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Turbulence and Diffusion Note No.9

SPECTRAL YSIS G THE FAST FOURIER TRANSFO.

by D. Rayment
Introduction

1, The FFT is a numerical technique for rapidly computing Fourier coefficients,
Suppose we have N = o data points, About N2 arithmetic operations are required
to find the Pourier coefficients using direct methods (i.e, each of the N data
points has to be multiplied by a trigonometric function to obtain each of the

N Fourier coefficients), With the FFT the number of operations is reduced to
about 2!(1052N which increases the speed of computation, for say 1024 data points,
by about 50 times, An actual evaluation, using the FFT, for 8192 points took

5 seconds compared with about i- hour by conventional techniques (Cochran 1967).

When N is composed of factors 2, 3 or 4 the maximum computational advantage
is realised and such factoring can nearly always be arranged by adding zeros
to the data, Because the number of operations involved, in using the FFT, is
smaller,round off errors will be much reduced,

This great increase in speed makes it preferable to compute spectra
directly from the Fourier coefficients rather than by the "lagged products"
method or some digital filtering method, In addition if one requires the
variance or covariance of a function(s) it is usually faster to calculate
these from the 'power spectrum' or 'cospectrum' (Tukey 1966),

Derivation of Spectral Formulae in terms of Fourier coefficients
2., Any periodic function, x(t) = x(t+T), where T is the period, can, with

some restrictions, be represented by a Fourier series:-

2(t) = 85/2 + bg (ay 008 2xkt/T + by sin2 xkt/T) (1)
In complex notation (1) can be written:-

Xt) = 5 o exp(-2%1xt/1) (2)
so that i ~

T

Cp = -} / x(t) exp(2wikt/T) dt (3)
and 25 ; ‘

Cp = (8 + 40y )/2 , Cy = (8 - iby)/2 and C, = ao/2. (&)




3. Defining a second function

y(t) = ,Z: Dy exp(=27ikt/T)

where Dy = (op + 1d))/2 ete., the average cross-correlation,ny -

where x(t) and y(t) shall now have zero mean (i.e., ag = 0, = 0), is given by

G () ;}.]T x(t) y(t-T) dt (5)

o

where U is the lag of one function on the other along the t axis and
G xy(¥) is periodic in T,
Substituting for y(t = ¥) in (5) gives

Gv("c’) = -}fr x(t) g D, exp(-2 7ik(t-¥)/T) dt (6)

Treating k and t as independent (6) can be written as

oo

Gry(“d) 7 ],:Z.,,Dk exp(27rik2‘/‘r)% j: x(t) exp(~-2 7ikt/T) dt

= > DO exp(2wikv/T) (7)

Since the Fourier coefficients a, and b, etc., as in (1) are not defined

for -k we write (7) as

kz E’k".x exp(27ik7/T) + D_ 0 exp(-21ik’t’/'.l')—_| (8)
=0

Using the fact that
ch"k + D-kck = (lkck + bkdk )/ 2
and DyCx = Dl = -1(bk°k - apdy )2

we derive final],z.
Cxy(T) = % ,Z—; [(‘k°k + bdy) cos(27kT/T) + (byex - apdy) sin(27rk1'/'1')]

(9)




4, The cross-correlation at zero lag is:=-

ny(o) = x(t)y(t) = 'l‘kz_o(akck+bkdk)

which in integral form can be written

(£)3(t) =/§(n),y an
where n is the frequency.

5. The power spectrum gives the contribution to the variance at

different frequencies, So we have

6.2 = %/T [x(t)]%at = % g_o (2 + B 2)

(¢)

and G x2 [°S(n)x dn = /:S(n)x d(log n)

(=]

6. In general we can write
@«
GV (v) = [¢xy(n) exp(27xin?’) dn
@©
where n = the frequency and ¢v(n) is the complex cross-spectrum,

We write ¢xy(n) = Co(n) + 1Q(n)

(10)

(11)

(12)

(13)

(14)

where Co(n) is called the cospectrum and measures the contribution to the

covarianee in each frequency band and Q(n) is the quadrature-spectrum which

measures the W/2 out of phase relationship between the two series at each

frequency (Jones 1958),

Now Co(n) is an even function of n and Q(n) is an odd function of n -

this follows from the definitions that

Co(n) =/ai»(6('t) + G(=%)) cos2wnyYd Y

and MW e /"%(6(*:) - G(-7)) sin27nTa ¥




We have, therefore, expanding (14) and changing the limits
ao
ny(’t) =/ (2Co(n) cos2wn¥ - 2Q(n) sin2% nY)dn
o
Letting n = k/T = kAn the summation version of this becomes:-

ny(“() = % go [S(kAn) cos2wk /T ~ q(kAn) sin21k'z’/'r]

where 2Co(n) = S(kAn) and 2Q(n) = q(kAn), i.e. if only positive frequencies
are considered the cospectrum is 2Co(n) and the quadrature spectrum is 2Q (n),

Comparing with (9) gives

S(kAn) = %(a.kck + bkdk) i.e. the cospectrum points and .
q(kAn) = -g-(akd.k - bkck) i.e. the quedrature spectrum points

Summation versions of the Spectral Formulae

7. For a discrete, equally spaced time series, of zero mean, where t = time,

N

the number of data points and n = a frequency, writing

t=jAt, (j=0,1,-~=~N-1),T =NAt and n = k/T = kAn, (k = 0,1,- - Net),

ignoring end corrections the summation version of (3) is:-

g Nt P
¢(kAn) = F E:x('mt)' (16)

where W = exp(2#71/N) and C(kAn) is used to replace Cy to indicate that the
Fourier coefficients are evaluated at frequency intervals of A n starting at
zero frequency,

Equation (16) has an exact Fourier transform:-

x(jAt) = E C(kAn) w-Jk (17)
k=0 ;

8. It can be seen now that the physical quantity we are considering is
replaced by a limited series of data 'spikes' separated by time intervals of

At., This has two effects on the spectra called "leakage" and "aliassing",




9, Leakage is caused by the presence, in the physical quantity of
frequencies other than those at kAn, If the quantity really consisted of

a series of spikes (16) would give the precise Fourier coefficients, However
these inbetween frequencies modify the coefficients over a large range of

ad jacent frequencies, This range can be reduced, at the expense of statistical
accuracy, by using 'data windows' or by applying, for example, 'hanning' to
the derived coefficients. For a full discussion see Blackman and Tukey 1958
and Bingham 1967,

10, Aliassing is caused by there being significant contributions tc the
variance or covariance beyond the upper frequency limit of a particular
analysis, This upper limit is determined by the sampling rete,

In equation (16), because wik - I'J(N"k) , useful coefficients are only
produced up to a frequency of NAn/2 the rest being merely a set of reflected
values, It should be noted that equation (16) only looks at positive
frequencies and the results C(1) to C(N-1) are symmetric about C(N/2)., Seo
that if there are contributions, in the data, beyond NAn/2 s these will be
added to the coefficients corresponding to frequencies below NAn/2, i.e,
eliassing will occur,

If the sampling rate cannot be increased sufficiently the total spectrum
cannot be resolved, However aliassing can be removed by using a physical or
mathematical low pass filter,

11, Other losses can be caused by inadequate instrumental response — the
effect being that of a low pass filter, and/or too short a recording period —
the effect being that of a high pass filter,

12, The FPT provides a rapid evaluation of the summation part of (16), i.e.
A(xBn), = ";é x(jAat) W (18)
=0

The following notation will be used

A(kAn), = ap(kAn) + ibp,(kAn)




we have A(xAn), = Ne(kAn) = 'g("k + by ) so that
apg(kOn) = a' N2 ete., (19)
where a%, and b% are the aliassed and leaked versions of ay and by.

Various notations will now be taken to be equivalent for example

x(jot) = x(j) = x5, 8p = ap(kAn), ete.

13, The coefficients ap and bp etc,, can now be substituted into equations
(12), (13) and (15) where k = 0,1, - = N/2, this gives

the aliassed 'cospectrum' points
S(kAn)gy = 22% (agop + bydp) (20)

and 'guadrature spectrum' points
2At

a(kAn),, = =57~ (spdp - bdpep) (21)
and 'power spectrum' points
S(kAn)y = 2-%1 (il nd) o0 (22)

L. These formulae cen be derived directly by substituting (16) and (17)

into (5) so that instead of (6) there is

N-1 N- N-
1 X 3k
GglLat) = & g 'g) C(yx) W éo D, w-Jk yik (23)
where ¥ = LAt and
N-1 N=-
Z Cy Wk - i C(N-k) w¥  has been used.
k=0 k=0

The orthoganality relations

N-14
> wilr-8) _ N irr-=s
j=o =0 if r#s

where |r - sl £ m, permits us to write

Gv(LAt) = E c(N—k)Dk ‘!‘k which gives all the discrete
k=0 |

spectral formulae,




In passing, from the last quoted formula, it is clear that if one requires
cross-correlations and/or correlation coefficients and/or autocorrelations one
can perform a FFT treating c(N-k)Dk as the data input in place of x(jAt) and
WK a5 the complex multiplier in place of wIE in (18)., This effectively gives
circular cross- and autocorrelations and as many zeros need to be added to the
c(N-k)Dk data as the number of L's that are used, A full discussion is given by
Gentleman and Sande 1966,

15. The S(kAn) give values at frequency intervals An = 1/T where S(C) = 0
and S(NA n/2) is the estimate at the frequency NAn/2, called the Nyquist
frequency, fy. The Nyquist frequency is related to the sampling rate by
ty = 1/(2At).

Statistical Reliability of Estimates

16, Apart from round off errors, the square rocot of the mean square fractional

error € , for a Gaussian process, in S(kAn)y is given by

€ = +/ 1/(Tan) [Richaras 1967] (24)

so that individual power spectrum estimates given by (22) have a fractional
error of 1 (i.,e. 100% error).

To make the estimates more reliable we can take an average of adjacent
S8(kAn)'s or average over sets of S(kAn)'s for different (maybe overlapping)
record lengths., For example if we average over p adjacent S(kAn)'s then An
will become p/T and the fractional error is \/_1713_ . Both types of averaging
may be used,

Equation (24) has only beer used as a guide here since the time series
will probably not have come from a Gaussian process, The errors in the other
types of spectra are more complicated though similar averaging techniques can
be employed.

If we assume nS(n) X n¥ then mean estimates are best made from the mean
log of nS(n)'s which can then be plotted at the mean log frequency of the range

used, In practice this method of averaging is rather cumbersome and one usually

a4 -7=




has a sufficient number of points to use 'short section' linear averaging, which
only distorts the shape slightly, and yet still preserves adequate statistical
stability, This is particularly true of meteorological speetra which tend to
be fairly gently curving, Smoothing through very sharp peaks can be quite
troublesome and a method, using a triangular weighting function, is deseribed by
Singleton and Poulter 1967,

Referring to (13), areas will be preserved if nS(n) is plotted against
log n,
’ The Fast Fourier Transform

17. Consider N = 2™ data points and (18) written as

N-1
A(K)y = ;E? x(3) wik (25)

=0

Following Cooley and Tukey 1965, j and k can be recast as bimary numbers:-

B m=1 me-2
J = .1._12 + .1..22 $isivens ¥ . 38

(26)

2--2

M1
and kﬂk-_12 +k._2 * seceee + ko

So that x(j) can be taken to represent the data points successively in time
(these indexes can also represent successive storage locations in a computer)
and A(k) will characterise the Fourier coefficients successively in the

frequency domain, To illustrate the indexing we have for example
A(0,0,0) = A(0), A(0,0,1) = A(1) = ap(1) + ibp(1), x(0,1,1) = x3 ete.

By inserting (26) into (25) we derive

1 =) : pu-1 etk
Ay ¢ Hakisisn Bisho) ¥ 2 f”{E_.~n(3,.'_,,....;,4°).v“94-1 v okt rkeio

Jo=°
(27)
This process has two important consequences, First it has removed a large number
of W terms, For example

1 1
4 'k“"“z.- has been replaced by 'k°:"’12.' since these are equal, .




In general

8=1 8
'kd..sz.-' . '(k.-1 2 *o0ee -*ko)J‘.’Z-. (28)
r
To prove this expand k as follows

k = (kyq 2..1*1‘--22-.2*-"*“1-1- ‘r*°°*ks2.*ka-128-1*---*ko)
Consider now the terms that are removed from the left hand side of (28) i.e.

W(kn-1 ' '+k-r2.-r+ oo "*ksz') 31-32.-‘ (29)

Remembering that W = exp(27i/N) = exp(27i/2®) (29) becomes
= )
up(z""i(k-.12-.1-‘*kn-zzbz-‘*-o'*km-rzm Tl 42 )im-s) (30)
now s £ m-r therefore (30) equals unity ' and (28) is proven,

18, The second important factor can best be illustrated by expanding (27)

for the case where N = 8 (i,e, m = 3), (27) then becomes

A(k20k1 'ko) Bl
{(xo"xl.. Wu") + [(124»:6 Wl'k°) '2k°] 'hk"}]

‘ {(x1*x5 w+ko) wo . l:(xrx., wko) '5ko] ""“1}'21‘1] w2 (34)
:

Notice that a change in the j, 4 from O to 1 produces a jump in the x data

subscript of N/2 and also note that

""ko,1fork°=0a.nd-1 for ko = 1,

Starting with data in normal order, x,,x, seeeX7 the inner brackets are
multiplied by a W with a k, index and produce a set of 8 (i.,e. N) partial
results

XosXq 5.+ X7, Where X, = XX, , X; = Xo=Xy ,.....Xg = Xz+x7, and X7 = (X3-x7)W,
The next set of terms involving ky indexes can now be worked out by bringing

together the same set (in terms of subscripts) of X's but multiplied by a

-9-



different W index, It is this property which makes computation easy, To

illustrate this clearly let

w=oexp (i) = w"’md

so that the set of X's in terms of x's become

- M4
X +X ,(x -X )w ,x1+15,(x -X )'1/2‘ ;x2+16,(12-16)'2/2- 3 +x7,(x )'5/2

i,e,

This process will have taken the data in one storage area and read the partial

results into another area, The w index is in fact

1 -
(¥2P7) (172" P)
- and provides a complex multiplication of every (xj s N/Z)
where j emumerates the x subscript, I means take integer part of first bracket
and p is the pass number, So that in the example above, which was the first
transfer p = 1, The next transfer which reads results back into the first

storage area, gives

o 0 1/ ae 1/2m=2
+xb,(x°-xk)- ,x1+15 ,(x1 -xs)v '12*16 ,(12-16)' ,13+x7,(x5-x7)w
i.e. p = 2, The whole computational procedure can be summed up with two
formulae

: MBS i am B -

23 3 j+W2 and x - (x ” xﬁl{/z)“pl}‘ i(d/zp.1)1(1/2‘-p)] (32)

Note that the j subscript only runs from O to'% = 41 because the partial results
are taken in pairs.
This method is given by Singleton 1967.
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19. In the above example one further pass produces the Fourier coefficients

and in general m passes have to be made, The coefficients arrive in a scrambled
form, called 'binary inverted order', and the FFT computer programme, given in
the appendix, inecludes a 'reshuffle routine' to produce the coefficients in
serial order i,e,

30,81’......%-1 and bo,b1’coo-oobn-10

Formulae (32) transfers back and forth between storage areas in the
computer and for 'raw' use of the FFT four storage areas of length N must be
used. For example A stores for the data, B stores for a set of zeros
(imaginary data), C and D stores for transferring, To arrive at the scrambled
coefficients as we have said, m passes have to be made, and a further N/4

passes have to be done to unscramble these (see flow graph in the appendix),

Improvements on the 'raw' use of the FFT

20, If we have two sets of data x(j) and y(j) of length N we can compute

the useful Fourier coefficients together by replacing x(j) in (25) by

x(j) +iy(3) giving

Ax) = = (x(3) + 1y(3)) W (33)
W
By putting g = 2%/N (33) becomes
N-1
A(k)xy = % [(xjoosgjk - yjsingjk) + i(yjcoagjk + xjaingjk)] (34)

To recover A(k)x and A(k)y we require a summation of the form

N-1
Z [(xjcosgjk + ixjsingjk) + i(yjcosgjk + iyjsingjk)] (35) '

J=0
However the FFT answers will be in the form corresponding to (34). Making use
of the fact that
cosgj(N-k) = cosgjk

and singj(N-k) =-singjk

-11 -




we can easily show that

A(k)x = Re E\(k)v + A(N—k)v] /2 +11Im [A(k)v - A(N—k)v] /2 and

- (36)
A(k), = In [A(k)xy + A(N-k)xy] /2 - 1 Re [A(k)xy ¢ A(N-k)vJ /2
This process, the so called 'dual use', produces the coefficients
A(1), and A(1)_ up to A(g - 1)_ and A(% - 1),
21, If N is even (25) can be written as
N N
A(K), = g x(2v) W2 , y* :%: x(2v+1) WO (37)

T}xis provides two transforms, one for even and one for odd numbered data, By
treating the even data as real and the odd data as imaginary we can perfomm the
‘dual use' method and recombine by multiplying the odd data coefficients by Ik.
This method (Bingham 1967) uses only half the storage space and takes approximately

half the time compared with the raw use of the FFT,




APPRNDIX 1

S R w the
Starting with a set of coded, digitized data the sort of process required,

to derive spectra, is illustrated by the flow diagram in Pig.A, page 5.
Step 2 could be replaced by several other techniques e.g. fitting a low
frequency sine wave or polynomial or even a straightforward mean. Also if the
data is extracted from a filter unit, which has a zero mean output, step 2
could be omitted altogether. No 'o&et iron' rules can be laid down since it
depends not only on the original data but also on the type of spectra one is
dealing with,

"Hanning", if it is to be applied, can be inserted either between steps 2
and 3 or sometimes between steps 3 and 4. Thus if one has spectra that are multi-
peaked and only the relative values of peaks are of interest the following

formulae can be appliedj;-

replace % by 13 = #(1- cos{ 2‘1\':]/!)):J (38)
Putting this expression into (18) and expanding gives a set of "hanned" Fourier
coefficientss~

A=A +28 -4 ) (39)

Whether one applies equation (38) between steps 2 and 3 or (39) between steps 3
and 4 is just a computational detail. These two 'hanning' formulae do not
however preserve the true amplitude of the spectral points and should not be
applied where the area under the spectral curve is important. Meteorologiecal
spectra, which are often broad single peaks, have areas which directly relate
to fluxes or variances of quantities and the aforementioned 'hanning' formulae
should not be used. Some 'hanning' could be tried however by, for example,
applying in place of (38)s-

1:3 = #1- cos(B’l‘;l/ll))x.1 (40)
where this is only used to multiply the first and last eighth of data the rest
being multiplied by unity, so that spectral amplitudes are only slightly altered,




No simple and usable equivalent to (40) in the frequency domain (as (39) to
(38)) exists. From meteorological spectra that have been worked out, it seems
unnecessary to apply 'hanning'.

At step 4 the Fourier coefficients are simply substituted in the appropriate
formulae given earlier and in fact only the first (N/2) + 1 results will be
useful, The averaging used at step 5 has already been discussed,

Com son of FFT Spectre and Spectra derived using a set of Avera times

Experiments have been performed at Cardington on a 28 ft mast using the
Cardington turbulence probe and data tapes of f, the inclination of the wind to
the horizontal, T, the temperature and V, the total wind fluctuations, have been
produced. These were processed on the Mercury computer at the Chemical Defence
Establishment at Porton to produce among other things& % (the standard deviation
in the horizontal vind),G' (vertical wind) ,6,1, (temperature), u'w' (momentum
flux) and wT (heat flux) for various averaging periods using a linear
regression to remove long period trends,

By taking differences in variances and differences in fluxes for various
averaging times (effectively a filtering technique) spectra can be derived for
all the above quantities, Though individual spectra are somewhat distorted by
this method average spectra, based on up to about six sets, produce results

in reasonable agreement with other workers, The spectral points are given by
nS(n) =a/Mm; A (1)

np=n4
where & is the difference between two variances or fluxes for two averaging
periods and the frequencies nq and n, are the half power cut off points given

by
‘i‘ = /s where s is the averaging time,

See Jones and Pasquill 1959,




"
.

Some of the individual tapes were rerun, on KDF9 at Bracknell, using the
FFT, It was ensured that the same data was used for the comparison, For
the results presented here the first two sets of 1024 seconds starting at 1340
GMT on the 30 October 1968 were taken. Run 1 will refer to the first 1024
seconds and run 2 to the second 1024 seconds, It was possible then to first
compare regression coefficients, this being a check that the computers read the
same data points, and second to compare the shapes and magnitudes of individual
spectra,

Figures 1, 2 and 3 show this comparison where points derived using equation
(41) are called Porton spectra. The Porton spectra used averaging times of
1,2,5,10,20,50,100,200 and 500 seconds to produce plots at geometric mean
frequencies .31, .14, ,06, .03, -014, .006, ,003 and ,0014 Hz, The plots for the
individual FPT spectra were made up by averaging 32 adjacent S(n)'s giving 16 plots
from each set of 512 Fourier coefficients, nS(n) was formed and plotted at the
appropriate geometric mean frequency, As can be seen in figures 1(a), 2(a) and
3(a) averaging over 32 is a little too coarse at low frequencies and a little
too fine at high frequencies to compare thoroughly with the Porton spectra,
Nevertheless a reasonable agreement is found, with the FFT spectra giving a
more consistent picture from run 1 to run 2. All these spectra are of course
‘aliassed' the effect being particularly noticeable for the nS, spectra and for
this reason these spectra are not presented to demonstrate the actual form of
these spectra but only to illustrate the comparison, The generally poorer
agreement at low frequencies, between the individual spectra, is caused by the
rapidly decreasing statistical reliability in the Porton spectra as the
averaging time is increased, for example for averaging times of 500 seconds only
two points finally go to evaluate the standard deviations and fluxes whereas
for the FFT spectra all points have the same reliability, At higher frequencies
the agreement is much better, with the Porton spectra on the whole being about
20% higher than the FFT spectra,




To make further comparisons average spectra were derived as shown in
figures 1(b), 2(b) and 3(b). The Porton spectra were simply averaged in pairs,
Part of the computer output for the FFT spectre included an average of each of
the 512 pairs of S(n)'s, An increasing number of adjacent values were used,
going respectively from low to high frequencies, to produce the average FFT
spectra, For example for the lowest frequency plot, S(n)'s at frequencies

1/1024 to 5/1024 Hz were averaged together so that nS(n) was worked out and

plotted at a frequency of A/ (1/1024)(5/1024) i.e. at ,0022 Hz, The complete
set of frequencies,was ,0022, ,0072, ,0162, ,0382, .10k, ,20, .31, and .435 Hsz,
It can be seen that there is fairly close agreement and even the agreement at
low frequencies is not bad considering the lack of statistical stability there.
It is important to note that the FFT spectra were produced in about one
tenth of the time it took to produce just the variances and fluxes for the Porton
spectra., The total time, including reading in on paper tape some 7000 numbers,
required to produce the final FFT spectral points as illustrated plus four
other spectra, not shown, amounted to about 5 min computer time on KDF9.
Though the Mercury computer is slower nevertheless to arrive at the same result
would have taken over an hour., The 'averaging time technique' would probably

have taken about 35 minutes on KDF9,
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Conversion of digitized
data to real values,

Linear regression keeping
residuals or fluctuating

quantities,

Perform the FFT on

residuals

Combine the Fourier
coefficients to produce
the N spectral points

\ 4

Average to produce final
spectral estimates

Fig, A Flow diagram for producing spectra from digitized data
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APPENDIX IT

A FFT computer programme

The programme is written in KDF9 User code language, and consists basically
of four sub-routines, P1Vif and P2V2 the basic FFT programme, and two subsidiary
routines P3 and P4V1 for running the FPT programme in its 'odd-even and dual'’
use,

The following list of preliminaries applies to P1Vif and P2V2:-

1. The routines evaluate Fourier coefficients given by
N-1
&y = 3 xj cos(2% jk/N)
J=0
N1
and : by = > x4 sin(24¢jk/N)

J=0

where k = 0,1 ,-=N-1, These two can be combined to give the complex coefficient

Ak where Ned
M = 2 Xy exp(s2wiJk/N)
J=0

where 13 is 2 complex data peint,

2. The number of data points is N = 2™ real points and for 'raw' use

N = 2® zeros. .

3, To enter the routine the nesting store requires:-
in N QN/A1/A2
in N2 Qw/AY/AL
and in N3 +4
where A1 is the start address of real data (lengths will be N)
A2 is the start address of imaginary data (zeros)
A3 is the start address of a third store (for transferring and
answers ay)
AL is the start address of a fourth store (for transferring and

answers by)



Note that start addresses must be different and the stores must not overlap,
If N3 is +1 exp(+...) will be worked and
If N3 is =1 exp(=...) will be worked in the last quoted equation,

b, The main store area required apart from the programme is 4N,

5. The nesting store down to Nik is used,

6. Q7 to Q15 is used,

7. Overflow register may be used,

8, Library sub-routines L5, L1§ and L11 are used to calculate the sines and

cosines,

9. (i) The inaccurate EXITS from Lif and L11 occur when, after multiples
of 7 are subtracted, the result has no bit in the ten places after
the binary point, Such a result is sine or cosine of a very small
number and is here counted as sin § and cos f i.e. § in N1 and 1
in N2,

(ii) The accuracy of Lif (cos) and L11 (sin) is to the 39th bit of a
floating point number,

A User code flow diagram is included after the programme and after that a Flow

Graph illustrating how the computation proceeds for the case of N =8,

When the FFT programme is to be used in its 'odd-even-dual' mode,in N1,

N/2 must replace N and in N2, m-1 must replace m, In addition some routine to

sort the data into odd numbered and even numbered data points must be used.

P3 performs this sorting and it requires:=-

M Q N2/A1/A2
N2 Qi 1/=/A3

where if the counter part of N2 is +1 the first half of the data, in serial order,

is to be found in the stores with a start address A1 and the second half of the

data is in the stores with the start address A2, P3 then puts the N/2 even
numbered data points into A1 stores and the odd numbered data points into A2

stores, N1 for P3 can thus be used as N1 for P1Vif, If the counter part of

-2 -



N2 is =1 all the data, in serial order, is to be found in stores with the

start address A1. A third set of N/2 stores with a start address A3 must now

be declared, P3 now gives the same result as before, Note that A3 stores will
not be cleared. Once the data is sorted PAVif can now be entered using the N1

of P3 for the N1 of P1Vifl, Note additionally that N3 for P1Vif must be +1,

The coefficients hence found, are not the required Fourier coefficients, and

need to be combined according to equations (36) and (37). PLVY is a subroutine
which performs this combination, the result being the desired Fourier coefficients,
Entry to PLV1 requires:-

N Q %/ A1/A2

N2 Q =/A3/AL
where A1 is the start address for the ap coefficients indexed a4 to aN/2-1 and
A2 is the start address for the corresponding by coefficients, A3 is the
start address of the stores where the N/2 real coefficients from the FFT
programme can be found (in terms of equation (33) these will be indexed
Re A(0)gy to Re A(N/Z)xy) and Ak is the start address for the N/2 corresponding
imaginary coefficients, Usually N1 for P4V1, will be the same as N1 for P3 and
P1V4if and N2 for P4Vi. can be the same as N2 for P1Vif,
P3 uses the following computer facilities:=-
= The nesting store down to N3
2. Q1f to Q15 are used,
P4LVY uses:-
1. The nesting store down to N9
2. Q8 to Q15 are used
3. Sub-routine P2V2 is used and therefore the library subroutines and
comments about those are the same as the FFT programme,
No claim is made about the particular efficiency of these subroutines

but they have all been tested on the KDF9 computer,



FFT USER CODE SUBROUTINE.

P1Vigs (FFT);

13 DUP; =Qif; =Q11; C1f; SET2; $I; ERASE; DUP; =C1f; =C113 I1fd; =Mif;
T1fes1y I11e+1y

23 DUP; =Q8; =Q9; I8; =M8; I8=+2; IO=+23 C1fs DUPy DUP; NEG; NOT; =M13;
C8; IUP; =C133 wIi3y =CB8; =C9;

3; QIfy =V Q13 =V13 Q83 =V2; Q93 =V3j V4=P1; V5=P-1; V6=F3+1415927;
SET473 FLOATs V63 xP; =V73

43 ZERO3 =RCTj

55 VP =Q9; Vi3 =Qif; V2; =Q11; V3; =Q12; I13; C13; =3 SET2; $I; J7=2

63 M9y M11; =MO; =M11; Mif; M12; =M1g; =M12;

T3 ERASE; SET2; =RC8j

83 I133 M7; NOT3 NEG; -3

93 =CT7; SET; J11C72s

#1@; SET2; xD; CONTy DCT7; J1@CTNZS;

113 DC8; J12C8Z; MT; J9

123 DUPDy M8; REV; $I; ERASE; SET47; FLOAT; REVs SET47; FLOAT; $Fs JSP23 DUPD;

133  MgM9Q; MOM13; DUPD; MgM1SQs; M1gM13; DUPD; +F; =MZM12; REVD; +F; =MgM11;
-Fy PERM; -F; PERM; DUP; PERM; xFj REVDy DUP; PERM; xFj; CAB; -P; =M@M11QN;
CABy xF; PERM; xF; +F; =MgM12QN; -

143 M+I8y J12C9NZ3; ERASE; ERASE;

153 M+ITy DC133 J5C13NZy
(RESHUFFLE)

163 SET13 M13; NOT; NEG; =M13;

173 VP =9y V1; «Qiff; V25 Q115 V35 =Q125 C93 DUPy +5 =C9; C1ff; DUP; +; =Cif;
DUP; =C11; DUP§ =C12; I11=+1; I12=+13

183  I13; SET2; $I; J1942; J2f;

195 M9y M11; =M9; =Mi1; Mig; M12; =Mig; =M12;

@3 ERASE; I13; NEC; NOTy =I13s

213 M1@s MN133 DUP; PERM; +3 REV3 MO; +3

#223 Qs MOMIZQ; =MPM12Q; =M@M11Qs J22C11NZS;

233 M9; REV; =M9; REV; M1P; REV; =Mif; REV; CAB; DUP; =C12; DUP; =C11j PERM;
J22C9NZ; ERASE; ERASE; DUPj +3 DUP3y M13; -3 J24> 23 J1T;

243  FRASE; EXITY;

P2v2; (SINCOS 1);

13 DUP; J3=Z; WUP; V4AP1; -F; J4=2; VTP1; xF; IUP;

23 JSLAgs J33 REVs JSL11; J33 J53

33 ERASE; V4P1; ZEROj JS3

43 ERASE; V5P13 ZEROj J53

53 EXIT
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Flow for X « 8 points, illustrat the FFT conversion of data
ier coeffici . R
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1/ weeo*™! and the w index 4s (3/ 27"); (1/2™P).

2/ Bach section transfers back and forth between main store areas.

3/ B is an index ( batch number) and is equal to N/4.

4/ The transform programme is partly based on a method by R.C.Singleton (June 1967).
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Subrou be used with the FFT amme for ' eV 1! N

P33 (OE SORT);

=Q15; =Q123 C12; DUPy

Q15T0Q143 I14=+1§ Q14TOQ115 Q15TOQ13y I13=+13 I155 =M13; J4< 2%
C133 SET2; +I; ERASE; =C13j I12=+1; C14T0Q12; Q12T0Q153
MgM14Q; =MgM12Q; *J3C12NZy

ZERO; =RC1f; Q11TOQ14;

M13M18; M13MIPQN; =M@M14Qy =M@M13Q; J5C13NZS; J7< 2

Q15T0Q12; ZERO3 =RC1f; I1f=+2;

M12M1g; M12MIBQN; =MPM14Q; =MPM13Q; J6C14NZS;

EXIT1;

P4V1y (OE COM);

=Q8; =Q9; C8; TUP; SET4T; FLOAT; =V@; SEP2; SET47; FLOAT; =V1j

NEG; NOT; IUP; =M1} SET-1; =I13; SEM; =RM12; =C12; 18; =RMig;

M8y =RM{11; I9; =RMB3 IOw=+13

MBM12; MOM12Q; MSM13; MOM13Q;

CAB; DUPDy REV; ~Fj; PERM; +F; REVDy DUPD; +F; PERM; REV; -F CAB3; DUPDj
M12; SET™M3 -3 SET4T; FLOAT; Vgs +Fj JSP2; :

REV; DUP; REVD; PERM; xFPj; CABy REVD; IUP; CABj xIj PERM; REVD; -F3 CABj
REVD; xF3 CAB; REVD; xF; CAB; +Py PERM; +F; PERN; +F; Vi; IUP; PERM; =Ty
PERM; +P; =MM14Q; =MPM11Q; J2C12NZ; EXIT;
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