 6 
November 2006 to 31 March 2007. 
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4.3 ROC of precipitation forecasts 
 
Another way to examine the verification results is to look at the relative 
operating characteristic (ROC). This is essentially a measure of the resolution 
of the forecast. Figure 4.8 shows the ROC curve for forecasts of 12h 
accumulated precipitation greater than 0.5 mm for forecast lead times of T+30 
(NAE) and T+36 (global and ECMWF). The curves shown are best-fit curves 
to the data points from the forecasts (Wilson, 2000) with the dashed lines 
giving confidence intervals. Figure 4.9 shows the area under the ROC curve 
calculated at various lead times. The ECMWF ensemble has the largest area, 
follows by the NAE ensemble and then the global ensemble. The ECMWF 
ensemble is significantly more skilful than the global ensemble, though not 
than the NAE ensemble. 
 

 
Figure 4.8. ROC for the NAE, global and ECMWF ensembles for forecasts of 
12h accumulated precipitation greater than 0.5 mm. The verification period is 1 
July 2006 to 31 March 2007. 
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Figure 4.9. Area under ROC curve, calculated from best-fit curve, for the NAE, 
global and ECMWF ensembles for forecasts of 12h accumulated precipitation 
greater than 0.5 mm. The verification period is 1 July 2006 to 31 March 2007. 

 
Thus, we conclude that the NAE ensemble performs better, overall, than the 
other models for forecasts of 12h accumulated precipitation. For higher 
accumulation thresholds, and at the lower thresholds during winter the 
ECMWF ensemble is competitive with the NAE ensemble. The global 
ensemble often performs less well than the other ensembles, though it is 
competitive over the whole period for low precipitation thresholds. The 
MOGREPS ensembles have lower ROC values than the ECMWF ensemble, 
although it should be remembered that ROC does not reflect the better  
reliability of MOGREPS. 
 
4.4 Temperature verification 
 
There have been a number of problems with the verification of temperature 
forecasts. Normally, the values of soil moisture used in the forecast model 
should be derived from the latest analysis. However, before November 2006, 
the MOGREPS ensemble was using the climatological values for the soil 
moisture. This problem was corrected on 5 November 2006. The error was 
particularly noticeable during the summer months when the soil was therefore 
too moist, resulting in 2m temperature forecasts which were too low. This can 
be seen in the month-by-month verification chart of the BSS for forecasts of 
2m temperature greater than 15oC (see figure 4.10). In addition to this, the
FSSS s to 
Kelvi AE 

 
I system moved from receiving the forecast data in degrees Celsiu

n on the 2nd March 2007. Unfortunately, the forecast from the 6Z N
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ensemble run on this day was processed incorrectly, and temperatures 
around 270oC were forecast! This was passed through the system, and 
corrupted the post-processing (KFMOS) system for the NAE ensemble for the 
rest of the month of March. Therefore, the subsequent verification is 
performed for the period 6 November 2006 – 28 February 2007. Finally, no 
results for forecasts of low temperatures will be presented, because there 
seems to be a problem with the MOGREPS results for lead times greater than 
one day. It is not known what is causing this problem. 

 
Figure 4.10. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of 2m temperature greater than 15oC. The verification period is for each month 
from July 2006 to March 2007. 

 
The performance of the raw forecasts are shown in figures 4.11-4.12. This 
hows the verification for forecasts of 2m temperature greater than 10oC and 
5oC, respectively. The forecasts of low temperatures would be more 

ter period. For both temperature thresholds the 
AE ensemble is the most skilful, and the global ensemble the next most 
kilful. The differences are significant at the 95% level for all distinctions, 

s
1
appropriate to show for this win
N
s
except for the difference between the global and ECMWF ensembles for the 
10 degree threshold. The reliability and sharpness diagrams for forecasts of 
2m temperature greater than 10oC are shown in figure 4.13. The NAE 
ensemble is closer to the diagonal (perfect reliability) than the other two 
ensembles, with the ECMWF ensemble possessing a clear bias to under-
forecast the temperature. 
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Figure 4.11. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of 2m temperature greater than 10oC. The verification period is from 6 November 
2006 to 28 February 2007. 

 

 
Figure 4.12. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of 2m temperature greater than 15oC. The verification period is from 6 November 
2006 to 28 February 2007. 
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Figure 4.13. Reliability and sharpness diagrams for forecasts of 2m temperature 
greater than 10oC. The verification period is from 6 November 2006 to 28 
February 2007. The lead time of the forecasts is T+36 (global and ECMWF) and 
T+30 (NAE). 

 
After post-processing via KFMOS, the forecasts from all three ensembles are 
improved (see figures 4.14 and 4.15). The ECMWF ensemble benefits most 
from the post-processing, as would be expected. None of the differences 
between the ensemble systems are significant in this case. 
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Figure 4.14. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of 2m temperature greater than 10oC. The verification period is from 6 November 
2006 to 28 February 2007. All the forecasts have been post-processed using the 
KFMOS bias correction. 

 

 
Figure 4.15. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of 2m temperature greater than 15oC. The verification period is from 6 November 
2006 to 28 February 2007. All the forecasts have been post-processed using the 
KFMOS bias correction. 
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4.5 Wind speed verification 
 
For forecasts of wind speed figure 4.16 shows the variation is BSS for 
forecasts of wind speed of at least force 5. There is a clear variation in skill 
with season, which is common to all the ensemble systems. Thus, it would be 
appropriate to compare their performance over the whole period.  However, 
the KFMOS bias correction for MOGREPS wind speed contained an error that 
was corrected on 12th October 2006. Thus, we use the period 6 November 
2006 to 31 March 2007 for wind speed verification. 
 

 
Figure 4.16. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of wind speed at least force 5. The verification period is for each month from July 
2006 to March 2007. 

 
The performance of the ensembles for forecasts of wind speed of at least 
force 5 and force 7 are shown in figures 4.17 and 4.18, respectively. These 
show that both the NAE and global ensembles are significantly more skilful 
than the ECMWF ensemble, with the NAE ensemble significantly more skilful 
than the global ensemble at the lower threshold. The reliability penalty is the 
main difference between the three ensembles. Figure 4.19 shows the 
reliability diagram for forecasts of wind speed of at least force 5 for forecast 
lead times of T+30 (for the NAE) and T+36 (for the global and ECMWF 
ense the 
occu  the 
ECM
 

mbles). All the ensembles appear to have a bias – they forecast 
rrence of this event too often, with the bias being most severe for
WF ensemble. 
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Figure 4.17. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of wind speed at least force 5. The verification period is from 6 November 2006 
to 31 March 2007. 

 

 
Figure 4.18. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of wind speed at least force 7. The verification period is from 6 November 2006 
to 31 March 2007. 
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Figure 4.19. Reliability and sharpness for the NAE, global and ECMWF 
ensembles for forecasts of wind speed at least force 5. The verification period is 
from 6 November 2006 to 31 March 2007. The lead time of the forecasts is T+36 
(global and ECMWF) and T+30 (NAE). 

 
Equivalent graphs to figures 4.17 and 4.18, but for forecasts which have been 
post-processed using the KFMOS scheme are shown in figures 4.20 and 4.21. 
The difference between the three ensembles is much less. For forecasts of 
wind speed of at least force 5 the NAE ensemble performs marginally better 
than the ECMWF ensemble and significantly better than the global ensemble. 
The ECMWF ensemble is significantly more skilful than the global ensemble 
at longer lead times. For forecasts of wind speed of at least force 7, the 
ECMWF ensemble performs best after post-processing, with the NAE 
ense ntly 
more
 

mble next most skilful. In this case, the ECMWF ensemble is significa
 skilful than the global ensemble at all lead times. 
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Figure 4.20. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of wind speed at least force 5. The verification period is from 6 November 2006 
to 31 March 2007. All the forecasts have been post-processed using the KFMOS 
bias correction. 

 

 
Figure 4.21. Brier skill score (solid), and reliability (dash-dot) and resolution 
(dashed) components for the NAE, global and ECMWF ensembles for forecasts 
of wind speed at least force 7. The verification period is from 6 November 2006 
to 31 March 2007. All the forecasts have been post-processed using the KFMOS 
bias correction. 
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4.6 Conclusions 
 
For precipitation the NAE ensemble is generally the most skilful, the only 
exception to this is at the threshold of 12h accumulated precipitation of more 
than 20 mm. Much of the benefit from the NAE compared to the ECMWF EPS 
comes from better reliability. The resolution score of the two ensembles are 
often very similar, with ECMWF EPS having slightly higher values of ROC 
area for the 0.5mm threshold. The improvement for the NAE ensemble 
system is particularly good over summer, when the ECMWF forecast 
performs poorly for light rain. 
 
For temperature forecasts the NAE ensemble performs better than the other 
two ensembles before post-processing. After post-processing, the NAE 
ensemble performs best for forecasts of 2m temperature greater than 10oC, 
and the ECMWF ensemble performs best for forecasts of 2m temperature 
greater than 15oC, although there are few events in this category for the 
verification period studied. 
 
For  the 
other AE 
ensemble performs best for forecasts of wind speed of at least force 5. For 

recasts of at least force 7, the ECMWF ensemble is most skilful after post-
processing. 
Overall, therefore, it is clear to say that the NAE ensemble is the most skilful 
of the three ensemble systems studied in most situations. Where the KFMOS 
post-processing has been applied to reduce site-specific biases it reduces the 
differences in performance between the ensembles such that benefits of the 
NAE compared to the EPS are mainly not statistically significant. However it 
should be borne in mind that for many applications customers’ needs cannot 
be fully met by univariate post-processed output. For customers who need the 
correlations between variables the performance of raw ensemble output 
provides the best indication of useable skill. 
 
5. Station-based verification – Spread Skill Results 
 
5.1 Introduction 
 
In a perfect ensemble system, which has infinite ensemble members and all 
sources of uncertainty accounted for, the true state of the atmosphere should 
always be contained within the forecast distribution.  In such a system the
spread of the ensemble forecasts coul
unce ble 
forec mall 
sprea ould 
therefore be able to produce reliable probability forecasts.  The aim of this 
tudy is to evaluate the spread-skill relationship of MOGREPS and to 

forecasts of wind speed, the NAE ensemble performs better than
 two systems before post-processing. After post-processing, the N

fo

 
 d be used to represent the forecast

rtainty.  For example, where there is a large spread in the ensem
asts the uncertainty of the forecast would be high whereas a s
d would indicate low forecast uncertainty.  Such a system w

s
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determine if the spread of the ensemble can be used to estimate the 
ncertainty of the forecast. 

ree month periods 30 hour forecasts of 1.5m 
mperature and 10m wind speed were considered.  Throughout these results 

he method used to determine the spread–skill relationship of MOGREPS will 

mble mean at each station was calculated. This was then plotted 

mble forecasts to ensure that the 
end line fits the diagonal. 

u
 
5.2 Data 
 
To investigate the spread-skill relationship of MOGREPS, output was used 
from the NAE domain and station-based verification was performed. Two 
periods were investigated, summer 2006 (JJA) and winter 2006/7 (DJF).  The 
results for the winter and summer seasons were calculated separately so that 
the spread-skill relationship could be compared for different meteorological 
regimes.   For both of the th
te
only one lead time is considered because there is an inherent relationship 
between the forecast lead time and ensemble spread.  Incorporating a mix of 
lead times would therefore provide misleading results.  30 hour forecasts were 
selected for investigation because the longer length forecasts allow greater 
development of the small initial differences in the ensemble members and 
therefore the potential for greater spread.   
 
T
now be described using the 10m wind speed in DJF as an example.  The 
same method was used for the summer period and these results are shown at 
the end.  On each day during the 3 month period MOGREPS produced a new 
set of forecasts for the NAE domain.  These daily forecasts were verified 
using observations made at 55 UK stations.   Raw ensemble data was used 
and the ense
against the observation to determine if there was a bias in the ensemble 
mean.  Figure 5.1 shows the wind speed measurements plotted against the 
ensemble mean forecast for each station, on each day, during the 3 month 
period (DJF), producing about 5,000 data points.  The blue trend line 
superimposed on the data shows there is a bias in the ensemble mean wind 
speed with the ensemble over-forecasting low wind speeds and under-
forecasting high wind speeds.  The black line represents the diagonal where 
the data trend line should be located when there is no bias present.  A bias 
correction was therefore applied to the ense
tr
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Figure 5.1: Measured wind speed in DJF plotted against the ensemble mean 
forecast (ms

20

25

)

ferred to as the ‘no skill’ ensemble.  The second was an ensemble which 
he observation was always contained 

within the ensemble distribution.  Comparing the MOGREPS results with the 
results from these other two ensembles illustrates the quality of its spread-skill 
relationship. 
 
The ensemble with no spread-skill relationship was generated by randomly 
associating the standard deviation value from each event with an ensemble 
mean error value from a different event.  These new, ‘no skill’ events are then 
grouped again according to the value of the standard deviation.  The value of 
the average standard deviation within each bin was then plotted against the 
RMSE value for each of the 15 standard deviation bins, shown by the pink 
data set in figure 5.2.  The blue data set is the MOGREPS results. 

-1). 
 
With the data bias-corrected, the standard deviation of the ensemble 
members for each location on each day, were calculated.  A strong correlation 
would not necessarily be expected when comparing the standard deviation of 
each individual event against the value of the ensemble mean error and it can 
be misleading, discussed in Houtekamer (1993).  Therefore the events were 
grouped together according to the value of their forecast standard deviation.  
Each standard deviation bin contained an equal number of events so the 
spread of the standard deviation contained in each bin varied.  This avoided 
the bins containing the largest standard deviation values being determined by 
a small number of events.  The average value of the standard deviation in 
each bin was then compared to the root mean square error (RMSE) for the 
events in the bin providing a more robust measure of the spread-skill 
relationship. 
 
To help evaluate the spread-skill relationship of MOGREPS, these results 
were compared to results from two other, artificially generated ensembles.  
The first was an ensemble which had no spread-skill relationship and is 
re
had ‘perfect spread’ which means t
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Figure 5.2: The average standard deviation in each bin plotted against the 
RMSE in each b
each trend line is also included. 

 
The final data set plotted on figure 5.2, the green data set, is that generated 
by an ensemble with perfect spread.  These results are produced by replacing 
the observation for each event with a randomly selected ensemble member 
forecast.  These pseudo-observations are therefore by definition always within 
the distribution of the ensemble, creating an ensemble with perfect spread.  
The results in figure 5.2 and the results for the other variables are discussed 
in the next section.  
 
5.3 Results 
 
The results in figure 5.2 show a strong spread-skill relationship for wind speed 
in DJF.  The
‘perfect spread’ and ‘no skill’ lines.  As expected MOGREPS does not match 
the ‘perfect spread’ line, but it does show a spread-skill relationship.   The 
results for wind speed in JJA and temperature in JJA and DJF are shown in 
figures 5.3 to 5.5. 
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Figure 5.3. The average standard deviation in each bin plotted agains the 

 bia  for the JJA wind speed forecasts to correct 

t 
RMSE in each bin.  Values for wind speed (ms-1) in JJA at T+30. 

 
s correction was performedA

for the  ensemble over-forecasting at low wind speeds.  The bias corrected 
data was then binned according to standard deviation and the results are 
shown in figure 5.3.  The gradient of the MOGREPS trend line (0.51) indicates 
a strong spread-skill relationship and lies approximately mid-way between the 
‘no skill’ and ‘perfect spread’ ensembles. 

Grad = 0.80

3.0

Grad = -0.06

0.5

1.0

1.5

R
M

S
E

 (K
) Grad = 0.92

0.0

0

2.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Average Standard Deviation (K)

2.

MOGREPS
No Skill
Perfect Spread

 
Figure 5.4. The average standard deviation in each bin plotted against the 
RMSE in each bin.  Values for temperature (K) in DJF at T+30. 

 
For the ensemble mean temperatures in DJF no bias correction was required.  
Figure 5.4 shows that in DJF there is a strong spread-skill relationship for this 
variable with MOGREPS closely following the perfect spread line with a 
gradient of 0.80.  In JJA, however, shown in figure 5.5, there is very little 
evidence of a spread-skill relationship with very little difference between 
MOGREPS and the ‘No Skill’ line.  Both lines have a very shallow gradient, 
with MOGREPS having a gradient of 0.12 and the ‘No Skill’ line having a 
gradient of 0.05. 

29/60 



Grad = 0.95

Grad = 0.12

Grad = 0.05

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Average Standard Deviation (K)

R
M

S
E

 (K
)

MOGREPS
No Skill
Perfect Spread

 
 

 

 
The estimated observation errors in the station list for surface observations 
were used as a guide to the maximum value of temperature and wind speed 
errors.  The estimate in the station list for the temperature observation errors 
was 1.1K and the estimate for wind speed error was 2.0ms-1.  In three of the 
four cases the estimated errors in the station list appeared to be larger than 
the errors on the actual observations.  The errors were therefore estimated to 
give values which are lower than the lowest MOGREPS points in figures 5.2 
to 5.5, providing error estimates of ~1.3ms-1 for wind speed and 0.8K for 
temperature in DJF.  The RMSE value in each bin was then corrected 
(RMSEc) by removing the observation error contribution: 
 

RMSEc = 

Figure 5.5. The average standard deviation in each bin plotted against the 
RMSE in each bin.  Values for temperature (K) in JJA at T+30. 

Another factor taken into consideration is the impact of the observation error 
on the performance of MOGREPS.  In the ‘perfect spread’ ensemble 
observation error is not a component of the RMSE because the pseudo-
observation is the forecast from one of the ensemble members.  Therefore, to 
allow a fair comparison the observation error was estimated for temperature 
and wind speed. 

22 ObsErrRMSE −  
 
To remove the effect of MOGREPS being under or over-spread the RMS of 
the s was 
then c a correctly spread 

tandard deviations (RMSS) of all the events was calculated.  This 
compared to the RMSE  for all the events.  For 

ensemble RMSS should be equivalent to RMSEc, so using this information a 
correction factor was applied to the standard deviation of each event.  This 
correction factor was applied to all three ‘ensembles’ and the estimated 
observation error was removed from MOGREPS and the ‘no skill’ ensemble.   
The results are shown in figures 5.6 to 5.9. 
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Figure 5.6. The average standard deviation in each bin pl

in DJF at T+30. 
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Figure 5.7. The average standard deviation in each bin plotted against the 
RMSE in each bin, corrected for observation error.  Values for wind speed (ms-1) 
in JJA at T+30. 
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Figure 5.8. The average standard deviation in each bin plotted against the 
RMSE in each bin, corrected for observation error.  Values for temperature (K) in 
DJF at T+30. 
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Figure 5.9. The average standard deviation in each bin plotted against the 
RMSE in each bin, corrected for observation error.  Values for temperature (K) in 
JJA at T+30. 

 
Table 5.1 summarises the results from figures 5.6 to 5.9.  It contains the 
gradients of the trend lines for the 3 ensembles for each variable, in each 
season.  The results for the ‘no skill’ ensemble show that there is no spread-
skill relationship with the gradient ranging between ±0.05.  MOGREPS 
however, displays gradients between 0.59 and 0.63 for 3 out of the 4 cases.  
The only case where it does not perform well is for temperature in JJA where 
the gradient is only 0.08, indicating that in this case there is virtually no 
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spread-skill relationship.  The perfect spread ensemble has a gradient close 
to one in all cases with values ranging from 0.91 to 0.98.  
 

 PS Real NS Skill score 
Wind Speed DJF 0.93 0.59 0.05 0.61 
Wind Speed JJA 0.98 0.60 -0.05 0.63 
Temperature 
DJF 

0.91 0.63 0.03 0.68 

Temperature JJA 0.96 0.08 0.01 0.07 
 

Table 5.1. Trend line gradients for the ‘perfect spread’ data (PS), MOGREPS 
(Real) and the ‘no skill’ (NS) data sets.   

 
5.4 Conclusions 
 
The results shown are for 30h forecasts of 1.5m temperature and 10m wind 
speed at specific sites over 2 different seasons.  The results are therefore 
subje  the 
gene

hen taking into account the impact of observation errors on the RMSE the 
results show that MOGREPS performs substantially better than an artificially 
generated ‘no skill’ ensemble.  In 3 of the 4 cases considered here the skill 
score associated with the gradient of the trend line, representing the spread-
skill relationship, is between 0.6 and 0.7.  The differences between 
MOGREPS and the ‘perfect spread’ ensemble are influenced by the limited 
number of ensemble members in MOGREPS and the perturbation strategies 
employed by the ensemble. 
 
6.1 Verification of Probabilistic products 
 
6.1.1 Precipitation Verification 
 
Nimrod analyses blend rainfall accumulations derived from radar and surface 
gauge measurements to provide a spatially coherent estimate of the observed 
precipitation field. Verification against Nimrod data is performed at one degree 
resolution within the ABV (approximately four and a half times the grid length 
of the forecast model and equivalent to the effective resolution of the forecast). 
Currently Nimrod data is only available within the ABV over the UK region.  
Here
 

rese ure 6.1 and 6.2 are attributes diagrams for the T+36 6hr 

ct to the limitations of a small sample but should still be indicative of
ral underlying trends. 

 
W

 we focus on results for 6 and 24 hour rainfall accumulations.  

nted in figP
precipitation forecast greater than or equal to 0.3 mm and  the T+36 24hr 
precipitation forecast greater than 0.5mm for the period 1st January 2006 to 
28th February 2007. It can be seen from figures 6.1 and 6.2 that the reliability 
curve lies very close to the diagonal indicating that the ensemble probabilities 
exhibit very good reliability at the low precipitation thresholds. However there 
is evidence that the ensemble is marginally over-confident, slightly over-
forecasting high probabilities and under-forecasting the low probabilities. 
Figure 6.3 shows that the near perfect reliability for the 6hr accumulation 

33/60 



forecast observed in figure 6.1 is also evident at shorter forecast lead times, 
whilst the resolution of the forecasts decrease with increasing forecast lead 
me. This is also evident at the forecasts of 24hr precipitation accumulations 

(not shown).  It should be noted t e enc used for 
calculation l s fo  
climatolog ive  t se s within the verification 
sample. This is not an ideal practice because this reference forecast is not 
available ri and it effectively gives the climatological forecast an 
advantage le ast and hence decreases the apparent 
kill of the ensemble forecast. However, no suitable a-priori climatology is 

curre
 

he reliability curves for the higher thresholds as shown in figures 6.4 to 6.7 
an the reliability curve shown in figures 6.1 and 6.2 due to 

e smaller number of events. These reliability curves lie below the line of 

total number of events that occurred. An unbiased 
nsemble would have a bias of one, values less (greater) than one indicate an 

ti
hat th refer e forecast 

 of the Brier skil core r all the results presented here is a
ical probability der d from he ob rvation

a-prio
 over the ensemb  forec

s
ntly available for the set of observations used in the ABV.  

T
are less smooth th
th
perfect reliability indicating that the ensemble is over forecasting the 
probability of the larger rain amounts and appears to possess a wet bias (as 
can be seen in figure 6.8). Bias in this context is the total number of forecasts 
of the event divided by the 
e
under (over) forecasting bias. However, it can be seen that the ensemble 
forecasts do possess resolution and that in figure 6.4 and 6.5 they contribute 
towards a positive Brier Skill score. 

 
Figure 6.1. Attributes diagram T+36 forecast of 6hr accumulation of precipitation 
greater than or equal to 0.3mm. 
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Figure 6.2. Attributes diagram T+36 forecast of 24hr accumulation of 
precipitation greater than 0.5mm. 

 
 

 
 

Figure 6.3. Brier skill score v forecast range for 6hr accumulation of precipitation 
greater than 0.3 mm. 
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Figure 6.4. Attributes diagram T+36 forecast of 6hr accumulation of precipitation 
greater than or equal to 5.0 mm. 

 

 
 

Figure 6.5. Attributes diagram T+36 forecast of 24hr accumulation of 
precipitation greater than 10.0 mm. 
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Figure 6.6. Attributes diagram T+36 forecast of 6hr accumulation of precipitation 
greater than 10.0 mm. 

 
 

 
 

Figure 6.7. Attributes diagram T+36 forecast of 24hr accumulation of 
precipitation greater than 25.0 mm. 
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Figure 6.8. Bias in ensemble forecast v forecast lead time for 6hr precipitation 
greater than or equal to 5.0mm. A bias of one indicates a perfect forecast. 

 
6.1.2  Wind Speed Verification 
 
Attributes diagrams for wind speeds greater than force 8, 9 and 10, verified against 
surface observations for the period 1 January 2006 to 28th February 2007 are shown 
in figure 6.9 to figure 6.11. The verification has been performed over the reduced 
NAE model domain in order to increase the sample size as much as possible for 
these more-extreme wind speed thresholds. Due to the limited number of 
observations at these thresholds the reliability diagrams are increasingly noisy. 
Nonetheless, there are positive slopes to the reliability curves which indicate that, 
even at storm force 10, MOGREPS-R has some ability to provide information for 
extreme events. This result is particularly encouraging because MOGREPS-R wind 
products are fed into the EURORISK Windstorms project. 

 

Figure 6.12, presents the bias in the ensemble forecasts for wind speed greater than 
Beaufort force 8 against forecast lead time for the three different geographical 
regions. It is interesting to note that the bias in figure 6.12 varies with geographical 
region, the larger the verification region the larger the under forecasting bias. This is 
consistent with the model under forecasting the 10m wind speed over land; the 
reduced NAE model domain contains many inland observation sites when compared 
to the UK Index list which contains many coastal sites.  
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Figure 6.9, Attributes diagram T+36 forecast of 10m wind speed greate r r than o
equal to 34 knots or Beaufort Force 8. 

 

 
Figure 6.10, Attributes diagram T+36 forecast of 10m wind speed greater than or 
equal to 41 knots or Beaufort force 9.  
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recast of 10m wind speed greater than or 
equal to 48 knots or Beaufort force 10.  

 
 

Figure 6.11, Attributes diagram T+36 fo

 
Figure 6.12, Bias v Forecast range for  probability of wind speed greater than or 
equal to Gale force 8, for the UK Index Station list (dashed line), the reduced 
Mesoscale model area (solid line) and the reduced NAE  model area (dotted line).  
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6.1.3 Visibility Verification 
 
Prediction of visibility is very demanding for direct model output from any 
NWP model due to strong non-linear sensitivity of visibility to small errors in 
parameters such as humidity, and also to poorly simulated parameters such 
as aerosol. It is generally accepted that reliable NWP prediction of visibility 
requires much higher model resolution in both the horizontal and the vertical 
than the MOGREPS NAE model has. However visibility forecasts are very 
important to a number of Met Office customers, particularly in transport 
sectors, and subjective feedback from forecasters during the trial has 
consistently indicated that they have found useful guidance from the areas of 
high probability of fog or reduced visibility in MOGREPS NAE output. It is 
therefore of interest to examine whether any objective skill can be identified. 
 
Visibility information is available from MOGREPS as an optional parameter on 
Meteograms and as probability charts of visibility less than 5000m, 1000m 
and 200m. Visibility has therefore been verified on a site-specific basis at the 
above thresholds.  
 
Figures 6.13 to 6.15 presents attributes diagrams for visibility less than 200 m, 

000 m and 5000 m respectively. Whilst the reliability curves do exhibit some 
esol bility 

frequ he curve in figure 6.15 is described as 
 conditional bias (Wilks, 1995) with the forecast probability being too high for 
e high probabilities, and too low for low probabilities. This behaviour, also 

referred to as over-confidence, is normally interpreted as the ensemble being 
under-spread. This suggests that there are some sources of uncertainty 
affecting this visibility threshold of 5000m that are not adequately represented 
in the MOGREPS ensemble. In this case, reduced visibility around 5000m is 
frequently caused by haze due to atmospheric aerosol, and this strong over-
confidence may be related to the lack of any perturbation to aerosol 
concentration in MOGREPS. 
 
Figure 6.16, shows the overall bias plotted against forecast range for a) 5000 
m and b) 200 m. It can be seen that there is some variation in the levels of 
bias with forecast range, this could be related to the number of observations 
available at 06 and 18z (T+12,24,36) being less than at 00z and 12Z 
(T+6,18,30).  In figure 6.16a, the bias is approximately 1 indicating that the 
ensemble is nearly unbiased overall. 
 
Figure 6.16b also indicates that there is a very large over forecasting bias for 
fog (visibility less than 200m) and that this bias increases with increasing 
forecast range.  The large bias is perhaps not surprising, given that fog is 
frequ ave 
good rast 
visib del 

solution and the lack of fine scale topographic features. Thus when the 
odel predicts the conditions for fog formation, the diagnostic outputs are 

likely to suggest fog being much more widespread than it often is in reality, 
resulting in a tendency for the model to over predict fog amounts. As a result, 

1
r ution, the reliability is poor and for figures 6.13 and 6.14 the relia

ently falls below the no skill line. T
a
th

ently a patchy phenomenon and while one observation site may h
 visibility, another just down the road may have dense fog. In cont
ility in the model is more consistent over large areas, due to mo

re
m
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a forecast of fog from the NWP model should generally be interpreted as 
iving a probability of observing fog in the general area. It is notable that the 

t 
een considered for this verification report.  

g
bias changes greatly with forecast lead time. This indicates that the data 
assimilation system is attempting to remove this forecast bias. The bias 
observed in the ensemble results is likely to be dominated by the bias in the 
underlying forecast model which could perhaps be alleviated through bias 
correction prior to issuing the forecast. 
 
It should also be noted that visibility has a highly skewed distribution of 
forecasts and observations which are dominated by high visibility events. In 
order to perform a meaningful assessment using continuous statistics (root 
mean square error and ensemble spread) it is perhaps helpful to consider 
performing the analysis on the logarithm of visibility, however, this has no
b
 

 
Figure 6.13, Attributes diagrams for T+36 forecast of Probability that visibility will 
be less than 200 m.  
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Figure 6.14, Attributes diagrams for T+36 forecast of Probability that visibility will 
be less than 1000 m.  

 
Figure 6.15, Attributes diagrams for T+36 forecast of Probability that visibility will 
be less than 5000 m.  
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Figure 6.16, Bias v Forecast range for forecasts of visibility a) less than 5000 m 
and b) less than 200 m, for the UK Index Station list (dashed line), the reduced 
Mesoscale model area (solid line) and the reduced NAE  model area (dotted line).  

 
 
6.1.4 Cloud Base Height Verification 
 
Forecasts of cloud base height given different levels of cloud cover are 
available from MOGREPS and are of particular relevance to aviation forecasts. 
It is therefore interesting to look at the performance for this joint probability, 
but as with visibility, low cloud base is poorly resolved by the model and 
therefore challenging for the ensemble. Figures 6.17 and 6.18, present 
attributes diagrams for cloud base height given 5/8th cover less than 500ft 
(152 m) and 1000 ft (304 m) respectively and figure 6.19 shows an attributes 
diagram for cloud base height given 3/8th cover less than 700ft (213m).   
Figures 6.17 to 6.19 show that the ensemble forecasts have no skill (in the 
sense of the Brier skill score, relative to sample climatology) and limited 
resolution. As with forecasts of poor visibility, we interpret this as meaning that 
the ensemble is under-spread and that some uncertainties in the forecast are 
unaccounted for. Figure 6.20, shows that the bias observed in forecasts of 
cloud base height less than 700ft given 3/8th cover is much larger over the 
reduced NAE model area than over UK Station list or over the reduced 
Mesoscale model area – suggesting that the forecast bias is worse over land.  
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Figure 6.17, Attributes diagrams for T+36 forecast of Probability cloud base 

Cloud cover, verified over the reduced height will be less than 500 ft given 5/8 
NAE model area. 

 
Figure 6.18, Attributes diagrams for T+36 forecast of Probability cloud base 
height will be less than a1000ft given 5/8 Cloud cover, verified over the reduced 
NAE model area. 
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Figure 6.19, Attributes diagrams for T+36 forecast of Probability cloud base 
height will be less than 700 ft given 3/8 Cloud cover, verified over the reduced 
NAE model area. 

 
Figure 6.20, Bias against forecast lead time for forecast of cloud base height will 
be less than 700 ft given 3/8 Cloud cover. 
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6.1.5  Screen level Temperature Verification 
 
It has been previously noted that verifying variables such as temperature over 
a large geographical area can introduce false skill. Therefore verification is 
presented for the UK station list only, acknowledging that even over this area 
there may be a degree of false skill attributed to the results.  The SBV results 
have focussed on temperature thresholds greater than 10oC and 15oC and it 
should be noted that the under forecasting bias for the higher temperature 
thresholds associated with the climatological soil moisture is also apparent in 
results from the ABV (not shown).   
 
Here we focus instead on results for temperature less than 5oC and less than 
0oC for the period 1st January 2006 to 28th February 2007; attributes diagrams 
for these thresholds are presented in figures 6.21 and 6.22. Figure 6.21, 
indicates that the forecasts exhibit resolution but there is a conditional bias in 
the probability forecasts less than 0oC, where there is an under forecasting of 
the lowest probabilities and an over forecasting of the higher probabilities. 
This is consistent with the ensemble being under-spread.  Figure 6.22, 
presents a very good reliability curve at the less than 5oC threshold, however, 
the ensemble is still slightly under-spread.  

 
 

Figure 6.21, Attributes diagram for screen level temperature less than 0oC 
verified against surface observations over the UK Index station list. 

 

47/60 



 oFigure 6.22, Attributes diagram for screen level temperature less than 5 C 
verified against surface observations over the UK Index station list. 

 
 
 
6.2 Assessing ensemble performance using continuous statistics.  
 
As well as considering the performance of probabilistic products issued from 
the MOGREPS suites it is also important to assess the performance of the 
ensemble as an ensemble system using measures such as the relationship 
between root mean square error (rmse) and the ensemble spread. RMSE can 
be calculated for the ensemble mean, in which case it is related to spread 
around the ensemble mean, or it can be calculated for the control and related 
to spread about the control. In an ideal system the spread of the ensemble 
about the ensemble mean will match the root mean square error of the 
ensemble mean forecast.  In this section we consider the variables wind 
speed, geopotential height and temperature verified against radiosonde 
observations at 850 hPa, 500 hPa and 250 hPa pressure levels over the 
reduced NAE model domain. It is also important to consider the impact of 
observation errors on the verification results.  The root mean square error of 

e forecast measured against the truth can be approximated by  th
 

2 2
truth forecast ob= rmse - rmse       rmse (6.1) 

Where rmseforecast is the root mean square error of the forecast measured 
against observations and rmseob is the root mean square error associated with 
the observation. The root mean square error of the observations is estimated 
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using values specified within the OPS (Observation Processing System) in 
documentation on quality control (Ingleby,1998) and listed in Table 6.1.  
 

Pressure Level RMSE Wind (m/s) RMSE Temperature (K) 
250 2.85 1.2 
500 1.85 0.8 
850 1.60 0.8 

Table 6.1, Observation errors for radio sonde observations taken from Ingleby 
(1998). 

 
Accounting for observation errors can have a significant impact on the results. 
Whilst the figures presented here do not account for observation errors, we 
will consider them in the following discussion. 
 
6.2.1 Geopotential Height  
 
The root mean square error and spread in forecasts of geopotential height 
has traditionally been used as a summary measure of global ensemble 
performance. It is therefore appropriate that we first examine the performance 
of forecasts of geopotential height from the regional ensemble at the standard 
levels. Figures 6.23 to 6.25 show the root mean square spread and error 
against forecast lead time for forecasts of geopotential height at  250 hPa,  
500 hPa and 850 hPa respectively.  The root ntro
and , the 
prea
hown by the green and yellow lines respectively.   

in the 
eopotential height at 500 hPa when measured by radio sondes to be of the 

 mean square error of the co
the ensemble mean are shown by the red and blue lines respectively
d of the ensemble about the control and ensemble mean forecasts are 

l 

s
s
 
Simons and Hollingsworth (2002) estimated the root mean square error 
g
order 10 m. Adjusting the root mean square error of the ensemble mean 
forecast for the effect of observation errors, the root mean square error 
becomes approximately 8 m at T+6 and 18 m at T+36 in figure 6.24. This 
clearly indicates that the ensemble is over spread in geopotential height at 
500 hPa. There are no estimates available of the observation error in 
geopotential height at 250 hPa and 850hPa and it is therefore difficult to 
conclude what the effect of observation errors at these pressures will be. 
However, it is probably fair to conclude that the ensemble is over spread at all 
levels and that the effect is more severe at upper levels.  
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Figure 6.23, Root mean square spread and error against forecast lead time for 
forecasts of geopotential height 250 hPa. The root mean square error of the 
control and the ensemble mean are shown by the red and blue lines respectively, 
the spread of the ensemble about the control and ensemble mean forecasts are 
shown by the green and yellow lines respectively. 

 
 

 
 

Figure 6.24, Root mean square spread and error against forecast lead time for 
forecasts of geopotential height at  500 hPa. 
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Figure 6.25, Root mean square spread and error against forecast lead time for 
forecasts of geopotential height at  850 hPa.  

 Temperature 
 
6.2.2

igures 6.26 to 6.28 present root mean square error and ensemble spread 
harts for temperature at 250 hPa, 500 hPa and 850 hPa respectively. At first 

glance it appears that the ensemble is under spread at 250hPa and 850hPa, 
with approximately the correct spread at 500hPa.  When observation errors 
are considered we actually find the ensemble has approximately the correct 
spread at 850 hPa and that the ensemble is over spread at the upper levels.   
 
6.2.3 Wind speed 
 
Figures 6.29 to 6.32 present root mean square error and ensemble spread 
charts for wind speed at 250 hPa, 500 hPa, 850 hPa and station height 
respectively. At first glance it appears that the ensemble has the correct level 
of spread after T+24 in figure 6.29, however, when we account for observation 
errors in wind speed we find the ensemble is marginally over spread at 
250hPa. Similarly at 500 hPa the ensemble appears to have approximately 
the correct level of spread after T+18. If observation errors are accounted for 
the ensemble has approximately the correct level of spread at T+6 and too 
much spread at T+36. Figures 6.31 and 6.32 appear to show that the 
ense hPa 
and  that when observation errors are 
accounted for at 850hPa the ensemble has approximately the correct spread 
at T+36.  The results in figure 6.32 are derived using surface observations 
and at station height the observation error is taken to be 1.7m/s (Ingleby, 
1998). Correcting for observation errors using this value we find that the 
ensemble is still under spread at the surface at all time ranges. 
 
To summarise the ensemble is under spread in wind speed at the surface, 
has approximately the correct spread at T+36 at 850hPa and too much 
spread at upper levels. 

 
F
c

mble is very under spread at all time ranges for wind speeds at 850
at the surface respectively.  We find
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 mean square spread and error against forecast lead time for 
forecasts of temperature at  250 hPa. The root mean square error about the 
Figure 6.26, Root

control and the ensemble mean are shown by the red and blue lines respectively, 
the spread of the ensemble about the control and ensemble mean forecasts are 
shown by the green and yellow lines respectively. 

 
 

 
 

Figure 6.27, Root mean square spread and error against forecast lead time for 
forecasts of temperature at  500 hPa. 
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Figure 6.28, Root mean square spread nd error against forecast lead time for 

 

 a
forecasts of temperature at 850 hPa.   

 
 
 

Figure 6.29, Root mean square spread and error against forecast lead time for 
forecasts of wind speed at 250 hPa. 
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Figure 6.30, Root mean square spread and error against forecast lead time for 
forecasts of wind speed at 500 hPa. 

 

 
 

Figure 6.31, Root mean square spread and error against forecast lead time for 
forecasts of wind speed at 850 hPa. 
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Figure 6.32, Root mean square spread and error against forecast lead time for 
forecasts of wind speed at Station height.   

6.2.4 Summary  
 
The results presented above indicate that the ensemble is over spread at 250 
and 500hPa for temperature, wind speed and geopotential height and has 
approximately the correct level of spread at 850hPa in temperature and wind 
speed. This result is perhaps not surprising when we consider the 
perturbation strategy adopted in the regional ensemble. The perturbations that 
drive the regional ensemble are taken directly from the global ensemble and 
are reconfigured to the regional model resolution. However, because the 
analysis times of the two ensembles are offset by 6 hours and the 
perturbations are added over the first three hours of the forecast period, the 
perturbations are derived from T+7 forecasts from the global ensemble. Such 
perturbations to the control analysis are likely to be too large and cause the 
ensemble to be over spread. A new perturbation strategy, an Ensemble 
Transform Kalman Filter for the regional ensemble, will be adopted in the 
regional ensemble during May 2007.  Results from trials of this approach (not 
shown) indicate that the spread of the regional ensemble is dramatically 

he current approach. 

A co e of 
rowt rs to be larger than the rate of growth of 

for most ensembles the rate of growth 
is too small, and this may suggest that the stochastic physics schemes 
employed in MOGREPS are particularly effective. This will need to be 
reviewed after the regional ETKF has been established, if possible taking 
account of observational errors, in order to review the strategy with regard to 
physics perturbations. 

 

reduced compared to t
 

mmon feature of all the results in figures 6.23 to 6.32 is that the rat
h of ensemble spread appeag

forecast errors. This is unusual in that 
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The under dispersion observed in the surface wind speed in the ensemble is 
also observed in the screen level temperature (not shown). This is an 
indication that the perturbation strategies used in the ensemble (initial 
condition perturbations and random parameters scheme) are failing to 
represent uncertainties in the surface processes. Further research into 
perturbations near the model surface, for example, soil moisture perturbations 
should be performed to tackle this issue.   
 
7. Tropical cyclone track verification 
 
7.1 Introduction 
All tropical cyclone forecast tracks from the global deterministic model are 
verified against the observed tracks. The MOGREPS 15-day ensemble 
produces 24 tropical cyclone forecast tracks. The ensemble mean track is 
calculated for every forecast and these have been verified in the same way as 
the deterministic forecast tracks. 

.2 Verification 
nse ost 

forec
ere 15 tropical cyclones; seven in the South-West Indian Ocean, seven in 

ion (South-East Indian Ocean and South Pacific) and one in 
e North-West Pacific. These forecast tracks were verified and a 

 
7
E mble mean tropical cyclone forecast tracks have been produced for m

asts for the period 7th February to 6th April 2007. During this period there 
w
the Australian reg
th
homogeneous comparison made with the deterministic forecast tracks. The 
results are shown below: 
 
 T+0 T+24 T+48 T+72 T+96 T+120 
No. of cases 100 79 55 34 20 11 
Deterministic 
track error (km) 

51 141 292 460 769 979 

Ensemble mean 
track error (km) 

36 130 286 437 609 611 

Percentage 
reduction in error

29.4 7.8 2.1 4.9 20.8 37.6 

Deterministic 
skill score (%) 

- 29 30 19 - - 

Ensemble mean 
skill score (%) 

- 36 32 20 - - 

 
The skill score is the model’s track error relative to that of a 
climatology/persistence model (CLIPER). A positive skill score indicates that 
the model performs better than CLIPER.  
Skill is calculated thus:- (CLIPER error - Model error) / CLIPER error x 100% 
Full details of the tropical cyclone verification method can be found here: 
http://www.metoffice.gov.uk/weather/tropicalcyclone/method/index.html
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These results indicate that the ensemble mean track errors were lower than 

.3 Case Study 
 closer examination of the data reveals that a major reason for the better 

ver the deterministic forecast is the 
erformance for Tropical Cyclone George. The mean improvement by the 

rops from 8.7% to 2.3% if George is excluded from the 

ast tracks for 12Z 3rd March 2007 and a 
e deterministic track and the ensemble mean relative to the 

the deterministic model at all lead times and by a wide margin at T+96 and 
T+120. However, at these longer lead times just 20 and 11 forecasts were 
verified. When averaged over all forecasts (199 cases, excluding analyses), 
the ensemble mean track error was 8.7% lower than the deterministic model 
error. Skill scores were higher for the ensemble mean by 7% at T+24 and 2% 
and 1% at T+48 and T+72. 
 
7
A
performance of the ensemble mean o
p
ensemble mean d
results. George formed over northern Australia and moved westwards before 
making a sharp turn towards the north-west Australian coast. This turn was 
not predicted by any deterministic models. Although the MOGREPS ensemble 
did not fully capture the leftwards turn. It gave sufficient indication for the 
ensemble mean to perform much better than the deterministic model. Charts 
elow show the ensemble forecb

comparison of th
actual track. 
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7.4 Conclusion 
Results from verification a small initial sample of tropical cyclone forecasts are 
promising, showing greater skill in the ensemble mean track compared to the 
deterministic forecasts. In the current small sample of cases most of this 
benefit is seen from a single storm which was poorly forecast by the 
deterministic model, but there is also some small benefit in other cases. The 
benefit in the case of the poorly forecast storm is valuable as it shows the 
potential to give some alert to areas at risk even in difficult forecast situations. 
Further cases are required in order to draw firmer conclusions on the overall 
benefit, and this data will be accumulated over coming tropical cyclone 
seasons. 
 
8. Conclusions 
 
We have assessed the performance of the MOGREPS ensemble system 
using a number of different methods. 
 
Section 4 focussed on the comparison of the performance of the NAE and 
global MOGREPS ensembles with the ECMWF ensemble. In general the NAE 
ensemble performed better than the other two ensembles and the global 
ensemble performed worst. The NAE ensemble performed better than the 
other models for forecasts of light precipitation amounts, particularly in the 
summer. The performance of the NAE ensemble was also notably better than 
the other ensembles for forecasts of wind speed, particularly at force 5. After 
KFMOS post-processing the differences between the ensemble forecasts was 
much less, with differences rarely being statistically significant. For the post-
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processed forecasts the ECMWF and NAE ensembles performed similarly, 
with each performing better for 2 out of the 4 thresholds considered. 
 
In section 5 the results of an analysis of the spread-skill relationship in the 
NAE ensemble were presented. Such an analysis is not common-place in the 
ensemble forecasting literature, and hence the results are more difficult to 
interpret. The results indicate that the NAE ensemble has high levels of 
correlation between the spread and skill for wind speed, and for temperature 
in the winter-time. For summer-time temperatures the spread-skill relationship 
is much weaker. 
 
In section 6, we saw that the NAE ensemble has a propensity to be over-
spread, and that this is most prevalent at upper levels. We also saw that 
(when verified against up-scaled Nimrod analyses) the forecasts of light rain 
are very close to perfect reliability. For forecasts of higher rain amounts, or 
other variables, such as cloud cover and visibility, the reliability of the 
forecasts were less. This may be related to the difficulty the NAE model (and 
NWP models in general) has representing these kind of variables. 

e with the ECMWF ensemble, and on many occasions its 
erformance is superior. This is a remarkable achievement for such a new 

ifies the decision to implement MOGREPS operationally to 
needs. Furthermore, there is a strong relationship between 

e spread and the skill of the ensemble for some variables. There still remain 

bles will increase in future. 

 
In section 7, the performance of the MOGREPS global system for tropical 
cyclone track forecasting was assessed for a small number of cases. The 
ensemble mean forecast on average provided a better track than the 
deterministic forecast. Most of this benefit is seen from a single storm which 
was poorly forecast by the deterministic model, but there is also some small 
benefit in other cases. 
 
Overall, these results show that the MOGREPS ensembles are providing a 
useful contribution to Met Office forecasts. The NAE ensemble is at least 
competitiv
p
system, and just
meet customers’ 
th
a number of areas where the MOGREPS ensembles can be improved, such 
as the excessive spread of the ensemble at upper levels, leading us to expect 
that the skill of the MOGREPS ensem
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