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Abstract 
 
Two methods are widely used to assess the impact of observations in global numerical 
weather prediction (NWP): data denial experiments (DDEs) and the forecast-sensitivity-
to-observations-impact (FSOI) method.  A DDE measures the impact on forecast 
accuracy of removing an observation type from the system, whereas FSOI measures the 
amount by which an observation type reduces the short-range forecast error (within a 
system containing all observation types).  It is usually found, in global NWP experiments 
in which both methods are used, that the FSOI impact of a given observation type is 
greater than its DDE impact.  However, it can be shown that in some theoretical limits 
the two should be equal.  The aim of this paper is to present the theory behind the DDE 
and FSOI metrics that are commonly used and to explore factors that cause DDE and 
FSOI metrics to give different results.  The general theory is presented for an optimal 
analysis and forecast system, and then it is applied to a simple model with two state 
variables.  In order to explain the commonly found result of FSOI impact greater than 
DDE impact, the following system properties are found to be important: mixing of 
information (and error) by the forecast model between state variables, the rate of 
forecast error growth, the presence of forecast model error, the way in which 
observational information is distributed between state variables and denied from them, 
and the presence of error in the data used for forecast verification.  The FSOI metric 
uses an energy norm and so assesses impacts in terms of error variance, whereas DDE 
impacts are often expressed in terms of root-mean-square errors.  This difference alone 
accounts for a factor ~2 between the two metrics.  These results provide insight into why 
NWP systems are resilient to the removal of observational information; they are shown 
to be resilient if information is denied primarily from well observed variables but not when 
denied primarily from poorly observed variables.  
 
 
1. Introduction 
 
The systems that provide the observations used in all the applications that support 
weather and climate services are expensive to implement and maintain.  They are, 
however, crucial to the utility of these applications and to the accuracy of the products 
that they provide: “…behind every weather, water and climate condition forecast, every 
disaster mitigated, and every prediction debated, are the observational data” (WMO 
2010).  There are continual activities to assess the impact of different observation types, 
as part of the process of research and development to improve the impact of the 
observations available today, and to aid decisions about the observing systems to be 
maintained or developed for the future.  Perhaps more than for any other application, the 
numerical weather prediction (NWP) community has been active in this field and has 
developed methods for quantitative assessment of the impact of observations on the 
accuracy of its products.     
 
The assessment approach used in NWP for decades has been through observing 
system experiments (OSEs), particularly in a mode known as data denial experiments 
(DDEs).  These use real observations, and they measure the effect of removing them 
from an NWP system.  Usually they make use of an NWP data assimilation (DA) system 
that is the same as or similar to an operational system, assimilating the full range of 
observation types that are currently used operationally, and then examining the impact 
of removing one observation type at a time.  Impact is assessed using a range of 
measures available to operational centres, but principally by assessing the impact on the 
skill of short/medium-range forecasts, using either observations or NWP analyses as the 
“truth” against which the forecasts are verified.  Operational NWP centres have the 
facilities to do such experiments, as they are necessary tools for testing the assimilation 
of any new observational dataset before it is used operationally.  Occasionally, a 
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consistent set of OSEs/DDEs is run to assess the impact of a range of observation types 
in a systematic way (e.g. see Bouttier and Kelly 2001; Bormann et al. 2019 and its 
references; WMO 2016). 
 
The OSE/DDE method is the “cleanest” way of assessing impact on NWP; it measures 
what we really want to know.  However, it can only be used with observations that are 
available from existing observing systems; it cannot be used to estimate the impact of 
future observing systems.  The latter question can be addressed using observing system 
simulation experiments (OSSEs).  These are similar to OSEs, except that the whole 
observing system (with both existing and proposed new components) is now simulated 
from a “nature run”, a hypothetical “true” state of the atmosphere generated by running 
an NWP model without assimilating any observations for several months (e.g. see Errico 
et al., 2013).   
 
The results of OSEs (and OSSEs) are generally noisy.  One primary reason for this is 
because even “good” observations, with small observation errors that are well 
understood, will degrade the NWP analysis (and subsequent forecasts) in some areas, 
i.e. those areas where the NWP background field is, by chance, more accurate than the 
observations.  This is a consequence of the inherently statistical nature of the DA 
problem.  Because of these considerations, experience shows that global OSEs/DDEs 
need to be run for several months before they provide estimates of impact that are 
statistically significant.  Indeed Geer (2016) found that an experiment of ~6 months was 
the minimum period required to achieve statistical significance for medium-range 
forecasts for the impact of a typical single instrument in the ECMWF system.  The lower 
the impact of a given observation type, the longer the experiment must be run before 
results become statistically significant.  When a major component of the observing 
system is removed, shorter experiments should be sufficient. 
 
Consequently, although OSEs/DDEs are straightforward for an operational NWP centre 
to perform, they can be demanding in computational cost, particularly if many different 
combinations of observation type or of observation processing method need to be 
tested.  OSSE systems are even more difficult and expensive to build, maintain and run.  
For more detail on these and other methods for studying the impact of observations on 
NWP, see Eyre (2018). 
 
A method developed in the last two decades, providing a different approach for 
assessing observation impact, is the technique now known as the forecast-sensitivity-to-
observations impact (FSOI) method (Langland and Baker 2004; Gelaro et al. 2007; 
Cardinali 2009; Lorenc and Marriott 2014).  This technique takes advantage of the 
components available within a variational DA system to calculate the impact of any 
observation, or any group of observations, on the accuracy of a forecast (typically a 24-
hour forecast for a global NWP system).  The FSOI method has the advantage of being 
relatively cheap in computational terms compared with OSEs; FSOI results can be 
obtained almost “for free” when running a four-dimensional DA system, and they allow 
the impact of different observation types, and different sub-divisions of observation 
types, to be assessed more quickly.   
 
Both OSE/DDEs and FSOI encounter problems associated with the errors in the data 
used for verification.  These have been addressed by several authors, including Daescu 
(2009), Todling (2013) and Privé et al. (2020). 
 
OSE/DDEs and FSOI address different questions.  A DDE assesses the degradation in 
forecast accuracy when a given observation type is removed from the system.  The 
FSOI method assesses how much a given observation type contributes to the reduction 
of analysis error, and hence forecast error, within a system including all observation 
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types.  One might naively expect these two approaches to give similar results, or at least 
results related to each other in a simple way but, in general, they do not.  Most studies 
have concluded that the rankings of impact, whether measured by DDE or FSOI, are 
broadly similar but that the absolute magnitudes of impacts are different.   
 
An example using data from recent DDEs at the Met Office (Candy et al. 2021) is shown 
in Figure 1, which illustrates how FSOI impacts are generally larger than DDE impacts.  
Here the DDE result is expressed in terms of a percentage increase in forecast error 
variance when an observation type is denied.  It is compared with the percentage FSOI 
impact, calculated using the method described by Lorenc and Marriott (2014), for the 
same observation type from the control experiment for the DDE.  In both cases, only the 
T+24 forecasts are considered, and the DDE results are averaged over a range of 
forecast variables and altitudes, to approximate the FSOI metric as closely as possible.   
 

 
 
Figure 1.   A comparison of DDE and FSOI results from global NWP experiments at the Met 

Office for August-October 2019 (from Candy et al. 2021).   See text for details.   

 
 
The purpose of this study is to shed some light on what these two approaches really 
measure and how they are related. 
 
One might naively expect that when (say) 1% of the observations, or perhaps 1% of the 
observational information, is removed from an NWP system, then the forecast accuracy 
would be degraded by ~1%.  This is found through experience not to be the case; 
forecast accuracy is degraded by much less than 1%.  Why is this?  This result is 
sometimes explained away on the grounds that the NWP system is “resilient”, i.e. that 



 

5 
 

when one observation type is withdrawn, others step in to fill the gap.  Whilst this must 
be true in some sense, it is not a satisfactory explanation as to why it happens.  Also, we 
can create counter examples, as will be shown in this paper.  In fact, we will propose an 
alternative explanation of NWP system “resilience”.   
 
There are also counter examples in the literature.  Gelaro and Zhu (2009) show results 
of DDE and FSOI impacts that are broadly comparable overall, with some examples of 
FSOI impacts greater than DDE impacts, and also of DDE impacts of all observing 
systems summing to greater than one (i.e. the opposite of a “resilient” observing 
system). 
 
It can be argued that the lack of proportionality between observational information 
removed and the resulting forecast degradation is the result of real NWP systems being 
suboptimal.  This is clearly true in many cases; if the observation error characteristics 
(their magnitudes and/or their correlations) assumed by the NWP system do not 
correspond to their true values, then the removal of some observations may not degrade 
the forecast by as much as expected and might even improve it.  The widespread use of 
observation thinning in NWP is a good example of a response to this problem.  There is 
continuing research within the NWP/DA community to address problems of this type.   
 
In this paper we will consider only optimal systems; some aspects of the problem for 
suboptimal systems will be considered in a companion study (Part II).  We will look here 
principally at how we would expect the different impact assessment methods, and the 
metrics they use, to compare if the assimilation and forecast systems were truly optimal. 
 
In section 2 we present the theoretical basis of the study.  We show how DDE and FSOI 
metrics are related to forecast error statistics and to the impact of observations on these 
statistics.  We also prepare the ground for applying this theory to a very simple 
assimilation and forecast system, in which the forecast model has only two variables.   In 
section 3 we present the details of the simple system used in the study, and the results 
of running it over a range of system parameters.  In section 4 we summarise and discuss 
these results, and in section 5 present some conclusions and suggestions for future 
work. 
 
 
2. Theory 
 
In this paper we try to stay close to the standard DA notation proposed by Ide et al. 
(1997). 
 
 
2.1 The NWP analysis and its error 
 
An NWP DA system provides an analysis of the atmospheric state which can be 
expressed as: 
 

 𝐱𝑎 = 𝐱𝑏 + 𝐊. (𝐲𝑜 − 𝐻[𝐱𝑏]) ,       (2.1.1) 
 
where 𝐱𝑎 is a vector containing the analysed state,  

 𝐱𝑏 is a vector containing the background state,  
 𝐲𝑜 is a vector containing the observations,   

𝐻[… ] is a generally nonlinear “observation operator”, which maps from the state 
space to the observation space, 
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and 𝐊  is the analysis operator (Kalman gain matrix), which maps observation 
increments (“innovations”) into analysis increments. 

 

This equation is valid in the “almost linear” case, for which 𝐻[𝐱𝑏] is linear for typical 
perturbations of the state in the region of 𝐱𝑏. 
 
For an optimal system,  
 

 𝐊 = 𝐁𝐇𝑇(𝐇𝐁𝐇𝑇 + 𝐑)−1 = (𝐁−1 + 𝐇𝑇𝐑−1𝐇)−1𝐇𝑇𝐑−1 ,   (2.1.2) 
 
where  𝐁  is the background error covariance,  
 𝐑  is the observation error covariance,  

and 𝐇  is the Jacobian of 𝐻[𝐱𝑏], i.e. the gradient of the observation operator with 
respect to the state space variables.   

 
These equations are derived on the assumption that both the observations and the 
background are unbiased.  An unbiased background also implies an unbiased forecast 
model (see section 2.2). 
 
The equivalent equation relating the errors in the quantities in (2.1.1) is: 
 

 𝛆𝑎 = 𝛆𝑏 + 𝐊. (𝛆𝑜 − 𝐇𝛆𝑏) ,       (2.1.3) 
 
where 𝛆𝑎 is the error in the analysis, 

 𝛆𝑏 is the error in the background,  
and 𝛆𝑜 is the error in the observations. 
 
Taking ensemble averages of (2.1.3) and assuming the observation errors are 
uncorrelated with background errors, we find that the mean analysis error is zero (by 
definition) and the covariance of analysis error, 𝐀, is given by 
 

 𝐀 = 𝐁 − 𝐊𝐇𝐁 = 𝐁 − 𝐁𝐇𝑇(𝐇𝐁𝐇𝑇 + 𝐑)−1𝐇𝐁 .     (2.1.4) 
 
It can also be shown (e.g. see Rodgers, 1976, equations 18 and 22) that 
 

 𝐀−1 = 𝐁−1 + 𝐇𝑇𝐑−1𝐇 .       (2.1.5) 
 
If we define the “precision” of a quantity as the inverse of its error covariance, then 
(2.1.5) shows that, in an optimal system, the precision of the analysis is the sum of the 
precision of the background and the precision of the observations mapped into state 
space.  Let us define this latter quantity as 
 

 𝐙 = 𝐇𝑇𝐑−1𝐇.           (2.1.6) 
 
Then, 
 

 𝐀−1 = 𝐁−1 + 𝐙 .        (2.1.7) 
 
Note that, even if the observation errors are uncorrelated with each other (i.e. 𝐑 is 

diagonal), 𝐙 will tend to be non-diagonal, because of the effect of 𝐇 in mapping 𝐑−1 into 
the different state space variables. 
 
The role of different observations – either individual observations or observation types – 
can be seen by disaggregating these equations as follows: (2.1.1) becomes 
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 𝐱𝑎 = 𝐱𝑏 + ∑ 𝐊𝑗(𝐲𝑗
𝑜 − 𝐻𝑗[𝐱𝑏])𝑗  ,      (2.1.8) 

 
where 𝑗 is the jth observation or group of observations,  

and  𝐊𝑗 and 𝐻𝑗[𝐱𝑏] and the corresponding rows and elements of 𝐊 and 𝐻[𝐱𝑏]. 

 
We have assumed here that the errors in observation 𝑗 (or group of observations 𝑗) are 
uncorrelated with those in other observations.   
 
(2.1.5) then becomes: 
 

 𝐀−1 = 𝐁−1 + ∑ 𝐇𝑗
𝑇𝐑𝑗

−1
𝑗 𝐇𝑗 = 𝐁−1 + ∑ 𝐙𝑗𝑗  ,     (2.1.9) 

 
where we define 
 

 𝐙𝑗 = 𝐇𝑗
𝑇𝐑𝑗

−1𝐇𝑗.                   (2.1.10) 

 
When j refers to a group of observations, 𝐑 is assumed to be block diagonal with 𝐑𝑗 

representing the jth block.   
 
Equation (2.1.9) is informative; it emphasises further the additive properties of precision 
matrices in state space. 
 
 
2.2 The forecast model and the forecast error 
  

The forecast 𝐱𝑛+1
𝑓

 at time 𝑡𝑛+1 is generated from the forecast 𝐱𝑛
𝑓
 at time 𝑡𝑛 using the 

forecast model 𝑀𝑛[𝐱𝑛
𝑓

] : 
  

 𝐱𝑛+1
𝑓

= 𝑀𝑛[𝐱𝑛
𝑓

] .        (2.2.1) 

 
The equivalent equation relating the errors in the quantities in (2.2.1) is: 
 

 𝛆𝑛+1
𝑓

= 𝐌𝑛𝛆𝑛
𝑓

+ 𝛈𝑛 ,        (2.2.2) 

 

where  𝛆𝑛
𝑓
 is the error in the forecast 𝐱𝑛

𝑓
, 

 𝛈𝑛 is the model error generated in the period from 𝑡𝑛 to 𝑡𝑛+1,  

and 𝐌𝑛 is the Jacobian of 𝑀𝑛[… ]. 
 
Taking ensemble averages of (2.2.2), we find that the mean forecast error is zero (by 
definition) and the covariance of forecast error evolves through: 
 

 𝐏𝑛+1 = 𝐌𝑛𝐏𝑛𝐌𝑛
𝑇 + 𝐐𝑛 ,       (2.2.3) 

 
where 𝐐𝑛 is the model error covariance for the period 𝑡𝑛 to 𝑡𝑛+1. 
 
We initialise the forecast with an analysis so that, for the first forecast period following 
the analysis, 
 

 𝐏1 = 𝐌0𝐀𝐌0
𝑇 + 𝐐0 .        (2.2.4) 
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If 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛, the period of an assimilation cycle (e.g. 6 hours), then 𝐱1
𝑓
 becomes the 

background for the next assimilation cycle with an estimated error covariance of 𝐏1.  (For 
simplicity, we assume here that the observations are assimilated only at analysis times, 
at intervals of 𝛥𝑡, and not continuously over an assimilation window.)   
 
In this study we will assume the system evolves until 𝐏1 is equal to the background error 
covariance used in the preceding assimilation step.  In other words, we have a system in 
equilibrium, in which 𝐙 is the same in each assimilation cycle, as are 𝐌 = 𝐌0 and 

𝐐 = 𝐐0.  Therefore, the error covariances, 𝐁 = 𝐏1, 𝐀 and 𝐑, are also static and do not 
change from one assimilation cycle to the next: 
 

𝐁 = 𝐏1 = 𝐌𝐀𝐌𝑇 + 𝐐 .        (2.2.5) 
 
where 𝐀 is, in turn, derived from 𝐁 via (2.1.6). 
 
 
2.3 The system used in this study 
 
The analysis error covariance for the system in equilibrium is calculated by iteration of 
(2.1.7) and (2.2.5) to convergence, i.e. by solving for 𝐀 the system: 
 

 𝐀−1 = 𝐁−1 + 𝐙 ,        (2.3.1) 

 𝐁 = 𝐏1 = 𝐌𝐀𝐌𝑇 + 𝐐 .        (2.3.2) 
 
From 𝐀, we then calculate the error covariances for the forecasts at time intervals of 𝛥𝑡, 
using (2.2.3): 
 

 𝐏𝑛+1 = 𝐌𝐏𝑛𝐌𝑇 + 𝐐 ,        (2.3.3) 
 
where 𝑛 is now the index of forecast cycle, i.e. the forecast time 𝑡𝑛 = 𝑛𝛥𝑡.  For example, 

for an assimilation cycle period of 6 hours, 𝐏4 is the error covariance of the 24-hour 
forecast. 
   
In sections 2.5 and 2.7, we discuss further the appropriate values of 𝐐 to use for each of 
the different observation impact metrics. 
 
(2.3.1) and (2.3.2) can be combined to give: 
 

 𝐀−1 = (𝐌𝐀𝐌𝑇 + 𝐐)−1 + 𝐙 .       (2.3.4) 
 
In general, this does not have an explicit analytic solution for 𝐀, but in the theoretical limit 
of 𝐐=0 and 𝐌 = 𝑎𝐈, where 𝐈 is a unit matrix, then 
 

 𝐀−1 = (1 − 𝑎−2)−1𝐙 .        (2.3.5) 
 
In this simple case, the precision of the analysis is proportional to the precision of the 
observations mapped into state space, with the constant of proportionality determined by 
the forecast error growth factor, 𝑎. 
 
 
2.4 The DDE metrics 
 
DDE impacts can be assessed in many ways: for different forecast lead times, different 
regions, different heights in the atmosphere, different geophysical variables, etc.  In this 
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study we look at two specific DDE metrics that can easily be compared with FSOI 
impacts: the percentage change in forecast error variance averaged over many 
variables, and an energy metric analogous to that used by Gelaro and Zhu (2009). 
 
For the system described above, the DDE metrics are evaluated by comparing the 
forecast error for the full observing system with the forecast error for the system in which 
one observation type has been removed.  This involves running the system described in 
section 2.3 twice, once with the full observing system and once with the degraded 
system.  In each case, eq.(2.3.3) is evaluated to give the forecast error covariance for a 
sequence of forecast lead times. 
 
The first metric is a mean percentage error metric, and this is often used to assess DDE 
results.  For this metric, the difference in error variance between the two runs for each 
variable is computed as a percentage of its value for the full system.  This quantity is 
then averaged over all (or a subset of) the elements of 𝐱.  In this study, we will average 
over all the diagonal elements of 𝐏𝑛: 
 

 %𝐷𝐷𝐸𝑛 = 100 
1

𝐼
∑

𝐏𝑖𝑖𝑛
(𝑑𝑒𝑔)−𝐏𝑖𝑖𝑛

(𝑓𝑢𝑙𝑙)

𝐏𝑖𝑖𝑛
(𝑓𝑢𝑙𝑙)

𝐼
𝑖=1  ,      (2.4.1) 

 
where 𝑓𝑢𝑙𝑙 denotes the full observing system and 𝑑𝑒𝑔 the degraded system.  We will 
focus on the DDE score for the 24h forecast, %𝐷𝐷𝐸4 = %𝐷𝐷𝐸.  We choose, in this 
study, to define a DDE score that is positive when the forecast error is increased by the 
removal of observations, i.e. that the observations removed were having a beneficial 
impact on the system. 
 
It is important also to note that the metric defined by (2.4.1) is a fractional reduction in 
forecast error variance.  We choose this for comparison with the FSOI metric defined 
below, which is also an energy/variance metric.  However, DDE results are often 
presented in terms of changes in rms errors.  For small fractional changes in forecast 
errors, there is simple factor of 2 between these two results; a 1% change in rms error is 
approximately equivalent to a 2% change in error variance.  This immediately accounts 
for some of the difference between DDE and FSOI results as usually presented. 
 
The second DDE metric, an energy metric, is given by: 
 

 %𝐷𝐷𝐸𝑛
𝑒 = 100 

𝑡𝑟𝑎𝑐𝑒{𝐏𝑖𝑖𝑛
(𝑑𝑒𝑔)}−𝑡𝑟𝑎𝑐𝑒{𝐏𝑖𝑖𝑛

(𝑓𝑢𝑙𝑙)}

𝑡𝑟𝑎𝑐𝑒{𝐏𝑖𝑖𝑛
(𝑓𝑢𝑙𝑙)}

 .      (2.4.2) 

 
As argued by Gelaro and Zhu (2009), this metric is analogous to the FSOI metric in its 
use of an energy norm (see section 2.5), which leads to an interesting comparison.  
However, it is rarely used in DDE assessments at most NWP centres.   
 
It should be noted that DDEs are usually run in a suboptimal way: assuming that the 
background error covariance matrix, B, is close to optimal for the full system, it is not 
normally retuned for the reduced system.  When the observational information denied in 
a DDE is small (i.e. <~10%) this effect can be shown to be very small, and smaller than 
the usual uncertainties in B. 
 
 
2.5 The FSOI metric 
 
The FSOI method (as originally proposed by Langland and Baker, 2004) involves 
computing both the 24h forecast from the analysis and the 24h forecast from the 
background used for this analysis.  In a DA system with a 6h cycling period, this is 
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equivalent to comparing a 24h forecast from the analysis with a 30h forecast from the 
previous analysis. 
 
Let us denote the 6h forecast from the analysis by 𝐏1 and the 6h forecast from the 

background for this analysis 𝐏1
𝐵.  These can be obtained from (2.3.3): 

 

 𝐏1 = 𝐌𝐀𝐌𝑇 + 𝐐 ,        (2.5.1) 
 

 𝐏1
𝐵 = 𝐌𝐁𝐌𝑇 + 𝐐 .        (2.5.2) 

 
Therefore 
 

 𝐏1
𝐵 − 𝐏1 = 𝐌(𝐁 − 𝐀)𝐌𝑇 .       (2.5.3) 

 
Similarly, the difference between the error covariances of the two forecasts at the nth 
forecast step can be shown to be: 
 

 𝐏𝑛
𝐵 − 𝐏𝑛 = 𝐌𝑛(𝐁 − 𝐀)𝐌𝑛𝑇

 .       (2.5.4) 
 

For a system in equilibrium, 𝐏𝑛
𝐵 = 𝐏𝑛+1 , and so 

 

 𝐏𝑛+1 − 𝐏𝑛 = 𝐌𝑛(𝐁 − 𝐀)𝐌𝑛𝑇
 .       (2.5.5) 

 
For the 24h and 30h forecast usually used in the FSOI method and a 6h assimilation 
cycle, n=4.  Note that 𝐐 does not appear in this equation.  The role of 𝐐 in DDE and 
FSOI calculations is discussed further in section 2.7. 
 
From (2.1.7) and (2.1.9), pre-multiplying by 𝐀 and post-multiplying by 𝐁, we obtain 
 
 𝐁 − 𝐀 = 𝐀𝐙𝐁 = 𝐀 ∑ 𝐙𝑗𝑗 𝐁 .       (2.5.6) 

 
This gives the reduction in analysis error covariance (compared with the background 
error covariance) caused by all the observations.  We can then disaggregate this total 
reduction in analysis error into the contributions from the different observation types: we 
define (𝐁 − 𝐀)𝑗 as the reduction caused by the jth subset of observations: 

 
 (𝐁 − 𝐀)𝑗 = 𝐀𝐙𝑗𝐁 .        (2.5.7) 

 
Substituting (2.5.6) into (2.5.5), we obtain 
 

 𝐏𝑛+1 − 𝐏𝑛 = 𝐌𝑛(𝐀 ∑ 𝐙𝑗𝑗 𝐁)𝐌𝑛𝑇
 .      (2.5.8) 

 
It can be shown (Appendix A) that the FSOI method is equivalent, in some limiting cases 
(including the one used in this study), to evaluating the trace of this matrix: 
 

 𝛿𝑒𝑗 = 𝑡𝑟𝑎𝑐𝑒[𝐌𝑛(𝐁 − 𝐀)𝑗𝐌𝑛𝑻] = 𝑡𝑟𝑎𝑐𝑒[𝐌𝑛(𝐀𝐙𝑗𝐁)𝐌𝑛𝑻] ,   (2.5.9) 

 

and 𝛿𝑒 = ∑ 𝛿𝑒𝑗𝑗 = 𝑡𝑟𝑎𝑐𝑒[𝐌𝑛(𝐀 ∑ 𝐙𝑗𝑗 𝐁)𝐌𝑛𝑻]  =  ∑ 𝑡𝑟𝑎𝑐𝑒[𝐌𝑛(𝐀𝐙𝑗𝐁)𝐌𝑛𝑻]𝑗  ,       (2.5.10) 

 
where 𝛿𝑒 is the FSOI energy metric and 𝛿𝑒𝑗 is its contribution from observation subset j. 

  
From this, we can define the FSOI percentage error reduction attributable to observation 
subset j as: 
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 %𝐹𝑆𝑂𝐼 = 100 𝛿𝑒𝑗/𝛿𝑒 .                  (2.5.11) 

In this study %𝐹𝑆𝑂𝐼 is calculated through evaluation of eq.(2.5.9), (2.5.10) and (2.5.11) 
for n=4. 
 
An important property of %𝐹𝑆𝑂𝐼 is the way in which the impact of observations is 
effectively normalised; the sum for all observations = 100%.  This will be true no matter 
how effectively the assimilation uses observations.  Also, although in this paper we 
consider only optimal systems, this result will also hold for suboptimal systems, unlike 
the DDE metrics. 
 
Note that, for an optimal system, %𝐹𝑆𝑂𝐼 cannot be negative.  In a suboptimal system, it 
can be negative, and this is a useful diagnostic for erroneous observations or poorly 
tuned error statistics.  However, when this is the case for one observation type, %𝐹𝑆𝑂𝐼 
for other types will compensate such that their total is 100%. 
 
As with DDE scores, we choose in this study to define a positive FSOI score when the 
observations are having a beneficial impact on the system. 
 
We also define ratios between this FSOI metric and the DDE metrics define above: 
 
 𝑅𝐴𝑇 = %𝐹𝑆𝑂𝐼/%𝐷𝐷𝐸 .                 (2.5.12) 
 
 𝑅𝐴𝑇𝑒 = %𝐹𝑆𝑂𝐼/%𝐷𝐷𝐸𝑛

𝑒 .                 (2.5.13) 
 
The main focus of this study is an exploration of how and why these ratios depart from 
unity. 
 
Before leaving the discussion of the FSOI metric, we note the link between this metric 
and the degrees of freedom for signal (DFS) metric, which is also used to assess the 
potential impact (i.e. the impact in the optimal case) of observations within an NWP 
system.  The relationship between these two metrics is presented in Appendix B. 
 
 
2.6 The scalar case 
 
When there is only one analysis variable, 𝐌 becomes 𝑎 and eq.(2.3.4) simplifies to  
 

 𝐴−1 = (𝑎2𝐴 + 𝑄)−1 + 𝑍 .       (2.6.1) 
 
where 
 

 𝑍 = ∑ 𝑍𝑗𝑗 = ∑ 𝑅𝑗
−1

𝑗 .          (2.6.2) 

 
Eq.(2.6.1) can be written as 
 

 𝐴2𝑎2𝑍 + 𝐴(1 − 𝑎2 + 𝑄𝑍) − 𝑄 = 0 ,      (2.6.3) 
 

which can be solved analytically for 𝐴.  In the limit of 𝑄 = 0, 𝐴−1 (a scalar) simplifies 
further; it becomes proportional to 𝑍 (also a scalar) through eq.(2.3.5).  Therefore, a 

small increase in 𝑍, δ𝑍, will result in a proportionate increase in 𝐴−1: 𝛿(𝐴−1)/𝐴−1 =
𝛿𝑍/𝑍.  Additionally, the same change, 𝛿𝑍, will result in a decrease in 𝐴 approximately 
proportional to 𝑍: 𝛿𝐴/𝐴 ≃ −𝛿𝑍/𝑍 for 𝛿𝑍«𝑍.  Consequently, in the same limit, changes in 
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𝑃𝑛 will also be approximately proportional to the changes in 𝑍, through equations (2.3.2) 
and (2.3.3).  It follows also that the change in forecast error variance, as measured by 
the DDE metric (eq.(2.4.1)), will be proportional to small changes in 𝑍 to the same 
extent.   
 
Turning to the FSOI metric, in the scalar case 𝐴 and 𝐵 are fixed scalar quantities for a 

given observing system, and so 𝐵 − 𝐴  is proportional to 𝑍 through eq.(2.5.6).  Therefore 
𝑒 is proportional 𝑍 and 𝑒𝑗 to 𝑍𝑗 through equations (2.5.9) and (2.5.10). 

 
So, in the scalar case, a reduction of 0.01 (1%) in 𝑍 will result in %𝐹𝑆𝑂𝐼=1 and also 

%𝐷𝐷𝐸𝑛 = %𝐷𝐷𝐸𝑛
𝑒 ≃ 1 for all 𝑛, and hence 𝑅𝐴𝑇 = 𝑅𝐴𝑇𝑒 ≃ 1 .  This is the result obtained 

by Eyre and Weston (2014), who also showed that the effect of reasonable non-zero 
values of 𝑄 on this result is small.  Because of the approximate proportionality between Z 
and DDE impacts, scalar systems are not “resilient” to the removal of observations in the 
way that NWP systems are often described (see section 1). 
 
Although scalar systems can be used to demonstrate some interesting properties of 
observing system design, they clearly do not replicate the results found with real-world 
NWP systems, in which %𝐷𝐷𝐸 tends to be significantly less than %𝐹𝑆𝑂𝐼, and so 𝑅𝐴𝑇 >
1; hence the need to look at systems of more than one variable. 
 
 
2.7 The effects of model error on observation impact metrics 
 
Considering firstly the FSOI metric: Langland and Baker (2004) state that, while the 
errors in forecasts computed from the analysis and from its background are caused by 
inaccuracies in both the initial conditions and the forecast model, the difference between 
the forecast errors used in the FSOI metric is due solely to the differences in the initial 
conditions caused by the observations assimilated in a single DA cycle.  In support of 
this statement they point out that, if there are no observations in this cycle, then the two 
forecasts follow the same trajectory through state space.  Whilst in practice the two 
forecasts in question do not follow exactly the same trajectory, and so will not 
experience exactly the same model errors, they will experience similar model errors, 
particularly as these are likely to be strongly correlated locally (in time and space).  It 
follows therefore that the usual approximation for the FSOI method of 𝐐 = 0 is likely to 
be good; as can be seen from the equations in section 2.5, 𝐐 can be eliminated. 
 
For the DDE method, the two forecasts being compared do not originate from the same 
analysis/background pair but from forecasts that evolve independently.  They therefore 
experience model errors that are not so strongly correlated.  Nevertheless, if only a small 
amount of observational information is denied in a DDE, then the short-range forecast 
trajectories will be similar and the associated model errors may be correlated to some 
extent.  In this study we examine both limits for a DDE: the one in which 𝐐 takes its full 

value as given by eq.(2.3.3), and the one in which 𝐐 = 0. 
 
 
2.8 The effects of errors in the verification data 
 
A forecast error is the difference between the forecast and the true atmospheric state.  
Unfortunately, in a DDE or in the computation of FSOI, the true state is not known; a 
proxy for the truth must be found, and it is usual to use either observations or an 
analysis at the time for which the forecast is valid.  These proxies contain their own 
errors, and the effect of these errors on the two metrics should be taken into account.   
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Because of this problem we never measure a forecast error directly but always the 

difference 𝐝𝑣
𝑓
 between a forecast 𝐱𝑓 and the verifying data 𝐱𝑣: 

 

 𝐝𝑣
𝑓

= 𝐱𝑓 − 𝐱𝑣 = 𝛆𝑓 − 𝛆𝑣 ,       (2.8.1) 

 

where 𝛆𝑓 and 𝛆𝑣 are the errors in the forecast and the verifying data, both of which we 
assume to be unbiased (for the purposes of this study – see section 2.1). 
 
Taking ensemble averages of (2.8.1), we find that the covariance of the difference is 
given by 
 
 𝐃𝑛 = 𝐏𝑛 + 𝐕 ,         (2.8.2) 
 

where  𝐃𝑛 is the covariance of 𝐝𝑣
𝑓
, 

and 𝐕 is the error covariance of 𝐱𝑣. 
 
It is assumed here that the errors in the forecast and the verifying data are uncorrelated.  
This may or may not be a valid approximation for a 24h forecast.  In practice it will be 
compromised by biases in either the forecast or the verifying data.  These effects are 
considered by Privé et al. (2020) using an OSSE framework.  They are not considered 
further in this study. 
 
We examine the limiting assumption that the error in the verifying data is zero, but also 
the effect of using an independent analysis as the verifying data, and here we assume 
that this has an error covariance equal to that of the system with the full set of 
observations.  We consider this limit for the DDE metric, noting that verification error is 
eliminated in the FSOI metric; it can be seen from eq.(2.5.8) that the addition of equal 
verification error to both forecast errors does not affect the result (but noting again the 
assumption that the errors in neither forecast are correlated with those in the verifying 
analysis). 
 
 
3. Theoretical study of a simple system 
 
3.1 Experimental design 
 
In this study we apply the equations presented in section 2.3 to a system of two state 
variables.  Such a system is clearly very different from the systems of millions of 
variables used in NWP, but it is nevertheless a non-scalar system and displays some 
interesting properties which (we will argue) are relevant to understanding some aspects 
of the behaviour of systems of larger dimension. 
 
What do these two “variables” represent?  They can be taken to stand for various 
aspects of an NWP system: multiple geophysical variables (temperature, wind, etc.), or 
the control variables of an NWP DA system (e.g. wind field, unbalance mass field, etc.), 
or different spatial grid-points both vertically or horizontally, or different scales of motion 
(large scale and small scale), or combinations of them all.  In real-world systems, some 
of these variables are coupled to each other more strongly than others, and on different 
timescales.  Also, in real-world systems, some “variables” (using the rather loose 
definition above) are observed better than others.  In a DDE, information is denied 
preferentially from some variables rather than from others, and the effect of removing 
information from better observed variables may be different from removing it from poorly 
observed variables.  Let us consider two examples.  Radiosondes observe variables 
close to model grid points very well and they do not observe variables away from these 
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grid points.  If we remove some radiosondes, we deny information primarily from well 
observed variables.  Similarly, for radiances from passive satellite sounders, large scales 
in the vertical are well observed and small scales are not observed.  If we deny some of 
these radiances, we deny information primarily from well observed variables.  Overall, 
some variables are not observed at all, and they are analysed in a DA system via the B-
matrix, which is correlated because of mixing via the model (see section 3.2).   
 
The model is run with various sets of parameter values.  The parameters represent the 
observations and their error statistics, and how they project on to the state variables.  
They also include parameters representing the generation and propagation of forecast 
error – 𝐌 and 𝐐.  To avoid the problem of representing specific observation types with 

specific values of 𝐇, we describe the observational information in terms of 𝐙, the 
observation precision matrix mapped into state space, and we vary this matrix and also 
the way in which information is “denied” from this matrix to simulate a DDE.  Note that 𝐙  

has the same dimensions as 𝐀 and 𝐁 but the observations themselves may be of 
different dimension. 
 

The model is initialised with a very large value of 𝐁 (small value of 𝐁−1) and then iterated 
until the value of 𝐀 converges (i.e. iterating equations (2.3.1) and (2.3.2)).  20 iterations 

are found to be sufficient for the sets of parameters used in this study.  When 𝐀 has 
converged, the forecast model is then run forward for 5 steps.  With an assimilation cycle 
corresponding to 6 hours, this provides the 24- and 30-hour forecast, which allows 
computation of the FSOI metric for the 24h forecast. 
  
For each set of parameters, the model is run twice, once with the full set of observational 
information and then with a degraded set to simulate a DDE (as described in section 
3.2).  From the results of these two runs, the DDE diagnostics are calculated and, from 
the run with the full set, the FSOI diagnostics are calculated, using the equations 
presented in sections 2.4 and 2.5. 
 
 
3.2 System parameters 
 
The observations and their errors are represented by the observation precision matrix 
mapped into state space, 𝐙 – see eq.(2.1.6).  For simplicity, 𝑡𝑟𝑎𝑐𝑒[𝐙], is set to 2 for the 
control in every experiment.  However, the ratio of the diagonal elements of 𝐙 is varied to 
represent a system in which one variable is observed better than the other.  The ratio is 
given by ρ: 
 
 ρ = 𝑍11/𝑍22 ,         (3.2.1) 
 
under the constraint that 𝑍11 + 𝑍22 = 2.  (Note that an “experiment” in this context 

involves two runs of the model: one with 𝑡𝑟𝑎𝑐𝑒[𝐙] = 2, and one with 𝑡𝑟𝑎𝑐𝑒[𝐙] reduced as 
explained below.)   
 
In some experiments, off-diagonal elements are added to 𝐙 such that the associated 

correlation coefficient is −𝑐 (i.e. the correlation coefficient for 𝐙−1 is 𝑐).  This represents 
the inevitable correlation of the errors in 𝐙 through 𝐇, even if the observation errors 
themselves are uncorrelated (i.e. diagonal 𝐑). 
 
To construct a DDE, observational information must be denied (i.e. 𝐙 reduced) in one 
variable or both.  In all experiments we reduce the observation “information” (quantified 
by 𝑡𝑟𝑎𝑐𝑒[𝐙]) by 1%, i.e. change it by -0.02 in total.  In most experiments we reduce 𝐙 
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only in the first variable, 𝑍11.  In others we reduce it only in the second, 𝑍22; or in both 
equally, 𝛿𝑍11 = 𝛿𝑍22 = −0.01; or in proportion to 𝐙 :  𝛿𝑍11 𝑍11⁄ = 𝛿𝑍22 𝑍22⁄ = −0.01. 
 
The Jacobian of the forecast model is represented as constant in time (i.e. 𝐌 is not state 
dependent) and in the form 
 

 𝐌 = 𝑎 (
1 − 𝑚 𝑚

𝑚 1 − 𝑚
) .        (3.2.2) 

 
𝑎 represents the average amplification of error by the model, and 𝑚 the mixing of error 

between the two variables by the forecast process.  The use of a scalar 𝑎 implies the 
same error growth rate in each variable, which is a simplification adopted for the 
purposes of this study. 
 
𝑎 is set to 1.2, which represents a doubling time for forecast error amplitude of ~24h, or 
for forecast error variance of ~12h.  This is based on the work of Simmons and 
Hollingsworth (2002) for the average values found in global NWP systems.  It is 
consistent with the values used by Eyre and Weston (2014), where it is discussed in 
more detail.  Other experiments are run with 𝑎 is set to 1.4 and 1.1, to test the sensitivity 
to this parameter. 
   
Some experiments are run with 𝑚 = 0.  These are called “simple” systems. They exhibit 
some interesting behaviour, but the results show that these systems do not exhibit the 
characteristics of %𝐷𝐷𝐸, %𝐹𝑆𝑂𝐼 and 𝑅𝐴𝑇 found in real-world systems.  Therefore, for 

most experiments, we use a non-zero value of 𝑚.  For most experiments we use 𝑚 =
0.05 and for one we use 𝑚 = 0.1.  These lead to correlations between the errors in the 

two variables in the 6h forecast of ~25% and ~60% respectively.   Larger values of 𝑚 are 
found to lead to rapid “saturation” of 𝐏 , i.e. correlation of errors between the two 
variables >90% at 6 hours and higher at 24 hours.  The behaviour of the system in this 
limit has not been explored further. 
 
Some experiments are run with 𝐐 = 0 and some with a value of 𝐐 set to give 
approximately the situation reported by Raynaud et al. (2012): that variance of the 6h 
forecast error is found to be ~20% higher with real data than with simulated data for 𝐐 =
0.  𝐐 is approximated as diagonal, with equal values on the diagonal, which again is a 

simplification adopted for the purposes of this study.  A value of 𝑄𝑖𝑖 = 0.02 has been 
found empirically to reproduce the conditions reported by Raynaud et al., giving 
increases in 24h forecast error variance in the range 18-25% depending on the value of 
ρ, and with 𝑚 = 0.05.  𝑄𝑖𝑖 = 0.02 has been used for the baseline system (see below).  

One experiment has been run with 𝑄𝑖𝑖 = 0.04 . 
 
In order to explore the parameter space, we define a baseline configuration of: 𝑎 = 1.2, 

𝑚 = 0.05 , 𝑄𝑖𝑖 = 0.02, 𝑐 = 0.  Then, we explore departures from this configuration.  In all 
experiments we explore values of ρ = 1, 2, 4 and 8, and in some we include additionally 

ρ = 16, 32, 64 and 128. 
 
The set of experiments exploring the parameter space is summarised in Table 3.2.1.  
The parameter “Z-red” describes how 𝐙 is reduced in the DDE: either in variable 1 only, 

or in variable 2 only, or equally in both variables, or in proportion to the value of 𝐙 in 
each variable, as explained above.  In all experiments we use 𝑡𝑟𝑎𝑐𝑒[𝐙] = 2. 
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Expt   A  M 𝑄𝑖𝑖   c Z-red Description 

1 1.2 0 0 0 1 Simple (no mixing, diagonal 𝐙, 𝐐 = 𝟎 ) 

2 1.2 0 0 0.1 1 Simple with non-diagonal 𝐙 

3 1.2 0 0.02 0 1 Simple with non-zero 𝐐 

4 1.2 0.05 0 0 1 As Expt.1, but with mixing (= baseline with 
𝐐 = 0) 

       

5 1.2 0.05 0.02 0 1 Baseline 

6 1.2 0.1 0.02 0 1 Baseline with double mixing 

7 1.2 0.05 0.04 0 1 Baseline with double 𝐐 

8 1.2 0.05 0.02 0.1 1 Baseline with non-diagonal 𝐙 

9 1.4 0.05 0.02 0 1 Baseline with increased a 

10 1.1 0.05 0.02 0 1 Baseline with decreased a 

       

11 1.2 0.05 0.02 0 2 Baseline, 𝐙 reduced in 2nd variable 

12 1.2 0.05 0.02 0 = Baseline, 𝐙 reduced equally both variables 

13 1.2 0.05 0.02 0 prop Baseline, 𝐙 reduced in proportion to 𝐙 

       

14 1.2 0.05 0.02 0 1 Baseline with verification error (DDE only) 
 
Table 3.2.1 Summary of experiments.  See text for explanation of Z-red.   

 
 
3.3 Results 
 
3.3.1 Comparisons of %𝐹𝑆𝑂𝐼 and %𝐷𝐷𝐸 
 
In this section we discuss results for %𝐷𝐷𝐸, %𝐹𝑆𝑂𝐼 and their ratio, 𝑅𝐴𝑇.  The primary 
purpose of these experiments is to explore how and why the ratio differs from one.  The 
results of all experiments are given in the tables in Appendix C, for completeness.  
Figures in this section illustrate key results.  Results for %𝐹𝑆𝑂𝐼, %𝐷𝐷𝐸𝑒 and their ratio,  
𝑅𝐴𝑇𝑒, are also presented in the tables, and they are discussed in section 3.3.2.   
 
Expt.1: “Simple” – no mixing, no model error, no correlation in 𝐙. 
 
The results of this experiment are given in Table C.1 and in Figure 2 (thick/red lines). 
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Figure 2. Results of %𝐷𝐷𝐸, %𝐹𝑆𝑂𝐼 and 𝑅𝐴𝑇 for Expt.1 (“-0”) and Expt.4(“-m”), illustrating 

the effect of introducing mixing. 

 
This system is equivalent to two uncoupled scalar systems each with the properties 
discussed in section 2.6.   
 
Looking first at the FSOI results, we find that, for ρ = 1, %𝐹𝑆𝑂𝐼 = 1.  (We also find this 

result for all the experiments in Table 3.2.1 for ρ = 1).  This can be understood by 
considering equations (2.5.6) and (2.5.7) – when 𝑍11 = 𝑍22, the elements of 𝐀 and 𝐁 will 

be equal for both variables, and then (𝐁 − 𝐀)𝑗 will be proportional to 𝐙𝑗, no matter into 

which variable the observational information projects. 
 

When ρ > 1, we find %𝐹𝑆𝑂𝐼 = ρ−1.  This can also be understood from eq.(2.3.5) – 𝐀−1, 

and hence 𝐁−1, are proportional 𝐙, and so in eq.(2.5.6) the diagonal elements of (𝐁 − 𝐀) 

are proportional to the diagonal elements of 𝐙−1, with a ratio between them of ρ−1.   
 
Looking now at the %𝐷𝐷𝐸 results, we find that %𝐷𝐷𝐸 is approximately proportional to 
(1 + ρ)/2ρ.  It can be shown that this is expected from eq.(2.4.1) in the limit of small 

changes in 𝐙 .  For ρ = 1, %𝐷𝐷𝐸 is not exactly equal to 1 because the change in 𝐙 is 

finite, and 𝐀−1 (not 𝐀) is exactly proportional to 𝐙.   
 
Consequently, 𝑅𝐴𝑇 = %𝐹𝑆𝑂𝐼/%𝐷𝐷𝐸 is approximately proportional to 2/(1 + ρ), which is 
1 when ρ = 1 and becomes progressively smaller as ρ increases.  This is not the result 

found with real-world NWP systems, where 𝑅𝐴𝑇 is usually found to be greater than 1 
(see Fig.1). 
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So, both %𝐹𝑆𝑂𝐼 and %𝐷𝐷𝐸 decrease as ρ increases.  Another way of understanding 
these results is to recall that, when ρ > 1, the first variable is the better observed 
variable.  For this variable, the background and analysis and subsequent forecast errors 
are lower than in the second variable.  Both metrics involve averages or summations 
over both variables; a 2% improvement in the forecast of the well observed variable, i.e. 
the one with the smaller forecast error, will result in a change of less than 1% in the 
average over both variables (because a 2% increase in the smaller number and 0% 
increase in the larger number causes an increase of <1% in their mean).  Note also that 
the result of %𝐷𝐷𝐸 < 1 for ρ > 1 is the first evidence we have for why and under what 
conditions a system is “resilient” to the removal of observations.  This issue is discussed 
further in section 4. 
 
Expt.2: “Simple”, but with some correlation in 𝐙. 
 
In this configuration, the introduction of correlation in 𝐙 makes no difference to either  
%𝐹𝑆𝑂𝐼 or %𝐷𝐷𝐸; they are exactly the same as in Expt.1 (and so are not repeated in 
Table C.1).  This is because, when the variables are uncoupled and with zero model 

error, the correlations in 𝐙 create equal correlations in 𝐀−1 but do not affect its diagonal 

elements.  (However, it is found that, as 𝑐→1, the system of equations can become 
unstable or slow to converge for some combinations of system parameters.) 
 
Expt.3: “Simple”, but with some model error 
 
The results of this experiment are also given in Table C.1 and Figure 3 (thin/red lines). 
 

 
 
Figure 3. Results of %𝐷𝐷𝐸, %𝐹𝑆𝑂𝐼 and 𝑅𝐴𝑇 for Expt.3 (“m=0”), Expt.5=baseline 

(“m=0.05”) and Expt.6(“m=0.1”) illustrating the effect of different levels of mixing 
in the presence of model error. 
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Compared with Expt.1, there are small increases in %𝐹𝑆𝑂𝐼 for ρ > 1.  These changes 
occur because the introduction of model error changes the ratio of the analysis error 
variances in the two variables.  There are substantial decreases in %𝐷𝐷𝐸, and hence 
values of 𝑅𝐴𝑇 are increased relative to Expt.1, but 𝑅𝐴𝑇 is still < 1 (i.e. %𝐷𝐷𝐸 > %𝐹𝑆𝑂𝐼)  
except for ρ = 1.  With a non-zero value of model error, we see the effect on %𝐷𝐷𝐸 of 
the system “forgetting” observational information more quickly.  The effect is much less 
pronounced for %𝐹𝑆𝑂𝐼 because of the way in which this quantity is normalised (see 
section 2.5). 
 
Expt.4.  As Expt.1, but with mixing (or baseline with no model error) 
 
Results are also shown in Table C.1 and Figure 2 (thin/blue lines). 
 
The results are discussed relative to the baseline below, but we first consider them 
relative to Expt.1, as this provides some insight into the role of mixing in these 
experiments.  When ρ = 1, %𝐹𝑆𝑂𝐼 = 1 and %𝐷𝐷𝐸 ≃ 1, as in Expt.1 and for the same 

reasons.  However now, as ρ tends to ∞, both %𝐹𝑆𝑂𝐼 and %𝐷𝐷𝐸 tend to 1.  This is 

because, in the limit of 𝐙 = (
𝑍 0
0 0

), all the elements of 𝐁 − 𝐀, 𝐀 and 𝐁 become 

proportional to 𝑍.  Consequently, as ρ increases, both %𝐹𝑆𝑂𝐼 and %𝐷𝐷𝐸 first decrease 
and then they both subsequently increase again and asymptote towards 1.  Compare 
this with Expt.1 where, in the limit of no mixing and as ρ increases, %𝐹𝑆𝑂𝐼 tends to 0 
and %𝐷𝐷𝐸 tends to 0.5.  The value of 𝑅𝐴𝑇 is close to 1 in this experiment, and it is 
substantially increased compared with Expt.1.  Therefore, it seems that mixing is 
necessary for increasing the value of 𝑅𝐴𝑇 but not necessarily sufficient for maintaining it 
well above 1.  
 
Expt.5: Baseline – forecast error growth rate, 𝑎 = 1.2; mixing coefficient, 𝑚 = 0.05; 

model error, 𝑄𝑖𝑖 = 0.02; uncorrelated 𝐙. 
 
For illustration, Table 3.3.1 gives some intermediate results of the computation for this 
combination of parameters and for ρ = 4. 
 

   Full Deg 

  𝐙 (
1.600 0

0 0.400
) (

1.580 0
0 0.400

) 

  𝐁−1 (
4.101 −0.885

−0.885 1.459
) (

4.063 −0.881
−0.881 1.458

) 

  𝐀−1 (
4.701 −0.885

−0.885 1.859
) (

5.643 −0.881
−0.881 1.858

) 

  𝐀 (
0.189 0.090
0.090 0.581

) (
0.191 0.091
0.091 0.581

) 

forecast error 
covariance 

6h 𝐁 = 𝐏1 (
0.281 0.170
0.170 0.788

) (
0.283 0.171
0.171 0.788

) 

24h 𝐏4 (
0.869 0.773
0.773 1.973

) (
0.875 0.776
0.776 1.975

) 

30h 𝐏5 (
1.262 1.201
1.201 2.693

) (
1.271 1.206
1.206 2.696

) 

 
Table 3.3.1. Intermediate results of the computation for the baseline case for ρ = 4.  “Full” is 

the full observing system and “Deg” is the degraded observing system, with 𝑍11 

reduced by 0.02.  (Values are retained at higher precision than those shown here 
for subsequent calculations.) 

 
The results of this experiment are given in Table C.2 and Figure 3 (thick/green lines). 
Compared with Expt.3 (in which 𝑄𝑖𝑖 also equals 0.02), the introduction of mixing has a 
large effect on %𝐹𝑆𝑂𝐼, which now decreases more slowly as ρ increases.  This is 
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because the mixing tends to equalise the forecast errors in the two variables, both during 
the assimilation and in the forecast steps.  Therefore, the effects of 𝐀 and 𝐁 in eq.(2.5.6) 
become less pronounced.   
 
The mixing has a comparatively small effect on %𝐷𝐷𝐸, for which the introduction of 
model error has a larger effect for small values of ρ, as in Expt.3.  Therefore 𝑅𝐴𝑇 now 

has a very different form, being around 1.2 for small values of ρ and increasing for larger 
values.  So, 𝑅𝐴𝑇 is now greater than unity, as found in real-world systems. 
 
Expt.6.  Baseline, with doubled mixing coefficient. 
 
The results of this experiment are also given in Table C.2 and Figure 3 (very thin / blue 
lines), together with those of Expt.3 and 5. 
 
Comparing experiments 3, 5 and 6, in which the mixing increases from 0 to 0.05 to 0.1 
respectively, we see how the %𝐹𝑆𝑂𝐼 increases towards 1 as the mixing increases and 
the forecast errors in the different variables become more similar.  The effect on the 
%𝐷𝐷𝐸 is smaller.  It is almost more complex; with increasing ρ, %𝐷𝐷𝐸 initially decreases 
but then increases again when mixing is present, as in Expt.4.  The overall effect is for 
𝑅𝐴𝑇 to increase with increasing 𝑚, for ρ > 1. 
 
Expt.7.  Baseline, with double model error. 
 
Results are shown in Table C.3 and Figure 4 (very thin / blue lines), along with those of 
Expt.4 and 5, to show the effects of increasing values of model error.  The effects on 
%𝐹𝑆𝑂𝐼 are very small.  %𝐷𝐷𝐸 decreases significantly with increasing model error and 
with increasing ρ, thus increasing 𝑅𝐴𝑇 for all ρ. 
 

 
 
Figure 4. Results of %𝐷𝐷𝐸, %𝐹𝑆𝑂𝐼 and 𝑅𝐴𝑇 for Expt.4 (“Q=0”), Expt.5=baseline 

(“Q=0.02”) and Expt.7(“Q=0.04”) illustrating the effect of different levels of model 
error in the presence of mixing. 

 
Expt.8.  Baseline, with correlated error in 𝐙 
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Results are shown in Table C.4, where they are compared with the baseline. 
 
Compared with Expt.1 and 2, there is now some effect of introducing correlations in 𝐙 

but it is small in both %𝐷𝐷𝐸 and %𝐹𝑆𝑂𝐼.  (Note that we have modelled here both the 
effects of correlated errors in 𝐙 and of optimal assimilation under these conditions.) 
 
Expt.9.  Baseline, with increased rate of forecast error growth. 
 
Results are shown in Table C.5 and Figure 5 (very thin / blue lines), along with those of 
Expt.5 and 10, to show the effects of changing the value of forecast error growth rate.   
 

 
 
Figure 5. Results of %𝐷𝐷𝐸, %𝐹𝑆𝑂𝐼 and 𝑅𝐴𝑇 for Expt.10 (“a=1.1”), Expt.5=baseline 

(“a=1.2”) and Expt.7(“a=1.4”) illustrating the effect of different levels of forecast 
error growth rate. 

 
%𝐹𝑆𝑂𝐼 is reduced for ρ > 1.  %𝐷𝐷𝐸 is increased and hence 𝑅𝐴𝑇 is reduced, to values 

<1 for all ρ > 1. 
 
Expt.10.  Baseline, with decreased rate of forecast error growth. 
 
Results are also shown in Table C.6 and Figure 5 (thin/red lines), along with those of 
Expt.5 and 9.  At this reduced rate of forecast error growth, the %𝐹𝑆𝑂𝐼 is increased and 
the %𝐷𝐷𝐸 is decreased, leading to substantially increased 𝑅𝐴𝑇 for all ρ.  Overall, Expts 
9 and 10 show that decreasing the rate of forecast error growth substantially increases 
the value of 𝑅𝐴𝑇. 
 
Expt.11.  Baseline, but with reduction in 𝐙 switched from variable 1 to variable 2. 
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Results are shown in Table C.6 and Figure 6 (thin/red lines), where they are compared 
with the baseline. 
 

 
 
Figure 6. Results of %𝐷𝐷𝐸 for Expt.11 and Expt.5=baseline, illustrating the effect of 

denying observation information from the poorly observed variable (v2) and well 
observed variable (v1) respectively. 

 
Results for ρ = 1 are the same, because the observation and forecast errors in both 

variables are equal here.  However now, as ρ increases, both %𝐷𝐷𝐸 and %𝐹𝑆𝑂𝐼 
increase, and in such a way that 𝑅𝐴𝑇 is almost unchanged at around 1.2.   
 
Expt.12.  Baseline, but with equal reduction in 𝐙 between the two variables. 
 
Results are also shown in Table C.6.  This experiment is effectively intermediate in 𝐙 
reduction between Expts 5 and 11, and the results are broadly intermediate. 
 
Expt.13.  Baseline, but with reductions in 𝐙 in the two variables proportionate to the 

value of 𝐙 (see section 3.2). 
 
Results are also shown in Table C.6.  %𝐹𝑆𝑂𝐼 is now identically 1 for all values of ρ.  
Values of %𝐷𝐷𝐸 are also comparatively insensitive to ρ, and hence values of 𝑅𝐴𝑇 are 

similarly insensitive.  The difference between %𝐹𝑆𝑂𝐼 and %𝐷𝐷𝐸 is caused largely by 
model error. 
 
The most striking result from Expt.5, 10, 11 and 12 is that it is only when observational 
information is denied more from the poorly observed variable (in proportion to the well 
observed variable) that we find values of %𝐷𝐷𝐸 and %𝐹𝑆𝑂𝐼 greater than 1.  In fact, of all 
the experiments reported here, it is only in Expt.10 and 11 that this behaviour is found; it 
is only in these cases that the forecast impacts are greater, as a percentage, than the 
percentage of observational information denied.  In other words, these are the only 
conditions under which the system is not resilient to the denial of observations.  This 
behaviour is discussed further in Section 4. 
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Expt.14.  Baseline, with verification error included for DDE 
 
Results are also shown in Table C.7 and Figure 7 (thin/red lines). 
 

 
Figure 7. Results of %𝐷𝐷𝐸, %𝐹𝑆𝑂𝐼 and 𝑅𝐴𝑇 for Expt.5=baseline and Expt.14 (“+ve”) 

illustrating the effect of allowing for verification error in the DDE. 

 
%𝐷𝐷𝐸 is substantially reduced compared with the baseline.  %𝐹𝑆𝑂𝐼 remains the same 
(because the computation has not change – see section 2.8), and hence 𝑅𝐴𝑇 is 
increased substantially.  The results suggest that verification error makes a significant 
contribution to the values of 𝑅𝐴𝑇 found in real-world systems.  The %𝐷𝐷𝐸 results can be 
understood by recalling that the forecast error variance doubles in ~12 hours, and so the 
error variance in the 24h forecast is ~4 times the analysis error variance.  Therefore 
~20% of the apparent “error” in the 24h forecast results from error in the verification 
data. 
 
 
3.3.2 Comparisons of %𝐹𝑆𝑂𝐼 and %𝐷𝐷𝐸𝑒  
 
Results are given in the tables in Appendix C. 
 
For Expt.1 (“simple”: no mixing, no model error, no correlation in 𝐙), when ρ = 1,   
%𝐷𝐷𝐸𝑒 = %𝐷𝐷𝐸 ≃ %𝐹𝑆𝑂𝐼 = 1 , and when ρ > 1 , %𝐷𝐷𝐸𝑒 ≃ %𝐹𝑆𝑂𝐼.  Therefore, in this 
case, the nature of the DDE metric is dominant, recalling that both %𝐹𝑆𝑂𝐼 and %𝐷𝐷𝐸𝑒 

use an energy-based norm whereas %𝐷𝐷𝐸 does not.  The results are the same for 
Expt.2 (“simple”, but with some correlation in 𝐙). 
 
For Expt.3 (“simple”, but with model error), when ρ = 1,  %𝐷𝐷𝐸𝑒 = %𝐷𝐷𝐸, and when 

ρ > 1 , %𝐷𝐷𝐸𝑒 < %𝐹𝑆𝑂𝐼 < %𝐷𝐷𝐸.  Again, the nature of the metric is dominant. 
 
When mixing is introduced, for Expt.4 to 10, we obtain this result: when ρ = 1, %𝐷𝐷𝐸𝑒 =
%𝐷𝐷𝐸, and generally, when ρ > 1 , %𝐷𝐷𝐸𝑒 < %𝐷𝐷𝐸 < %𝐹𝑆𝑂𝐼.  Also, the ratio between   

%𝐹𝑆𝑂𝐼 and %𝐷𝐷𝐸𝑒 is always increased relative to that between %𝐹𝑆𝑂𝐼 and %𝐷𝐷𝐸.  
Therefore, the ratio changes but its form does not; where it is greater than 1 in %𝐷𝐷𝐸 it 
remains greater than 1 in %𝐷𝐷𝐸𝑒. 
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Similarly, with Expt.11-13 in which the distribution of data denied between variables is 
changed, the behaviour of %𝐷𝐷𝐸𝑒 follows closely the behaviour of %𝐷𝐷𝐸, and so the 
ratio with %𝐹𝑆𝑂𝐼 is also similar.   
 
In Expt.14, the impact on %𝐷𝐷𝐸𝑒 of including verification error is similar to that on 

%𝐷𝐷𝐸, increasing the ratio with %𝐹𝑆𝑂𝐼. 
 
In summary, the change to an energy metric for DDE only changes the form of the ratio 
when there is no mixing; in other experiments it tends to increase the ratio if already 
greater than one or reduce it if already less than one.  It does not therefore change any 
of the main conclusions about the factors affecting the ratio between the FSOI and DDE 
metrics. 
 
 
4. Summary and discussion 
 
The main finding from these experiments is the importance of mixing of forecast error 
between variables (i.e. non-diagonal 𝐌) to the form of the results.  The simple 
experiments with no mixing are useful for illustrating some interesting properties of the 
system, but the results give a ratio of FSOI impact expressed as a percentage (%𝐹𝑆𝑂𝐼) 
to the DDE impact expressed as a percentage (%𝐷𝐷𝐸) opposite to that found in real-
world NWP systems (see Fig.1); mixing of information between variables is crucially 
important for obtaining a ratio greater than 1. 
 
The inclusion of model error is found to be important in reducing %𝐷𝐷𝐸 scores.  This 
can be understood by considering model error as one way in which the NWP system 
progressively “forgets” observational information.  FSOI is comparatively little affected, 
because the sum of each %𝐹𝑆𝑂𝐼 score is normalised to 100%.  Consequently, model 
error also acts to increase the %𝐹𝑆𝑂𝐼:%𝐷𝐷𝐸 ratio. 
 
Results are sensitive to the way in which observational “information” is distributed, via 
the observation precision mapped into state space, 𝐙, between the two variables.  If both 
variables are observed equally, the %𝐹𝑆𝑂𝐼 is equal to percentage contribution to 

𝑡𝑟𝑎𝑐𝑒[𝐙], whatever the values of other system parameters.  So, in these experiments, 

because 𝑡𝑟𝑎𝑐𝑒[𝐙] is constant (= 2) and its reduction is constant (= 0.02), %𝐹𝑆𝑂𝐼 remains 
constant at 1 when both variables are observed equally.  Also, in this case, the %𝐷𝐷𝐸 
scores are ≃1 only when the model error is zero; otherwise they are reduced.   
 
If one variable is observed better than the other, then reduction of information in the well-
observed variable causes the %𝐹𝑆𝑂𝐼 score and the %𝐷𝐷𝐸 score to be reduced (Fig.6).    
The opposite effect is found when information is removed from the variable that is less 
well observed.  This suggests that most real-world DDEs are exploring removal of 
observations from relatively well observed variables or that other effects are dominant.  
In real-world NWP systems, any given observing system will observe some variables 
well and others less well and many not at all.  It is therefore very plausible that, when 
one of these systems is removed in a DDE, it will preferentially affect the better observed 
variables. 
 
The experiments show the relative unimportance of correlations in the observations, as 
represented by the matrix 𝐙, which is the precision matrix of the observations mapped 
into state space.  There are two caveats here:  the correlations in 𝐙 are not simply 

related to the correlations in 𝐑; they are also affected by the 𝐇 and, in this study, we 
have not explored hypothetical vales of 𝐇.  Also, 𝑡𝑟𝑎𝑐𝑒[𝐙] has been held constant, which 
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is not equivalent to holding constant the information content of the observations; the two 
are related through the determinant of 𝐙. 
 
Accounting for verification error has a large effect on %𝐷𝐷𝐸 but no effect on %𝐹𝑆𝑂𝐼 
(assuming the errors in the forecasts used are uncorrelated with those in the verifying 
analysis), and hence a large effect on the ratio between them (increasing it).  Therefore, 
verification error provides another reason why %𝐷𝐷𝐸 scores are significantly lower than 
%𝐹𝑆𝑂𝐼 scores in real-world experiments, and also a reason why DDEs will 
underestimate the impact of observations, particularly for short-range forecasts.  The 
effects on %𝐹𝑆𝑂𝐼 scores of correlations because forecast errors and those in the 
verifying analysis, caused by systematic errors in the model and/or the observations (as 
highlighted by Privé et al. 2020) are not explored in this study but are also expected to 
be important in real-world systems.   
 
As explained in section 2.4, FSOI results represent contributions to forecast error 
expressed with an energy norm and DDE results are often expressed as fractional 
changes in rms forecast error.  This difference alone can account for a factor of 2 
between FSOI and DDE results. 
 
%𝐷𝐷𝐸 measures percentage change in forecast error averaged over a range of 

variables.  We have additionally computed results in terms of %𝐷𝐷𝐸𝑒, an energy metric 
analogous to that used in the FSOI method.  In the presence of mixing and compared to 
%𝐷𝐷𝐸, it is found that %𝐷𝐷𝐸𝑒 tends to enhance the differences relative to %𝐹𝑆𝑂𝐼 but 
does not change the form of the results. 
 
If we consider the results for %𝐷𝐷𝐸 or %𝐷𝐷𝐸𝑒 or %𝐹𝑆𝑂𝐼 over all experiments, it is only 
when observational information is denied disproportionately from the poorly observed 
variable that we find values significantly greater than 1 for any of these forecast impact 
metrics.  Note that the percentage of observational information denied in these 
experiments, as measured by the percentage change in 𝑡𝑟𝑎𝑐𝑒[𝐙], is always 1.  This 
suggests a definition for the resilience of an NWP system to the removal of observed 
information:  a system is resilient if the percentage impact on forecast accuracy, as 
measured by a DDE, is less that the percentage of observational information removed, 
in terms of 𝑡𝑟𝑎𝑐𝑒[𝐙], and it is not resilient otherwise. 
 
Therefore, using this definition, the system will be resilient to the removal of 
observational information when it is denied from well observed variables, and it will not 
be resilient when it is denied from poorly observed variables.  This is an interesting 
result; it contradicts the commonly held view that resilience results from a rebalancing of 
the analysis, i.e. from the analysis weights changing to generate this effect.  Of course, 
when observations are denied, the weights given to the remaining observations will 
change, but this alone will not give rise to a resilient system.   
 
It can also be seen that verification error introduces the appearance of resilience, but 
this can be misleading.  Similarly, model error increases forecast error and leads to 
reduced DDE impacts, but this is really just a decreasing sensitivity of the forecast to 
observations in general, and it cannot usefully be called “resilience”. 
 
Other potentially important effects have not been explored in these experiments.  Firstly, 
the system is static; 𝐌, 𝐁 and 𝐀 do not evolve with time.  Secondly, the system 
parameters of forecast error growth, error mixing and model error are set equal for the 
(two) model variables; in real-world systems they would differ between variables.  For 
example, errors in some variables and on some scales would grow more rapidly initially 
and may then saturate.  Finally, this study has modelled only optimal systems, and all 
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real-world systems are suboptimal to some extent.  Suboptimal systems will be 
considered in Part II.  
 
As discussed earlier, it is often found that, although DDEs and FSOI give different 
results, the way in which they rank the impacts of different observing system are usually 
similar.  This is consistent with the finding that, for a given set of system parameters and 
with the approximations and simplifications inherent in this study, the impact assessed 
by each metric will be proportional to the change in 𝐙 represented by the observation 
type denied in a DDE or measured by FSOI, but that the constant of proportionality will 
differ between DDE and FSOI as indicated by the results reported here.   
 
An obvious weakness of this study is its use of only two variables, which limits the range 
of properties that can be explored.  However, it is expected that the major characteristics 
described above will also be found in systems of more than two variables.  
 
 
5. Conclusions and suggestions for further work 
 
We have developed a model for analysis and forecast error covariances of a very 
simple, two-variable system.  Using this system, we have computed observation impacts 
for metrics analogous to those used in DDEs and with the FSOI method.  We have 
compared the results of these %𝐷𝐷𝐸 and %𝐹𝑆𝑂𝐼 scores for a range of system 
parameters and, in particular, we have considered which sets of system parameters give 
rise to the usual result found in real-world observing system impact studies, namely that 
FSOI impacts are considerably greater that DDE impacts.  We find that the mixing of 
information (and error) between different model variables is crucial for obtaining this real-
world result, and that increasing model error and decreasing forecast error growth rate 
usually act to enhance this result.  The effects of errors in the verification data also act to 
decrease %𝐷𝐷𝐸 scores and hence to increase the ratio between %𝐹𝑆𝑂𝐼 and %𝐷𝐷𝐸 
scores. 
 
The way in which the observational information projects on to the different state 
variables is also important; in practice some state variables will be observed better than 
others, and the results of this study are consistent with DDEs normally denying 
information from the better observed variables.   
 
Defining a “resilient” system as one in which the percentage impact on forecast accuracy 
of removing observations is less that the percentage of observational information denied, 
we find that the system will be resilient if observations are denied primarily from well 
observed variables, and not resilient if denied from poorly observed variables.  This 
represents a revised understanding of the reason for NWP systems being resilient to the 
removal of observations.  
 
Only optimal systems have been modelled in this study.  Real-world systems are always 
suboptimal to some extent, and these effects will be considered in Part II.  
 
It would be interesting to develop this approach further: to explore a system of ~100 
state variables with the same equation set.  This would permit the study of aspects that 
cannot be studied adequately with two variables, such as the spectrum of observed 
information in projecting on to different variables and differential rates of mixing, of 
forecast error growth and of model error between different variables.  It would also be 
interesting to apply the same approach to a toy OSSE using a nonlinear forecast model 
and (for example) an ensemble Kalman filter, rather than through static error 
covariances. 
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The results of this study provide some insight into the factors that drive DDE and FSOI 
scores and also the resilience of NWP systems to the removal of observations.  It is 
therefore hoped that these results will guide the critical examination of DDE and FSOI 
results from real-world NWP experiments. 
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Appendix A.   Derivation of FSOI metric 
 
Langland and Baker (2004) define the FSOI metric (using our notation):  
 

 𝛿𝑒𝑓
𝑔

=< (𝐲𝑜 − 𝐻[𝐱𝑏]),
𝜕𝐽𝑓

𝑔

𝜕𝐲𝑜 > ,       (A.1) 

 
which they derive from the equation 
 

 𝛿𝑒𝑓
𝑔

≃ 𝛥𝑒𝑓
𝑔

= 𝑒𝑓 − 𝑒𝑔 ,        (A.2) 

 

where 2𝐽𝑓 = 𝑒𝑓 =< (𝐱𝑓 − 𝐱𝑡), 𝐂(𝐱𝑓 − 𝐱𝑡) > , 

 2𝐽𝑔 = 𝑒𝑔 =< (𝐱𝑔 − 𝐱𝑡), 𝐂(𝐱𝑔 − 𝐱𝑡) > , 

 𝐂 defines an energy norm, 

𝑓 and 𝑔 denote, respectively, the forecast from the analysis and the forecast from 
the background for this analysis. 

 
𝜕𝐽𝑓

𝑔

𝜕𝐲𝑜 is the observation sensitivity obtained using both trajectories, 𝑓 and 𝑔.   

 

With a unit norm, 𝐂 = 𝐈, and recalling that 𝛆𝑓 = 𝐱𝑓 − 𝐱𝑡, 𝛆𝑓 = 𝐱𝑔 − 𝐱𝑡, 
 

 𝛿𝑒𝑓
𝑔

≃< 𝛆𝑓𝑇
𝛆𝑓 − 𝛆𝑔𝑇𝛆𝑔 > .       (A.3) 

 
This is for pairs of forecasts 𝑓 and 𝑔 which, we recall, are represented in this study (and 
by Langland and Baker) by 24h and 30h forecasts respectively (see section 2.5). 
 
Taking averages over an ensemble of 𝐾 forecasts, 
 

 𝛿𝑒 =
1

𝐾
∑ 𝛿𝑒𝑓

𝑔

𝑘

𝐾
𝑘=1 ≃

1

𝐾
∑ (𝛆𝑓𝑇

𝛆𝑓 − 𝛆𝑔𝑇𝛆𝑔)
𝑘

𝐾
𝑘=1  

   = −𝑡𝑟𝑎𝑐𝑒[𝐏𝑛+1 − 𝐏𝑛] ,      (A.4) 
 
where n=4 for a 24h forecast. 
 
This is the same as equations (2.5.8)-(2.5.10): 
 

 𝛿𝑒 = ∑ 𝛿𝑒𝑗𝑗 = 𝑡𝑟𝑎𝑐𝑒[𝐏𝑛+1 − 𝐏𝑛] = 𝑡𝑟𝑎𝑐𝑒[𝐌𝑛(𝐀 ∑ 𝐙𝑗𝑗 𝐁)𝐌𝑛𝑻
] 

     =  ∑ 𝑡𝑟𝑎𝑐𝑒[𝐌𝑛(𝐀𝐙𝑗𝐁)𝐌𝑛𝑻]𝑗  .   (A.5) 
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except with the opposite sign, because Langland and Baker choose to define a positive 
impact of an observation as a negative FSOI score. 
 
Note that the vector product in (A.1) is effectively a summation over all observations j, 
which can be grouped instead as a summation over observation subsets j.   (A.5) is also 
a summation over observation subsets j, where the contribution from the jth subset can 
be similarly written.  
 

 𝛿𝑒𝑗 = 𝑡𝑟𝑎𝑐𝑒[𝐌𝑛(𝐀𝐙𝑗𝐁)𝐌𝑛𝑻
] .       (A.6) 

 
When 𝐂 ≠ 𝐈, equations (A.3)-(A.6) will take modified forms.  In fact, 𝐂 ≠ 𝐈 will be 
necessary when the state vector has mixed units (i.e. contains wind and mass and 
perhaps moist variables).  The exact choice of 𝐂, particularly for the moist terms, is 
somewhat arbitrary and hence also is the value of the FSOI energy metric.  However, 
with the very simple model adopted for this study, this problem is avoided. 
 
 
Appendix B.   The relationship between FSOI and DFS metrics 
 
The degrees of freedom for signal (DFS) metric can be shown (e.g. Rodgers, 2000, 
p.31, eq.2.56), using the notation of this paper, to be given by 
 

 𝐷𝐹𝑆 = 𝑡𝑟𝑎𝑐𝑒[(𝐁−1 + 𝐇𝑇𝐑−1𝐇)−1𝐇𝑇𝐑−1𝐇] .     (B.1) 
 
Therefore, using equations (2.1.5) and (2.1.6),  
 
 𝐷𝐹𝑆 = 𝑡𝑟𝑎𝑐𝑒[𝐀𝐙] .        (B.2) 
 
Disaggregating 𝐙, as discussed in section 2.1, we obtain an expression for the 
contribution to the DFS of the jth observation type: 
 
 𝐷𝐹𝑆𝑗 = 𝑡𝑟𝑎𝑐𝑒[𝐀𝒁𝒋] .        (B.3) 

 
Compare this with the equivalent expression for FSOI, i.e. eq.(A.6).  It can be seen that 
the two metrics are closely related but that they differ as follows: DFS measures the 
impact on analysis whereas FSOI measures the impact of forecast (i.e. the analysis 
error covariance propagated forward in time via the model matrix 𝐌𝑛), and the FSOI 

metric contains an additional multiplier 𝐁.  Hence FSOI is an energy metric (usually 
expressed in J/Kg) whereas DFS is dimensionless.  However, it is also usual to present 
both as fractional scores: 𝛿𝑒𝑗/𝛿𝑒 and 𝐷𝐹𝑆𝑗/𝐷𝐹𝑆. 

 
The two metrics also have another important difference in their application:  DFS 
assumes an optimal system – it assesses the impact that the observations would have if 
used optimally.  FSOI measures the impact of observations as used in a (generally) 
suboptimal system.  However, the FSOI measure is derived using elements of optimal 
estimation theory and can be misleading within a suboptimal system, as will be 
discussed in Part II. 
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Appendix C.   Tables of results 
 

Expt   a  m  c 𝑄𝑖𝑖   ρ %𝐷𝐷𝐸  %𝐹𝑆𝑂𝐼  𝑅𝐴𝑇 %𝐷𝐷𝐸𝑒 𝑅𝐴𝑇𝑒 

1 1.2 0 0 0 1 1.020 1.000 0.980 1.020 0.980 

     2 0.761 0.500 0.657 0.508 0.984 
     4 0.633 0.250 0.395 0.253 0.988 
     8 0.569 0.125 0.220 0.126 0.992 

     16 0.537 0.063 0.117 0.063 1.000 

     32 0.521 0.031 0.060 0.031 1.000 
     64 0.513 0.016 0.031 0.016 1.000 
     128 0.509 0.008 0.016 0.008 1.000 

           

3 1.2 0 0 0.02 1 0.855 1.000 1.170 0.855 1.170 

     2 0.609 0.542 0.890 0.436 1.243 
     4 0.490 0.298 0.608 0.228 1.307 
     8 0.431 0.161 0.374 0.120 1.342 
           

4 1.2 0.05 0 0 1 1.019 1.000 0.981 1.019 0.981 

     2 0.702 0.670 0.954 0.585 1.145 
     4 0.551 0.535 0.971 0.406 1.318 
     8 0.506 0.522 1.032 0.384 1.359 

     16 0.547 0.588 1.075 0.463 1.270 

     32 0.648 0.694 1.071 0.599 1.159 

     64 0.767 0.801 1.044 0.739 1.084 
     128 0.864 0.884 1.023 0.850 1.040 

Table C.1. Results for “simple” experiments (with no mixing) and for an experiment with 
mixing. 

 

Expt  a  m  C 𝑄𝑖𝑖   ρ %𝐷𝐷𝐸  %𝐹𝑆𝑂𝐼  𝑅𝐴𝑇 %𝐷𝐷𝐸𝑒 𝑅𝐴𝑇𝑒 

3 1.2 0 0 0.02 1 0.855 1.000 1.170 0.855 1.170 

     2 0.609 0.542 0.890 0.436 1.243 
     4 0.490 0.298 0.608 0.228 1.307 
     8 0.431 0.161 0.374 0.120 1.342 

           

5 1.2 0.05 0 0.02 1 0.801 1.000 1.248 0.801 1.248 

     2 0.542 0.665 1.227 0.454 1.465 
     4 0.418 0.504 1.206 0.293 1.720 
     8 0.365 0.450 1.233 0.232 1.940 

     16 0.359 0.476 1.326 0.238 2.000 

     32 0.396 0.563 1.422 0.292 1.928 

     64 0.460 0.682 1.483 0.373 1.828 

     128 0.529 0.796 1.505 0.454 1.753 

           

6 1.2 0.10 0 0.02 1 0.797 1.000 1.255 0.797 1.255 

     2 0.603 0.854 1.416 0.589 1.450 
     4 0.522 0.813 1.557 0.501 1.623 
     8 0.507 0.834 1.645 0.483 1.727 

Table C.2. Results for experiments with different values of forecast error mixing.  The 
baseline experiment is highlighted in bold. 
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Expt  a  m  c 𝑄𝑖𝑖   ρ %𝐷𝐷𝐸  %𝐹𝑆𝑂𝐼  𝑅𝐴𝑇 %𝐷𝐷𝐸𝑒 𝑅𝐴𝑇𝑒 

4 1.2 0.05 0 0 1 1.019 1.000 0.981 1.019 0.981 

     2 0.702 0.670 0.954 0.585 1.145 
     4 0.551 0.535 0.971 0.406 1.318 
     8 0.506 0.522 1.032 0.384 1.359 

           

5 1.2 0.05 0 0.02 1 0.801 1.000 1.248 0.801 1.248 

     2 0.542 0.665 1.227 0.454 1.465 
     4 0.418 0.504 1.206 0.293 1.720 
     8 0.365 0.450 1.233 0.232 1.940 

           

7 1.2 0.05 0 0.04 1 0.690 1.000 1.449 0.690 1.449 

     2 0.464 0.668 1.440 0.394 1.695 
     4 0.357 0.501 1.403 0.253 1.980 
     8 0.308 0.429 1.393 0.188 2.282 

Table C.3. Results for experiments with mixing, but with different values of model error. 

 

Expt  a  m  c 𝑄𝑖𝑖   ρ %𝐷𝐷𝐸  %𝐹𝑆𝑂𝐼  𝑅𝐴𝑇 %𝐷𝐷𝐸𝑒 𝑅𝐴𝑇𝑒 

5 1.2 0.05 0 0.02 1 0.801 1.000 1.248 0.801 1.248 

     2 0.542 0.665 1.227 0.454 1.465 
     4 0.418 0.504 1.206 0.293 1.720 
     8 0.365 0.450 1.233 0.232 1.940 

           

8 1.2 0.05 0.1 0.02 1 0.813 1.000 1.230 0.813 1.230 

     2 0.553 0.683 1.235 0.471 1.450 
     4 0.430 0.534 1.242 0.311 1.717 
     8 0.377 0.489 1.297 0.248 1.972 

Table C.4. Results for experiments with mixing, but with different values of correlation in 𝐙. 

 

Expt  a  m  c 𝑄𝑖𝑖   ρ %𝐷𝐷𝐸  %𝐹𝑆𝑂𝐼  𝑅𝐴𝑇 %𝐷𝐷𝐸𝑒 𝑅𝐴𝑇𝑒 

10 1.1 0.05 0 0.02 1 0.591 1.000 1.692 0.591 1.692 

     2 0.418 0.763 1.825 0.380 2.008 
     4 0.343 0.661 1.927 0.285 2.319 
     8 0.322 0.642 1.994 0.251 2.558 

           

5 1.2 0.05 0 0.02 1 0.801 1.000 1.248 0.801 1.248 

     2 0.542 0.665 1.227 0.454 1.465 
     4 0.418 0.504 1.206 0.293 1.720 
     8 0.365 0.450 1.233 0.232 1.940 
           

9 1.4 0.05 0 0.02 1 0.948 1.000 1.055 0.948 1.055 
     2 0.645 0.574 0.890 0.492 1.167 
     4 0.483 0.363 0.752 0.273 1.330 
     8 0.386 0.271 0.702 0.178 1.522 

Table C.5. Results for experiments with different values of forecast error growth rate. 
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Expt   a  m  c 𝑄𝑖𝑖   ρ %𝐷𝐷𝐸  %𝐹𝑆𝑂𝐼  𝑅𝐴𝑇 %𝐷𝐷𝐸𝑒 𝑅𝐴𝑇𝑒 

5 1.2 0.05 0 0.02 1 0.801 1.000 1.248 0.801 1.248 

     2 0.542 0.665 1.227 0.454 1.465 
     4 0.418 0.504 1.206 0.293 1.720 
     8 0.365 0.450 1.233 0.232 1.940 

           

11 1.2 0.05 0 0.02 1 0.801 1.000 1.248 0.801 1.248 

     2 1.352 1.671 1.236 1.545 1.082 
     4 2.539 2.982 1.174 3.131 0.952 
     8 5.038 5.396 1.071 6.327 0.853 
           

12 1.2 0.05 0 0.02 1 0.794 1.000 1.259 0.794 1.259 
     2 0.936 1.168 1.248 0.988 1.182 
     4 1.449 1.743 1.203 1.676 1.040 
     8 2.604 2.924 1.123 3.157 0.926 
           

13 1.2 0.05 0 0.02 1 0.794 1.000 1.259 0.794 1.259 
     2 0.802 1.000 1.247 0.807 1.239 
     4 0.824 1.000 1.214 0.838 1.193 
     8 0.847 1.000 1.181 0.862 1.160 

Table C.6. Results for experiments with different distribution of observation reduction 
between variables. 

 

Expt  a  m  c 𝑄𝑖𝑖   Ρ %𝐷𝐷𝐸  %𝐹𝑆𝑂𝐼  𝑅𝐴𝑇 %𝐷𝐷𝐸𝑒 𝑅𝐴𝑇𝑒 

5 1.2 0.05 0 0.02 1 0.801 1.000 1.248 0.801 1.248 

     2 0.542 0.665 1.227 0.454 1.465 
     4 0.418 0.504 1.206 0.293 1.720 
     8 0.365 0.450 1.233 0.232 1.940 

           
14 1.2 0.05 0 0.02 1 0.635 1.000 1.575 0.635 1.575 

     2 0.435 0.665 1.529 0.359 1.852 
     4 0.341 0.504 1.478 0.231 2.182 
     8 0.302 0.450 1.490 0.181 2.486 

Table C.7. Results for experiments with verification error included in the DDE calculation.  
Results of baseline Expt.5 are included for reference. 

 
 
Acronyms 
 
AMV  atmospheric motion vector 
DA  data assimilation 
ECMWF European Centre for Medium-range Weather Forecasts 
IR  infra-red 
DDE  data denial experiment 
DFS  degrees of freedom for signal 
FSOI  forecast-sensitivity-to-observation-impact 
GNSS  global navigation satellite system 
MW  microwave 
NRL  US Naval Research Laboratory 
NWP  numerical weather prediction 
OSE  observing system experiment 
OSSE  observing system simulation experiment 
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rms  root mean square 
WMO  World Meteorological Organisation 
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