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i Introduction

Three dimensional, time dependent cumulonimbus modelling only became a realistic
proposition about a decade ago. The first three dimensional models (Pastushkov
(1975) and Miller and Pearce (1974)) suffered from problems of domain size

(16 xm x 16 km), poor resolution (of order 1 km), crude turbulence parametrization
(constant eddy mixing coefficient), crude microphysical parametrizations (no ice,
with very simple source/sink terms) andofteninappropriatg boundary conditions
(Pastushkov uses reflective boundaries). Improvements in the capabilities of
computers over the past ten years have resulted in models such as those of

Clark (1977, 1979), Klemp and Wilhelmson (1978), Schlesinger (1978) and Tripoli
and Cotton (1982) with larger domain sizes, non linear turbulence parametrizations
(usually a first order closure but occasionally, eg Klemp and Wilhelmson (1978),
"1} order") and better or more comprehensive microphysics (including an ice phase,
eg Cotton et al (1982) and Bennetts and Rawlins (1981)). Theoretical advances
have given more appropriate boundary conditions (éee Section 45. The grid
spacings are still of order 1 km and will remain so for the foreseeable future
although techniques such as nesting and stretched coordinates should give
improvements of resolution in the region of interest. There is current interest
in the development of alternative formulations of the equations of motion and
representation of, say, non equilibrium microphysics (eg Hauf, Holler and

Schumann (1984)).

The subject has recently been reviewed by Miller and Moncrieff (1983) and Lilly
(1979). Cotton (1975) is worth reading for his pessimism while Pielke (1984) makes

some comments of pertinence.

For a number of years Met O 15 has had a Cumulonimbus model; a development of

the Miller and Pearce (1974) model to include an ice phase (Bennetts and

Rawlins (1981)). The model has been used in a number of investigations (eg
Bennetts and Ryder (1984)). The model is coded for the IBM computers but to improve the

domain size (usually 16 x 16 km) and the resolution it is necéssary to use the



capacity of the CYBER 205. The model also has a simple turbulence parametrization and
poor boundary conditions so, while changing machines, the opportunity has been taken

to reformulate the model to improve in all of these respects.

This note describes the formulation of the new three dimensional comulonimbus

model.

The model uses the anelastic equations (Ogura and Phillips (1962)) with a first
order closure for turbulence and a parametrization of warm microphysics
(described in van den Berghe (1985a), the ice phase will be added later). The
boundary conditions are designed to be 'radiating' (see section 4). Height is
used as the vertical coordinate. The equations are approximated by second order
finite differences and advanced using explicit time integration. It is expected
that an integration with 403 points will take 2 hr CPU time for 1000 steps allowing
significant improvements in domain size (say 45 km x 45 km x 15 km with

AII_-—:_’A% = 1 km, _33 = 500 m) or resolution (20 x 20 x 15 km;

_:;(:,xa: £¢ =500 m). Alternatively since, say, a run with 303 points will
take 15 mins CPU a larger number of smaller runs could be made enabling a

thorough investigation of a particular parameter space.

The remainder of this note describes fully the equations used and approximations

made. The detail should be sufficient to enable the model code to be followed.

2o Analytical Equations

The model uses the anelastic equations as derived by Ogura and Phillips (1962)
and developed by Clark (1977). These approximate equations do not support sound
waves as a solution (and so allow longer time steps to be used) but accurately

model internal gravity waves.

The thermodynamic variables are assumed to be decomposed into three elements,

O(x V= @1 )+ OCx )= @+ SO*
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Where G:T. /Dfp, g‘, are the potential temperature, temperature,

pressure, density and water vapour mixing ratio of the air.

The first expansion is about a dry adiabatic atmosphere in hydrostatic balance,
with (large) deviations from the dry adiabat, still in hydrostatic balance,
accounted for by the single primed variables. The double primed variables

account for the unbalanced and evolving atmospheric motions. This decomposition
improves the numerical accuracy of the calculations, allows the linearization

of some equations (eg equations (6) and (7)) and reduces an implicit relationship
between & ’ T and /D (through the saturation vapour pressure) to an approximate

explicit relation (see van den Berghe (1985a) or Clark (1979)).

The equation of state is,

=& (14 g g)T

(2)

where [Zc/ is the gas constant for dry air, EV the gas constant for water vapour.

Potential temperature is defined by

5
o-7(%)

(3)

k= Q.[CP P C.P = specific heat of dry air at constant pressure, Po =

reference pressure.

The initial hydrostatic balances are given by Clark (19?9’ as,



as (4a)
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The hydrostatically balanced basic state can be fully defined using equations (2)
(
to (4) and assuming a potential temperature distribution (&) + O (S) and a
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height of an isentropic atmosphere = Lp B {g

Equations (2) and (3) are linearized about the dry adiabatic state

to give
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The conservation equations for the three components of momentum, after subtracting

off the hydrostatic balances (equations (4))
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(using equation (6))

Where ( &/, U, (O ) are the components of velocity, f the Coriolis parameter,
M

/i] the Reynolds stress tensor (repeated suffices imply summation).

We have assumed that the effect of changes of phase of water and the production
of rain, snow etc will be represented by the interactions between a number of
discrete classes of water substance, each of these classes having a mixing ratio

gﬂ; (eg in most warm cumulonimbus models water exists as vapour ( gﬂy ), cloud
( ?C ) or rain (fe Ymes RE, f/ :gc ’ ?2'—22

With the deep anelastic assumption the continuity equation is

) 2 2 %
é.:UQ(/ fay,ﬂ’// fa(_f/m z='dl)

(9)

To complete the system of equations we need an equation to describe the

conservation of heat and equations to describe the conéervation of each class of
condensed water,eg for the n=2 class system descrioed above,
do* Z A
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where CQX' is the rate of conversion between water fields C‘ and u{ > U?—
the terminal speed of fall of rain. The details of the microphysical scheme
used in this model are given in van den Berghe (1985a). For reasons described

in that note we sum equations (10b) and (10c) to get
/.
P = pCplue+t 2 —'/Z"J
“ 218

To advance the model in time we need to evaluate the pressure, which with

(10e)

the anelastic set of equations is evaluated by solving the elliptic diagnostic

equation derived as follows.

Writing equations (8) as

(11a)

(11p)

(11¢)
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Where 5AU( bt X (/, SLU/ °  contain the non pressure terms from

equations (8).

Takingé%( " of (11a), gy ot {116}, of (11¢c) and using the

o
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continuity equation ([9]) the following diagnostic equation for pressure is found,

'ZP// zag/ p")= 2p50) 9//540) (gSzw)(w)

To close the dry equations we approximate sub-grid scale turbulence by the first

order closure of Smagorinsky (1963) and Lilly (1962).
The Reynolds stress tensor is written as,
P ot S &
/(J ,ﬂ /Z/] DéJ (13)

the deformation tensor as,
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and the total deformation as,
/
e i 2 7a
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The eddy mixing coefficient for momentum is given by (Clark (1979)),

(caY’ IDEF) C1- B~-p)72 P <y

(16)
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where T 5 /(0: VLR and A is a measure

of the effective grid scale,

/
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The local Richardson number, Z » is given by
*
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/416/ is the eddy mixing coefficient for heat and a Prandtl (Pr) number of unity
is assumed, therefore

Q‘%f': 91(/Z agg)

a:zf

2 2
S = 2005 )

etc

The parametrization of sub grid scale turbulence, on the assumption that it is three
dimensional and isotropic, is valid only for grid intervals within the inertial
sub range (Cotton 1975), Lilly (1979)). When used with grid intervals of the
order of 1 km, as it will be, it can at best be regarded as a gross approximation
(Klemp and Wilhelmson (1978)) or merely a numerical device for controlling non-
linear instability (Pielke (1984) p 328). However Schlesinger (1978) and

Clark (1979) have used it successfully in cumulonimbus integrations. Should it

be felt necessary and warranted by any realism of the rest of the model's
parametrizations the next stage up in realism is the 1} order closure of Klemp and
Wilhelmson (1978) (these parametrizations have not been fully verified, see

Lilly (1979)).

ol Numerical Formulation

The analytic equations are approximated using second order accurate spatial
differencing, while time derivatives are approximatedq by leapfrog differences for tre
advective terms, forward for the diffusive terms and implicit for the microphysical
source/sink terms. Apﬁroximations to the microphysics mean that the time stepping
is explicit (van den Berghe (1985a)). The model variables are held on a staggered

grid.

This section describes the detailed numerical approximation of the above system ie
spatial grid, space and time differencing, formulation of the diagnostic pressure

equation and the construction of the initial balanced state.

Py
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3a. Model Domain and Grid

The variables are held on a grid that has constant increments P AX ) Ag/ in
the horizontal directions and is variable in the vertical (rather than an
explicit stretching of the vertical coordinate). The variables

are held on the commonly used staggered grid (Arakawa 'C' grid, Fig 1 or see
Haltiner and Williams (1980) p 226). Sun (1984) sugéests that holding (& and

w at the same point gives greater accuracy to the buoyan‘cy term, equation (8c)e.

This arrangement is used in the IBM moael and may repay experimesntation here.,

The points holding CU are termed /(3 4 points, those holding /.7, @ etc
are termed /(f/)?/ . Figures 1 and 2 show the vertical grid layout and define some

terms.

The boundaries of the model are at X= O, X:Z.r/ (C/= O, y=ly, Z=Of g://

The boundaries pass through the points at which the velocity normal to the boundary

is held (see Figure 3). There are _U b JJ points in the horizontal and
,14/[‘2 in the vertical direction. Computational points are used and so
- v
there are (1 #2)Yx ( 33+2) x KV points in the model. The

points are numbered so that
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3b. Numerical Formulation

Equations (8) and (10) are written as

Sl =-f&p ¢ scut
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and

ADV(¢)€ = the numerical approximation, at time t, for
& 2 di el 5
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Aa/P(qu)f

positive definite approximation for equation (20)

DiFrc )€

the numerical approxination, at time t, for

VR )fa/ﬂl?/ *S (P23

(18a)

(18b)

(18¢)

(184)

-(18e)

(18f)

(19a)

(19b)

(19¢)

(20)
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D//Efﬁ((/c‘) = the numerical approximation, at time t, for
L =07 25
2 25 {2Z7é;7 /c,) * 57(1#?%Z <) fga;(;0é77;%?lgé/;§

/:zkﬁ$‘%f22€7t- = the positive definite numerical approximation, at time t, for
a[;(/ &)
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also

Equation (20) has been written in flux form by using the continuity equation ((9)).
Equations (18a) to (18¢) differ from (8a) to (8¢) in the addition of two terms;

(1) an initial, constant, velocity field ( 443/ '2%3, 65 )

P

(i1) a damping term with time constant 7

{1) 125) Vo Most of the systems we shall be modelling move with a non zero
horizontal velocity. We want to be able to keep the system motion as small as
possible relative to the grid both for numerical purposes and to keep the system
within the grid during the integration time. To do this we subtract off a system
velocity that is constant in space and time¢2- (?%5,?25/ GD);; and therefore
only affects the integration through the coriolis term, boundary drag and the

damping term.

N
(11) Ip The boundary conditions as set up (see section 4) allow the reflection

of waves from the upper boundary. To minimize the effect of this on the
integration we attempt to absorb the waves bzfore they reach the upper boundary.
A Rayleigh friction zone is set up in the upper layers of the model within

which & 2 and &/ are relaxed to ( “p L U (@ ) with a time constant
94 et :
2 (3)

3C5 Time Integration

The model is integrated forward in time using a2 step size éﬂtf and an explicit

scheme. The basic scheme is leapfrog ig\

¢ Lt

(21)

14




The diffusive parts are not stable for a leapfrog scheme and instead we must use

¢ éi-/ & 'Hf 2@6‘/ e

a forward timestep over SAC 4w
(22)

Equation (18f) for f/z is approximated differently to enable the use of a
spatial differencing scheme that is guaranteed to keép QZ positive., For
further discussion of this point see van den Berghe (1985a), A1l schemes suited

to this purpose need a forward time step.

The microphysical source/sink terms are formulated implicitly since the rate of
condensation of water vapour to cloud water depends on the local values of gu
and 7- . There is also an implicit character to the formulation of the
anelastic equations themselves (Ogura and Phillips (1962)) since the value of (=
depends on the release of latent heat which depends on the saturation vapour
pressure which in turndepends on € . Both these links are in practic;a weak and can
be approximated by an explicit calculation (see Clark (1979) and Wilhelmson and

Ogura (1972); van den Berghe (1985a) gives the details of the approximation).

The different time differencing schemes in equations (18f) and (18d and e) mean
that care must be taken to ensure that heat and water substance are conserved in

the calculations (Clark (1973)). As an example consider the following coupled

equations; 9@ (22( 4
5&, = C / Y i —C
approximate these equations as,
+ €+ €+ €=/ »
JhasE AT e el e v D

over two time steps
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The leapfrog scheme with a forward step for diffusion may tend to‘tirr‘.xe split the

solution despite the recoupling by equation (18f) and the lateral boundary

conditions, The model has two ways to recouple;

&4 &4/
a. time smoothing qéz /:- ¢ (/—-&€) + & éé

ds = D Eiri-E) § 8™

(some of the boundary conditions are nonlinear and should be reapplied
after smoothing. This is not done in the model, which is justified if
changes are slow compared to At , a similar assumption is made in the

boundary condition formulation).

b. Take an occasional forward step, ie replace both equation (21) and

equation (22) by ¢é.//: ¢€7‘ dé/f

(in the model code this is done by overwriting the o fields by the €

fields and changing Aé/ l/at etc. A forward step is also used e
to start the model and to restart it. To ensure that a restart integration

is the same as a continued integration it is essential to take a forward step

at the same time as a restart dump is made).

\
| £ ;
3d. Spatial Integration

The spatial derivatives in tne momentum eguations are approximated using the
Piacsek and Williams (1970) scheme,which conserves the square of the speed and

so helps with the kinetic energy budget and in controlling non-linear instability.
For @+and Zr the appropiate conservation is linear and so we use second order

centred differences for tneir conservation .equations. o
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is presently approximated using the flux form of upstream differencing eg
2 (lgp) ~ Fe = Fer
oY AY

where /;i: is defined, at a ¢/ point, by

(9e); 4 ¢ 20
/Z- -

/zz)c;«/f/c' a, <O

The diffusive terms are written as

0//5/-‘/7/(/)-—721 ( STyt 577)’27’ S 753)
D/FA77[7))=7@1( Stz 1 gr/ '?2/'2*55 7235

DIEFI (1) :p%/S:( Te #5137 85 755 )

Where
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also

DIFE(P) = j{ S ( CDEy) Sx b)
# Sﬁ((%/yéy¢)
* 82 (0r) S3 )

The linear stability criteria for all the aavection and diffusion terms reduce to

the same as those for second order centred differences:

bl (ot e
For advection : A€ g Ay Aﬁ,t‘ ag 3 <4

£
For diffusion Zdé{ 412 / ﬁ; = E éé
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If we assume that a:x:ag: Za5=4 U P==C)

/éx: [7: /Zg: K

then stability for advection requires

< ;
NE & o0 = 20 =secs i
and diffusion 2 Aé
L€ <L T = 8O secs
= -/ _ R
if L=0"m, =D’ K=50072

That the model satisfies the stability criteria for advection and diffusion
separately does not guarantee stability, for it is well known that the stability
properties of the combined advective/diffusive scheme may be different. Cushman-
Roisin (1984) has described a technique for analysing the stability of the

combined scheme and this technique can be applied to our equations. An
approximation to the stability criterion, which is sufficient but too restrictive,
is that the combined scheme is stable if

Uz | K
b= zot] 55+ et 5k

IN

g -
z

and

N % IUI, ‘Jf (cot ~ 2 el 2R £ i 5

&g b
In other words the stability of the combined scheme is still dominated by the
stability with respect to advection, although reductions in the grid size will
change this, eg with /A = 500 m advective stability requires that AGC/O .
diffusive stability that Aé £ 20 and the combined scheme that ACL < 6§secs.

3e. Diagnostic Pressure Egquation

To advance the model in time we need to use equation (12) to diagnose the
pressure. The model is in a correct balance only if equation (12) is obtained
in a form that is consistent with the numerical formulation of the momentum equations. j

Taking £ Sy of equation (18a) 57 of (18b) and /2 gg of (18¢)

and adding we get



&t/ ¢/ g
e 3V pu T 0 putT = -2(7/ r5S(5 Cpr ¥ (pse)

(23)

: where V: géxfd/gf/'/_égd,

gy Latrivte bwe

(f is a scalar)
The approximated form of the continuity equation is
£

VW Ly =O (24)

We assume that the é?‘/ fields satisfy this condition but, being pragmatic,
recognize that the numerical solution will not exactly satisfy equation (24).

To provide a negative feedback on the resulting error growth (Harlow and Welch

s (1965)) we retain the €-/ term in equation (23), The pressure equation is then;
«/
Tod
; VP+.5§&(//9”) Cpleet = ) (25)
ie

14 " a # L1

&Pt 55, §5P 250507
= Sx WU+ &HVFS, Hu (26)
where /é—/
/L/U:: ,@ (.Sé(/‘/ _?(Z.C’ /
A = Sy gc:///
é—

///(/:/ (Qw% __%é ]

Equation (26) is solved using Fourier transforms in the horizontal directions and

tridiagonal inversion in the vertical. The method is described fully in
van den Berghe (1985b).

21



3f. Initial State

To avoid spurious forcing of the model from an out of balance initial state care
must be taken to ensure that the ¢ and ¢/ variables are set up in exact
balance. This means both a consistent approximation and also balance at the
machine accuracy at which the dynamical variables are held (32 bit and not the
64 bit of the main calculations). The model as codea satisfies this balance

since initially still fields with no forcing remain still for all time.

ERVATIONS (S) ARE wRITIEX AS,
2]
T =&@(1-%.)

) e

. )
p= plli- 4 BRI )"

£~
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R =Ty -
P 2% 5 - 5%

Y
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5;* o pla e ) (ags)
Ar 7 ‘73 S
/ A @ 7
a‘l + ‘g "@-CS i Pg/@— +é{0 / (27b)

/v indicates that the variable is held at a 5 point. Equations (27) are

integrated numerically from the surface assuming that /9’ g—‘ @ d/cf: CD-

4. Boundary Conditions

The only real boundary of the model is the ground, all the other five boundaries
are artifices introduced to allow adequate resolution with a realistic computer
storage requirement. A major concern of limited area modelling (cumulonimbus
modelling in particular) has been to minimize the effects of these artificial

boundaries on the integration. The usual paradigm is that the effect of the

22
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boundaries is minimized when any disturbance or energy radiated by the modelled
system is not reflected back into the model domain. A simple and effective method
is to absorb any incident radiation using an artificial zone near the boundary
in which the model equations are changed to damp any disturbance (a Rayleigh
friction zone). Since the model equations have been changed in the damping
zone the solutions there are non physical and cannot Be used. The damping
zones can occupy 1/4 to 1/3 of the model domain and are therefore very
wasteful of storage (eg Clark and Peltier (1977)). Over the past decade

an alternative treatment of the horizontal boundaries has been developed
(Orlanski (1976), Klemp and Wilhelmson (1978), Miller and Thorpe (1981) and
Raymond and Kuo (1984))which seeks to explicitly radiate any incident energy
through the boundary. These '"radiation' boundary conditions have proved

effective and, since they have no non physical zone, storage efficient.

The horizontal boundary conditions of the model are the radiation conditions
proposed by Miller and Thorpe (1981). The upper boundary is modelled as a rigid
1id with a Rayleigh friction zone (see section 3a)). It is proposed to change the
upper boundary to a radiative one based on the boundary condition given by Klemp
and Durran (1983). The earth's surface is rigid and free slip with frictional
drag through the stress tensor. Rzin is assumed to drop through the bottom of the
model with a fall speed determined by the amount of rain at 6(47(23). No other

surface effects are considersd explicitly at present.

At the top of the model domain, é§==/y , We have

ZUK/‘-/ :O

2 TR el it e S i iF:,
S P = S0P =, P 7 = & @
i v A N :Z;}Z y il -
$latize %//z = X n” % Lo lsz” e’ 72’,5’ %;s B
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One further boundary condition is required to enable the calculation of SLW at the

top of the model. We require conservation of momentum through the top of the

model (Clark 1977) ie (7[10)(08—’- O at S$= A,
.__l 4 P
therefore a‘? /72/&/0) = 2 D2My, WM-Z /K/é—/

The lower ) 3—’— O , boundary conditions are,
=0

1
;? (o) {;:@ = Zpay, Yz

Sl p) = S:00) & (G,)- § )= S 567 =0

|
(N

S s
3— _@

oR|

77/ 3__ ;/v;'zs_:

N
h
b
0 N
|
‘:‘Q\‘
W
e
(V)

/e model the exchange of momentum with the surface by a simple bulk drag law

(eg Haltiner and Williams (1980) p 270).

76 D (Uors)*+ (Ut )2 (e ttt)

A ~ Vs %
T2 o ((ordz?)%+ (2%t 9)?)? (21 %)

here the surface tangential velocity is taken at 5:5”2
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The normal velocities at the lateral boundaries (1>0) X:él’/ y:a y:%}

are found by extrapolation using the following (radiating) replacement of the

momentun equations; 2
2y o 27 - O
ot Uy

(28)

A1 indicates the direction normal to the boundary;c tne speed of the energy.

We shall describe two methods of solving equation (28) for [/7, and, at the end of this

section, describe some simple tests of the effectiveness of the boundary conditions.

Our choice of solution method is constrained by the pressure boundary condition

‘ €+/
for time € which assumes knowledge of % before the ¢#/ fields are found.

Miller and Thorpe (1981) have shown that accurate boundary conditions can be

found by using a forward in time, and upstream space differencing scheme to solve

equation (28) ie (/0(#—(/0: c Zf K/é"éi:(/éé? =

(the formulze are given for the XY= (O boundary, where 0— is the boundary point

extension to the other boundaries is trivial).

£ A, €
ie %éf/: ﬂé (/‘/ 7/:{) - ’/'-/(/&,L/

’Y;
A& cat/ax, A7 £ D

A
The methods to be described differ in their determination of 7 .

(29)

Klemp and Wilhelmson (1978) assume that the energy to be radiated is carried solely

by internal gravity waves. If this is so then these waves will be radiated if

: ar 4
C=(/07‘C# Tiwe oz (7€) (30)

where C* is the phase velocity of the wavés wve want to radiate and is directed
out of the domain. Klemp and Wilhelmson take C—* as a constant and show that
energy will still be radiated if /& */ overestimates the phase speed of the

actual waves. The fastest moving waves are horizontal with a large horizontal

25
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wavelength and a vertical wavelength twice the model height, ie

7w M/ = Brunt - Vaisala frequency. Miller

and Thorpe (1981) follow Orlanski (1976) and determine the appropriate from

2 [/ Xty

equation (28) by writing
' Y o

This has a non-trivial solution if referred to interior grid points at previous time

AF At/
steps (assuming that changes take place more slowly than A€ so that 7z77), then

- & _ (/ &-/ '

Al (Qw/ 5/6;»/)/ o2 ’[/é//) (31)
Equation (28) assumes that the disturbance- to be radiated is one dimensional, which 3
a three dimensional integration is untrue. Raymond and Kuo (1984) show that the
correct three dimensional version will improve the radiative properties of the
boundary but the resulting boundary condition is too computationally expensive

for a three dimensional integration.

The above provides boundary conditions for one variable per side, the remainder can

be found by noting that Sundstrom and Elvius (1979) suggest that for our equation
system a well posed set of boundary conditions will specify all variables on an in‘low
boundary but only specify one on outflow (the rest can be extrapolated). The extra-
polation should be done using an appropriate form of equation (23) but experience has
shown (Clark (1979), Klemp and Wilhelmson (1978), Raymond and Kuo (1984)) that an

adequate approximation is to replace it by a simple extrapolation formula.
The lateral boundary conditions used are, for the XY= boundary;

A
(i) On ¢ , equation (29) and (30) or equation (29) with 7 from (31)
tie af 08, A5 jir ALt 'f'l—f—/ Yo
A
Wdom & (@O G,9., Ucv)
g (5 4
L BE) Cadh -
e £/ o
deor & - 20 Zad

1F
where 42 is 56 averaged to the point at which ¢4 is held.




e

To calculate 51(/(0) we need (/[1'—‘ 'Al)which we extrapolate from
€

The corner values of all variables are found by averaging the values found by

using either boundary,

The Reynolds stresses are given by

STy = S92 SxTs5™ S lyy = %723

The pressure equation ((25)) was approximated in a manner consistent with the
approximnation of the momentum equations and so the boundary conditions must also

be consistent. We  rewrite equations (18a, b and c¢) with as the object.

X [ x=6

/ e, CH &
a%) rey = P (S -z (Yo~ o))

‘2929:0 0 (S '246/7/&/ )/

DA/ YT NG D)

52[0// & ’p/ 540/ -2_26 /(/ff/ (// ))

(J g%f/Dﬂ)/j() /, Sluw,
(ag ¢ ;f/’”) [3=4= /é‘m_, Stlyn-y

The boundary conditions have been formulated so that 5{,14/#,_/ = and the
only contribution to 5(.6(/, is through the surface drag, which produces well

posed upper and lower boundary conditions (Sundstrom and Elvius (1979)).
27




: o AQNQX.V I.~l
; L. 929 09 be 3t T o of - 37, ods <
£ ) i | ! r =% o 4 o ) v
—— enpe 2 ,
N - . e
— /
e
. L,
i r.m.ﬁu.QTE :
=
¢ )
NOSUEIHNIM QMY gua)| ——
2dYoNl Ao PITNY ——— =9
: LI
(0,10 a3
55255 SUBnA Baol (PIVIN x0addv) T 0




LT Y

‘

The model has been.run in a dry é?p ;:C:) y quasi two

dimensional ( 522':57525/ , initial field varying in >/ andci only)
form to test the consistency of the boundary conditions and to compare the
efficiency of the schemes of Miller and Thorpe (MT, equation (31)) and Klemp and
Wilhelmson (KW, (30)). The test problem is similar to Orlanski (1976) with the
initial CE) profile stable except in a 4 km x 4 km séuare which is neutral. The
collapse of this square generates gravity waves which shéuld pass through the
model boundaries without reflection. To isolate the effects of a boundary
identical integrations were carried out on-a small (32 km) and large (64 km)
domain and compared. Qualitatively the results showed that the broad features
were the same but the MI' small domain integrations were closer in detail to the
large than were the KW small. A clearer demonstration of the superiority of MT

conditions is gained by plotting

F 4
o= g/yp(ﬂ 09w ?)

against time for a MT and a KM small. integration. E is a measure of the model
kinetic energy. After the initial build up due to the collapse of the neutrally
stable region we expect a monotonic decrease as the gravity waves pass out of the
model domain. Figure 4 shows that the MT condition is the most effective since
the decrease is zlmost monotonic and faster than the KW condition (which in the
non-nonotonic parts shows evidence of wave reflection). The superiority of the
M boundary conditions is also evident in 3D integrations but not so marked,

possibly because the assumption of one dimensional radiation is less valid.

f Model Structure

The model has been coded to run on the CYBER 205 with the calculations arranged
so that the usual vector length is one horizontal slice ((II+2)%(JJ+2) points).
The structure was originally based on the Met O 14 Large Eddy Model (Callen and
Dickinson 1985)) but the overall control structure is new and the details have

been substantially changed to accommodate the different equation set.
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" the calculations are performed in full precision (64 bit). Calculation proceeds

The field variables are held in a half precision (32 bit) array "STORE" and

in a vertical direction, at each step one horizontal slice of all the fields is
expanded to 64 bit and an updated slice is contracted to 32 bit and stored.
"STORE" is arranged in KK blocks, each block holding one horizontal slice of all
the fields (in the order given in Fig. 5). The modei reserves NIJ locations
for each horizontal slice of every field of which (I1+2) (JJ+2) are used

(similarly there is space for NK slices).

To maximize the use of storage we calculate the divergence of the source terms
(equation (25)),then solve the pressure equation and then recalculate the source
terms for the advection equations. This approach is more costly in time but
saves the use of 3 full field arrays as temporary storage for SLU, SLV and SLW.
Figure 6 gives a schematic picture of the main stepping routine, ONESTEP, which

uses this algorithm.

The model is restartable with a restart dump of one time level of the fields
made every IRST steps (the restart is with a forward step). The dumping is done
using concurrent I/0 (Q7BUFIN/OUT) to minimize the likelihood of the calculations

being I/0 bound.

A different dump of fields is made for diagnostic purposes every IDIAGD steps.

The aim is for the dumps to be transferred to the IBM for processing and storage
on tape. Since one of the limiting factors on the size of the model is the amount
of tape required to store the diagnostic dumps the dumped fields will have to be

carefully chosen and stripped of any superfluous points.

The schematic structure of the dump/restart process is shown in figure 7.

Most of this structure is found in the main.program ("GECKO") but the input is

performed in set up subroutines (SETCNTRL,SETFLDS), the dumps in ONESTEP and the

monitoring output (zebra plots, simple field integrals etc) in PRNTDIAG,

PRNTPRES and PRNTDAG2.
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