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ABSTRACT

The f-plane semi-geostrophic equations have a class of solutions which
are periodic in two independent horizontal directions. The large scale
flows of such solutions comprise a qnadratic geopotential and a wind field
whose deformation, vorticity and divergence are, at each instant, spatially
uniform, although they may evolve in time. The general conditions that
must pertain for these large scale flows confined between parallel
horizontal boundaries are established and the equations for the periodic
perturbations are derived in co-ordinate frameworks particularly suited to

numerical representation.



1 INTRODUCTION

The two-dimensional semi-geostrophic equations (SGE) of Hoskins and
Bretherton (1972) were introduced to provide a simplified framework in
which to study the essential mechanisms leading to the formation of lower
and upper tropospheric fronts. The insights provided by such models have
been of immense value in elucidating the significance of purely dynamical
processes, and especially those associated with ageostrophic advection, in
generating a sharp front from initially smooth conditions. Since that time
the SGE have been found to have a natural three-dimensional generalisation
(Hoskins, 1975; Hoskins and Draghici, 1977) that in principle allows
frontal formation to be studied in more general ambient conditions. A
special variant of this set of three-dimensional equations were employed by
Hoskins and West (1979) to simulate the formation of fronts associated with

a developing baroclinic wave.

The use of the SGE in their Lagrangian conserving form have been shown
by Cullen (1983), Cullen and Purser (1984) to allow internally consistent
frontal solutions to be integrated beyond the time at which the frontal
singularity first forms, thereby permitting a formal extension of the kind
of solutions pioneered by Hoskins and Bretherton to be made but with mature
fronts involving actual discontinuities of the state variables now figuring
as well defined features of the solution. It is the ability of the SGE to
tolerate such apparently singular phenomena and handle them in a way that
seems consistent with all but the most detailed physical processes that
makes this system of equations so attractive, not only as a tool with which
to model frontal dynamics, but also as an idealized framework in which to
assess the resiliance and reliability of various conventional modelling
techniques confronted by singular solutions, so that the best of these
techniques may be selected for use with the complete primitive equations in

actual forecasting models.

Some of the behaviour exhibited by a model based on the SGE appears at
first sight to be a paradoxical contradiction of the general physical
principles on which the equations are based, in particular the evolution a

front involves a definite increase in domain-integrated potential vorticity
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and non-vanishing vertical velocity arbitrarily close to the ground near
the point of frontal formation. This allows fluid initially in contact
with the ground to be lifted well clear. It can be demonstrated that the
SGE permit an isolated impulsive concentration of potential vorticity in
the interior of the solution to receive or shed some of it from sources or
to sinks elsewhere in the fluid or at boundaries without the intervening
medium holding any potential vorticity whatsoever. In spite of these
paradoxes, the SGE possess an internal consistency and robustness and their
solutions, even when they contain singularities, stand as convincing
idealized approximations to the kinds of states to be expected in nature in
air controlled predominantly by Coriolis balance. In a natural front, of
course, the increase of potential vorticity must be accounted for by
dissipative processes such as turbulent mixing and such processes may be on
a much finer scale than is typically resolved by forecasting models. In
that case it might be argued that a finite element model using the SGE
which is able to handle sharp discontinuities explicitly is a more reliable
guide to the qualitative evolution of a frontal system than a primitive

equation model that resolves the fronts poorly.

Apart for a small number of analytic solutions (eg, Gill, 1981;
Purser and Cullen, 1987; Shutts, 1987) the most satisfactory method of
modelling mature semi-geostrophic fronts in a way that preserves the
mathematical discontinuities has been by way of finite element computations
(Cullen, 1983; Cullen and Purser, 1984; Cullen et al., 1987). Although
such solutions to date have been two-dimensional, it is possible to create
solutions to fully three-dimensional flows in terms of simple convex finite
elements, the evolution of whose dynamical variables is determined by the
geostrophic wind components at their centroids. The assumption that each
finite element retains its identity and that its geostrophic momentum
components evolve according to the centroid geostrophic wind is justified,
on the f-plane at least, by invoking what will be referred to as the
'homogenization postulate' - that internal ageostrophic motion inside each
element acts on a timescale faster than that of the large scale motion and
has the effect of preserving the element's uniform distribution of
potential temperature, and its components of absolute momentum. It can be

demonstrated that the resulting dynamical system is energetically
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consistent when the kinetic energy is taken as coming from only the

geostrophic portion of the horizontal velocity. A piecewise continuous
semi-geostrophic solution may then be regarded as the limit of a sequence
of progressively detailed finite element solutions. It appears very
likely, aIthough it has yet to be proved rigorously, that the limit (in an
appropriate sense) of the sequence of forecasts from such approximating
finite element states is identical to the forecast from the piecewise
continuous problem. Should it become feasible to carry out
three-dimensional simulations with finite elements it would be possible to
integrate approximations to any consistent initial states, including those

that give rise to frontal discontinuities.

A problem with three-dimensional semi-geostrophic solutions in a
laterally bounded domain is the presence of Kelvin waves. The long, low
frequency Kelvin waves are presumably accurately approximated but at higher
frequencies the modes produced by the SGE are clearly spurious but are not
easily filtered from the solution. It should be noted that even
incompressible barotropic flow is contaminated by Kelvin waves in the SGE
although they are of course impossible in an unfiltered model. The
problems of contamination of the solutions with unwanted Kelvin waves can
be avoided by the imposition of doubly cyclic 'boundary' conditions. A
solution constrained to be periodic in two horizontal directions permits
the iﬁfluence on the local solution of a surprisingly wide variety of

ambient flows to be readily assessed.

It is the purpose of this note first to analyse the general conditions
that must pertain on the large scale in order that the imbedded periodic
perturbations can be consistently integrated and, second, to show how by
suitable time-dependent linear transformations the continuously distorting
domain representing a single replication of the general solution can be
mapped into a fixed square or cube in a new coordinate system to facilitate
the solution of the SGE either by finite difference or by finite element

methods.
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For algebraic simplicity we adopt the concise notation of Purser and
Cullen (1987) henceforth denoted PC. Thus X and Y denote components of

geostrophic momentum,
X:DC'FVS »

VL e

(2.1a)

and Z is proportional to potential temperature,

o= 08 (2.1b)
&

where the fluid is Boussinesq, hydrostatic and time is rescaled to make the
Coriolis parameter unity. Together these components make up a single
(column) vector ‘X which in the terminology of PC is the 'dual' of the
corresponding physical coordinate X = (x, Y, 2>T . The duality comes
about through the symmetrical relationships linking % and X to
potentials 13 and FL -

- U E

-~

(2.2)
kR
where
= i B 2 2
gt (2.3)
Roadix = P :
e (2.4)
and
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The basis for the geometrical theory of the SGE on an f-plane is the

recognition that dynamically stable solutions are associated with a
potential FD that is convex in X* . 1In the special extension of SGE
whose solutions correspond to finite elements of constant 2{ the
potential, S§= TD({) , becomes a convex polyhedral 'surface' in the
extended domain ( $§, x ). Here we investigate the special class of

solutions periodic (in a sense to be defined below) with respect to two

(2)
independent horizontal lattice basis vectors 430) > é} , which

may be time-dependent. It is convenient to augment these vectors with a

third,
&3]
A :(O)O) H) (2.6)
where }4 is the total depth of the domain, and group all three into a
(2)
single matrix é ’ We shall say that two points ZC(') y i XK are
'equivalent' points of the solution if they can be expressed
o) ()
= A-d o 5o )
X & =X £ oo (2.7)
with
) (1 S
g = Gj )= an integer for ; b 2
J
(2.8)
9 ‘FuY J = 3

If this is the case the relationship will be expressed

(z)
I(‘)N z A

We seek solutions that are periodic in the sense that vector function 2{

obeys a relation of the form
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X(}(U>* X(ZC(')).__ @ . (2C(2)~- ?5(')) 5 (2.9)

4 (i)
Whenever %cz)N '{Cl , for some uniform, but possibly time-dependent,
. A~ X . . /
matrix Q . Thus we may split X into a strictly periodic part X
plus a part that represents the large scale linear trend, X s WILEHS

~

X0 - .1 (2.10)
~ _ o 3 .
Denoting the cross product and curl operators respectively by 'A'
and 'Y/\ ' then, since X is the gradient of a scalar, P,it follows

~

that
- /
VA X +V/\Z< = 0 (2.11)

By applying Stokes' theorem to any basic replication of the horizontal
pattern, e. g. the parallelogram formed by the vectors é(‘) ’ 4(2) ’
we see that the average vertical component of ~V/\ 5/ and hence of the
uniform vector V/\ X vanishes. A z-dependent, but horizontally
uniform vector mz:y be added to X/ without destroying its periodicity, SO
it is always possible to par'titign the vertical shear between X/ and X
in such a way that the horizontal components of v/\X and VAX vanish

also. Thus X and X may be written individually as gradients:
~ ~
X:'VLP = Q°.3§+L (2.12a)

e v P (2.12b)

—_—

/
Where P is strictly periodic while the large scale trend P is now

quadratic:

a Ol

T —— 6
o2 92‘ i L:'Ef + (2.13)

P
Q is symmetric.
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Although the absolute velocities of finite element solutions are not
defined within an element, the movement of the facets, edges, and vertices
will display a regular linear trend as we move from one replication to

another, allowing us to express this trend in the form
i Six a Ve + B (2.14)

¢ T
where (§ +yl( ) is the large scale deformation (possibly
time-dependent), the portion S' contains that part of the large scale
deformation that accounts for the evolution of the basic lattice vectors,

d2 . S
A{w = = ) (2.15)

while \/ expresses the residual vertical shear of the horizontal wind at
the la;Ee scale. We assume the domain to be bounded at z= (0 , 2= F4,by
horizontal impermeable planes, implying that the large scale component of
the velocity vanishes at the ground and is uniformly equal to J}J/Qk'at Z= Fl

Thus.

g3‘=5n=5n=5‘23=o .

Nl
H Jt (2.16)

Also, the large scale motion is three-dimensionally non-divergent, implying
sp—
I'r (S) =00 C250T0)
~

In addition to the definitions (2.2), (2.3) the SGE for the evolution of 2{

are:

.‘DX = Wy
2s =&

T-U' o (2.18)

<
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where Tszt is the material derivative and Qﬂ is the geostrophic wind

which can be expanded,

hes g,—‘(l(‘i‘) (2.19)
with é? defined,
7 t e
E{,‘ Ty ] o g (2.20)
0 otherw:se

From these equations we deduce the following important result.

Theorem 1

o
—

The large scale fields )( sl ' are themselves consistent

~

solutions of the SGE independent of the strictly periodic perturbations.

Proof

Define a new time—-derivative, ID//DT , representing the rate of change

following the large scale motion Ij , ile, for any arbitrary variable ﬁp
o o T
D¥+ Q.W(YZY’)* w '])__}f’_ (Y‘Y) : 9/ (2.21)
e ot bt )
where U’ , when it is defined, is the strictly periodic part of y « Note
that
— e — JN =it BT
DX .U, Q5= [28 ¢ Q.(S+ VK )|x+(4+9-B
bt e 1 e T Tt 232.22)

which is a linear function of position. Also for any pair of equivalent

) Vi) V) v, 1) (z)
points, x(')~ at which we have values X(‘ - X” for X and X( - X

for X etc.,

~

~

10
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(2) ( (2 (i) 4
DY Y S [ G o
bt bt L.;_ St N L AR,
= O
S (@) ()
i sidgh g T g
o U{Z) :(1)
e ’ (2.23)
where
by = =t [X=) (2.24)

is the large scale part of the geostrophic wind. Since (2.23) is true for

all equivalent points and I)Xl/Dt is linear in position, then generally:

<)

= Mgiw LD (2.25a)

o414

But the partitioning between X and X' can always be done so as to

eliminate the uniform forcing C &) and hence

-

S (2.25b)

Cald
= ol

as required.

Corollary 2

The Hessian

2, Qs+ Vi + £-(Q- I) = 0 (2.26)
4t i 2

of the large-scale potential TD evolves according to

RD'

~

and the linear term L evolves according to

11
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These results follow immediately by noting that

f"'v>z¢ = gL (2.28)

{
!
% M)
TR
RE3

,E%

r)‘_

then equating the constant and linear terms of the equation (2.22) when the

substitution (2.28) through (2.25b) is made.

The SGE as given have the property that they remain satisfied under
non—-Galilean but parallel translations in space, provided the

transformations,

j
x* + 8x

'R
B}

u* 3 Sy
X.! r SAX
P-P ¢ 5P

€
"

<

I (2.29)

in which 5} 2 v . SX are spatially uniform (but varying in time) and

-~

ST)is linear in space, satisfy the transformation rules,

S o Cxiin %

8 il
jl_tgl( .- &(8%- $x) C o
V. §P = §X ;

By choosing such a transformation to keep the large scale motion
stagnant at the origin the constant terms L, and @ of (2.12a) and (2.14)
can be made to vanish, as can }Z of (2.13) which consequently simplifies

to

P
~

Ol

TS = e
B (2.13a)

which we use henceforth.

12
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We now consider the constraints governing the evolution of the large

scale solutions, for it is clear that the symmetry,

()3 QT (23

P
= o~

imposes three constraints while (2.16) and (2.17) imply seven more. Then
the nine equations (2.26) must be satisfied leaving just three remaining

degrees of freedom among H and the components of V . S and @ to

—~

be set at will to make the full set of equations for these large-scale
parameters well posed. A convenient set of 'control variables' is formed
from the components of ;5 constituting the horizontal divergence and pure

deformation, for example, let

(:1 = 5;1
Cz Szz

C‘; 3 S:z % SZ(

Then the remaining components of the deformation field (apart from the

"

(2.32)

vertical divergence which is given by continuity) are the three components

of vorticity:

] = -u
Vv, (2.33)

S;:'" SIZ

which cannot be defined independently of the set of control variables {;

horin T g
1 !

and Hessian C;Z . Equating the time derivatives of the off-diagonal
v'-‘- T
elements of @Q and é; from (2.26) we find that components ;. must

satisfy the matrix equation,

13
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MG 40..) 0 ~ kiR
L O ’ O) 1(QH*Q22J {.; ch,‘@az )%.(QZ?.‘QU) 63
e e
L3
+ @ = O
13
S oy | i (2.34)
Q_QH—Q’IZ ) | 2 :
Note that f; , which is the only vorticity com?onent to affect the
J (2)
evolution of the latice basis vectors 4§' 4 é? , only depends on the

horizontal components of CQ .
~~

The special class of large—-scale solutions that are steady for all
time are obtained by setting JQ/Jf=0 in (2.26). Then,

CQ|3 jgj + 6223 S&j (®) e g

Ql? Vi + ng V;_

]

"

0 (2.35)
Two distinct cases may arises:

(i) The ratios
Slo . ng o S)z :S\zz 5 \/l :\/Z

which implies geostrophic parallel shear flow with the velocities
perpendicular to the horizontal thermal gradient. Choosing the x—axis

parallel to this flow we find

b h 0 05 54, 0 Vi
O,QI'I-)Q23 ’§;O) olo
O;Q‘l? )QI? O/ O/ O -0

79
i
N
ST
MWt
o

(2.36)

14
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S‘IZ 2 Qe |

g'? < Qz? {2:37)

Such a large scale basic state could be used to investigate baroclinic

instabilities on straight jets. In the alternative case,

(ii) The large scale horizontal thermal gradient, and hence the
vertical geostrophic and actual wind shears all vanish. Here the flow
can most easily be represented by a two-dimensional stream function,

\}/: Lo J.x ) (2.38)

o A A ~

whose Hessian ;I. is defined to have no vertical components and to

satisfy,

S;-

x~

el (2.39)

x(r

Making this substitution and restricting attention to the horizontal

terms only,

Q§g= ES(Q—I> : (2.40)

~

Choosing horizontal axes to diagonalize (Q we find

= (Qu">/sz 3 K,4/(Kzz+ I)
j;'l: (OZZ‘ ')/’Qu 43 I’(zz /(K;, ~+l)

where }( is the Hessian of the large scale geopotential CP .

-~

(2.41)

Having determined the general conditions satisfied by the large scale

component of flow we now turn to the construction of the periodic solutions

themselves.

15



% PERIODIC SOLUTIONS IMBEDDED IN A UNIFORM DEFORMATION

In constructing numerical solutions it is important to recognise
explicitly the periodicity present. In the case of finite difference
methods we should like to choose coordinates in which the periodic nature
of the solution is represented in a convenient way. This is most easily
done by projecting the physical coordinates in a manner that causes a
single complete replication of the solution to map onto a standard
rectangular domain, for example, a unit square or cube. The linear
transformation from coordinates X to co-ordinates @ defined by (2.7)
is about the simplest way of accomplishing this. Note that such a
transformation in the case of a convex polyhedral (finite element) solution
for P(z) gives a transformed FDCQ) which remains a convex polyhedral
solution but now with unit period in the d, and O, directions. We
shall therefore establish the semigeostrophic governing equations as they
appear in a-coordinates before specialising further to consider
numerical aspects of finite difference and finite element computations
separately. We note that an alternative transformation might be well worth
applying, that is the linear transformation of dual horizontal coordinates
2{ to a new pair k in which the horizontal period is unity in both B,
and Ll directions. In the case of a large scale solution free of
baroclinity the third coordinate bg may be chosen proportional to
potential temperature (and hence Z). The resulting framework is well
suited to the study of fronts and inversions which are now resolved
relatively well, with a regular finite difference grid in k . However,
care should be taken over the regions of the interior of b-space that map
to the horizontal boundaries and fronts as the governing equations in
differential form become singular here. We shall treat a system in

h- coordinates at the end of this section.

a. Governing equations in a-coordinates

The differential operator,

o
o i G 9
d ('ba‘ ? 'a—(-]l 7 ’Dq.’ ) . (3.1 )

16
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is related to“z by the chain rule:

%o (3.2)

~

Define

>
il
<]
5,
i
3\
>,
>

N Ve (3.3)
Then = 4
bé— (J:'>X 5 AE')S ?
bt I Dt
- K S XL £ (-2
; 76 & §“'9 ) (3.4)

where we have used (2.18), (2.19) and where jf and é;a are the matrices:

A (S-)&Y

Det (QO § (3.5)

=

LR
I

W
o
I
&t>4
189!
o
i)

and where ZSL is the horizontal portion of b
(o =]

The continuity equation in a-coordinates retains the same form,

o
=0, (3.6)
where
b = Da .
5 Bt (3.7)

We shall consider convenient representation of these equations for

finite difference and finite element computations separately.

17



(i) Finite difference computations

Here it is convenient to split the variables into their large scale
contributions and the strictly periodic portions:

AzAx A =V PP

7

*<

oo

R@
115}

~ 4 .8
g;a ot gaa (3.8)
where

°
e O

1 3>
i
"

Note that the advantage of a-coordinates is that the large-scale part of EM

disappears. Hence, from (3.4),

BA - 9A Q.U A ,4 A0
s L a + + o8
= - dR L B,

By straight forward evaluation, using (2.26) it can be verified that

WA+ €& -a (3.10)

bt ~

—

so the periodic perturbations satisfy

/ /
?Bﬁ = lz‘/q 78 €52a Ua , (3.11)
It

”
: i P : [-'/: DP
or, in terms of the perturbation mass field , and its tendency, 52‘
a
~{ / =4 e
Q. -NT = @a ;/{SZP - Ua 3 (3.12)

On eliminating the velocity gh using continuity, we arrive at a nonlinear

elliptic equation for the tendency:

VAT R VA R VA« RvA

ol L g K alch, el e N ? (3.13)

18
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which may be solved by standard iterative methods subject to the boundary

conditions implied by the vanishing of (- space vertical velocity, bottom

-~

and top:
O
Uagg) = © a0tk (3.14)
1
and horizontal periodicity
/ ’
Lo () = F {ay) , Oy ~ G, : (3.15)

Eq (3.13) is no harder to solve in principle than the standard
semigeostrophic tendency equations (e.g., Schubert, 1985) and
transformations back to physical space are easily accomplished. Note that a
class of periodic two-dimensional solutions can be obtained by assuming
that the strictly periodic variables are invariant with respect to
as,-coordinate (but this does not imply that Ua(2)~vanishes ). The tendency
equation (3.13) then reduces to a two-dimensional elliptic system in (at,
a3). The two-dimensional systems that can be obtained in this way are
apparently generalizations of those discussed by Hoskins and Bretherton
(1972).

ii. Finite element computations

The finite element solutions are constructed from the boundary of the
region formed in the extended ( S, g} ) - space by the set—intersection

of half planes bounded 'below' by the hyperplanes of the form
i 7
g f\‘ﬁ‘ (3.16)

()
such that the mass ( = volume) P4o of each element % is correct and

the element-averaged equations of motion are satisfied,

J () . (o) (x) A (%) )
E(M‘, 6( >: :(.(Mo A éq-’jf( s (3.17)

19




(C
where P1q represents the vector of first moments about the origin of
element a. Rather than use these moments it will be convenient to choose a
set that are identical for different replications of the same element. A

natural choice is the set

A (<) («)
e M~ Blh (3.18)

; : (3.19)

Geometrically, b is the a—-coordinate of the point on a quadratic
surface,
A m——
(=) T
e e @
o 2,\ wa ~ ’ (3.20)

which is tangent to the element's hyperplane

() A("‘)Ta
S ose o Th (3.21)

The schematic illustration of Figure 1 should clarify the situation.
,?(o()
Note that So is common to all equivalent replications of the

(=)
element o« and is related to o through

A Gy e
SO(D() < S\c(a(»"- Lz b - @a - ’b ¢ (3.22)

)
() () pq(%) p) A(/’ :
The sensitivity of moments f::l 5 (Mo ) t_/]a ) to variations in i( = (So(m) )15

expressed by the symmetric Jacobian matrix of coefficients:

20



l wﬂ(‘;ﬂ) is the first moment (vector)

l?mwm

P g(ﬂ’
{
—a(\\/‘QI
with ET
v o

o}
Ds(/ﬂ

g

7 #

(3.23)

«Ff.

(3.24)

where the summation in (3.24) extends over all elements, including

replications, and the components in the block-matrix of (3.23) are defined

as follows:

m ("ﬁ) is the area

(scalar) of the interface between o and B

is the second moment (tensor) «

LR

A &)

A corresponding Jacobian expressing the sensitivity of moments Eﬂ to

A A oWT
variations in S’ : (s /AV”) is obtained by noting from (3.18) and

(3.22) that
ﬁa(«\

L

Afa)
5"

where

(«)

m

(e )
B

21
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and hence by application of the chain rule:

T e
A (r»’ (! iy R B
(=) («) («) ;
O e I
3% @ 5o 0 Q, (3.27)
4,0“
v;)l\/?\
Now, not only is 8 2l symmetric, but moreover it is invariant with

respect to simultaneous and corresponding transformations of the pair « ,

/3 to any equivalent replication <X’)/?/ . Thus the symmetric matrix,

@)
:U:(_,, = Z_ M (3.28)

Pl )

A
expresses the sensitivity of each moment qud) to simultaneogg‘
equivalent change of all equivalent replications of a variable ng;nd the
indices «%,/3 need only extend over one non-redundant representation of
the set of finite elements (i.e., without replications) in order to
encapsulate the information needed to construct a geometric solution (e.g.,
by Newton iterations) consistent with prescribed gradients 49(“) and

«)
masses Pﬂ: :

The information from the Jacobian matrix .:ylg may also be applied in

solving the element averaged equations of motion implicitly, but in this
N

case we rewrite (3.17) in terms of the modified moments M

d ("(—n )y A_ vy (<) A : %>
E M° é )' n (M° 6 )+ é“ ':1“ ) (3.17a)
where
% —_— =
g e e . (3.29)

The simplest and most symmetric way to solve (3.17a) implicitly is, first,

to construct a vector of residuals 'ﬁ{

22
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and, for timestep &t

B («) ()
n? - MC MR Mc
O 465t ++ot
A («) ocay
TIQ(“’ 3 (I I Y() M A i é\ : H‘Hi'
a MSHETR R s s (g o Lyt P {4& U
e Gl i Ctast 3 S
Z
T o
L i A
7
The residuals L~ are sensitive to infinitesimal variations of the

, N\
vectors P1 - S in a way that may be expressed symbolically:

() () i u\j“) 2 G0
S]R |KHM' os %t s g‘\juae

~ +48%

0 A (x) ’\?O’(\
o + 08 © T l : S
P - e - J (2:31)
The (sparse) coefficients of the matrices ”< s UV ,lrﬂ z "Q can be
immediately obtained from (3.30). Taking into account the sensitivity of
N
Pq( to changes in Suﬂ
matrix of blocks ﬂ( , and similarly for ﬁ_ , M " F(

S)k (IKu& U ex) Stise (":[*:’Lg’:.ly’c.)“ggé s el

Thus in the conventional forward integration the vector of residuals 72

b e

Hb(

at each time level, treating u( as a block diagonal

can be made to vanish by a Newton iteration involving the matrix ( #(

The equation (3.32) also informs us of the sensitivity of the solution
to variations in the values of the previous time level, since, conditional

on the vanishing of SﬂQ , we have symbolically the sensitivity matrix:
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Thus, having obtained and stored a time dependent solution and the sequence
of Jacobian coefficients :]L , it is quite straight-forward to conduct
linear sensitivity studies about this solution, .f‘o/(' example, the effect of
an initial infinitesimal perturbation 8§o of.. S <At t=0 implies a
change at a later time given by chaining the matrices of (3.33):

A A A
¢ LU s PO B
v S 97 3% ¢ g (3.34)
St © 325 2o
With evaluations proceeding from right to left in order to avoid
matrix-matrix multiplies. Alternatively, using the same matrices (or
rather, their transposes), we may investigate the adjoint problem in order

A

to find to which variables S, is a particular linear function of the

o e
variations S¢ sensitive:

?ﬂ;(?ﬁ;b)i”(g;-& >(_9_s¢ o

~ N
A ~ / . ( . 5)
98 193 dS¢-25e 0S¢se | 95 ot
When ('Mt + J]&)Mt) are invertible at each £ (note that

singularities due to the freedom to vary the mean geopotential are
tr'ivially> removed) we may also integrate the perturbation equations back in
time. All such linear operations avoid the need to reconstruct the
geometry of the finite elements which for large problems is the dominant
part of the computations. However, they do require storage of ‘the basic

solution and of the principal Jacobian matrix :]T at each time.

By an extension of the differential (3.31) to include variations of é:
and jf consequent upon revisions in the evolution of the large scale

component of the solution it is possible to investigate directly the effect
that the large scale deformation has on the small scale periodic
perturbation, again without the laborious recalculation of the geometry of
the finite elements being necessary. it is possible to envisage a further
range of linear sensitivity studies that could be carried out with the
finite element model if diabatic and viscous effects are incorporated into

the system in some way that leaves the elements 'flat' in (S‘, g)-space.
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D Governing equations in b-coordinates

We complete this section with a brief discussion of finite difference
methods expressed in coordinates regular in the space of the variable k
defined by (3.19). The motivation for this choice is that fronts and
inversions will be better resolved than in g -space while the simple unit
periodicity in the two orthogonal horizontal directions is preserved.
However, it is probably not feasible to carry out extended integrations in
E—coordinates unless the large-scale motion is not baroclinic, otherwise it
is difficult to guess beforehand the range of the third coordinate b;
needed to accommodate the whole evolution of the solution (as large-scale
available potential energy is released in the course of an integration the
range of potential temperature, and hence of L; , in the solution at a
given location [ L,, b.] will tend to increase). When the large scale flow
is horizontally stratified, then Lg is proportional to potential
temperature and consequently adiabatic motion in é - space is exactly

horizontal. This motion may be expressed as a 'velocity', yL , defined

by
u, = Db
Di : (3.36)
Note that R
D(Q, b)- 4Rk 4Qou= DA
B s : Pt (3.37)

From (3. 9) and (3.i9)

(21' §34'+ é; )- E + §§¢ ‘UL = :1- é;a.

10—
o
20N

$:
Q

~ (3.38)

[

Bd'ul. = Ed'(g—é) . (3.39)

~ g =~

At this stage we invoke the dual potential of (2.4) which, in terms ofdand
A variables is

a5




R=g-A-P

with d given by the gradient in f§ = Space of Rs

(3.41)
Hence
\ /
U = gi,-V&R
7 253 % (3.42)
where o
™ -
=~ =t (Dt G | ¢
EL:Qa.Ed.EE‘)G = \) E/
A x> = 7 Dd‘ /::1 7 (3-”3)
and the stream function,
F?/ = T;i"'ﬁg
SE B
k= ‘zg@«'if (3.44)

implies non-divergent flow in P‘-space. Note that R' is the strictly

periodic part of R.

The conservation of mass and potential vorticity translates to

b-space as the conservation of

i j>®f (QL)

(3.45)

where CQL is the Hessian of 1;1 :
r
T
Q=M eR (3.46)

Note that from the definition of _/OL 2
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hence the Lagrangian conservation of log f!, expressed in terms of E

gives,

&gy

Eien ) /f(@ 18.)41 (Bp%e, ¥ R o

T e 94 2
in which the left term is written in suffix notation to emphasize that this
is a linear elliptic equation, with varying coefficients, f‘or'ali/ . Notice
that all the terms in this equation are strictly periodic. Thae top and
bottom boundary conditions required to completed the system come from the
vanishing of the material derivative of 93 which, since the large
scale flow is assumed non-baroclinic, can be expressed

JQ“’ST ds = D (Qﬂ 6l> \D %E)

E %
- %(__327 ng('b v9)?> E‘L v E (3.49)

But if the boundaries where this equation applies are d; = L;=O and

e =iy = , the condition reduces to

2 (3R 2 '
( )+ s )-EL'VLR =0 (3.50)

9L3 '}t BLg %

Note that although many interesting problems would appear to be excluded by
the assumption that bg , and hence 6 , 1s constant on the top and
bottom boundaries (for example, Cullen and Purser (1984) show that
frontogenesis can not occur under such conditions) more general effective
boundary conditions that allow undulations in the boundary of the region of
&— space containing values of }3& of significant magnitude can still
be admitted by 'padding' the zone between this effective boundary and the
true boundary (e.g., b, =0 ) with values of P4 that are very small

but positive. In ¢ -space and hence in physical space this padded region
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maps to a very shallow layer of extremely high potential vorticity confined
to hug the boundary or, in appropriate circumstances, to fill narrow
frontal zones. Being of negligible mass it is not expected to alter the
physical solution significantly. A schematic illustration of this method

is provided in Figure 2.
4, SUMMARY AND DISCUSSION

By assuming semi-geostrophic solutions in the geopotential that, apart
from a large scale quadratic variation, are periodic in two horizontal
directions it has been shown that this large-scale component itself remains
an exact solution of the SGE. The form of the large scale solution is
determined at each time by the matrices representing the Hessian of the
geopotential and the deformation for the velocity. It is shown that the
evolution of these matrices in the general case is constrained in several
ways but that three free 'steering' parameters remain and must be
prescribed at each time in order to specify a unique and consistent
evolution. These parameters may be taken to be the two components of
horizontal pure deformation and the horizontal divergence at the large
scale; the remaining large-scale wind variations, i.e., the vorticity and
the vertical shear are then automatically constrained by the conservation
of potential vorticity and of potential temperature for semigeostrophically

balanced motion.

Equations are derived for the strictly periodic perturbations both for
finite difference and for finite element modelling. A special class of the
finite difference equations gives rise to a two—-dimensional periodic system
generalizing those discussed by Hoskins and Bretherton (1972). It is found
that, when the large-scale component of the flow is not baroclinic the
system lends itself to numerical treatment in the 'dual' lattice
coordinates in which fronts and inversions (usually small-scale in
cross—section) automatically become well resolved by a regular grid and
consequently these coordinates would be attractive for investigating

idealized frontal dynamics.
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The periodic formulations conveniently avoid the difficult task of
removing the spurious Kelvin edge waves that invariably contaminate
semigeostrophic solutions constructed within domains bounded laterally by
rigid walls. 1In the context of improving numerical techniques for
forecasting, the semigeostrophic models provide an ideal framework for
checking the robustness and accuracy of finite difference methods that in
real-life forecasting applications must contend with sharp transitions in
velocity or potential temperature. These singular 'frontal' features are
mathematically well behaved in semigeostrophic dynamics so the correct
solution to any problem can presumably be ascertained in practice by
solving it at a sufficient numerical resolution, while the corresponding
structures in a primitive equation formulation are liable to be dependent
on the particular techniques employed to remove grid-scale energy (it is
doubtful whether the inviscid primitive equations constitute a well posed

system mathematically).

At a theoretical level, the periodic semigeostrophic models might be
used to elucidate the extent to which large-scale deformation, convergence
or divergence, influence the intensification or decay of developed fronts.
Of particular interest would be an examination of the energetics of the
mature stages of baroclinic wave development, including the occluding
process, as this is something that is suspected of being treated
inaccurately by conventional numerical formulations. Note that the
periodic semigeostrophic formulation might be applied to investigating
baroclinic waves developing on an existing sharp front. Such an approach
would be a significant departure from the usual way of investigating
baroclinic waves numerically, which, following the pioneering work of
Charney (1947) and Eady (1949) has typically been concerned only with modes
evolving on a smooth baroclinic current rather than on a sloping thermal
discontinuity. However, the former approach is much closer in spirit to
the classical conceptual models of the Bergen school (Bjerknes, 1919;
Bjerknes and Solberg, 1922). Finally, it would be illuminating to
determine the extent to which a random, but smooth, initial state is able
to convert its available potential energy to small-scale kinetic energy,
and to what degree the increasing stratification is associated with the

formation of surface fronts. It is speculated that the potentially coldest
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parcels of fluid will tend to spread out over an ever increasing proportion
of the ground area, undercutting neighbouring warmer fluid by creating a
succession of shallow fronts. Note that the constraint of potential
enstrophy conservation, which limits the cascade of energy to small scales
in two-dimensional or quasi-geostrophic turbulence, does not apply near the
lower boundary of a semi~geostrophic model as potential vorticity (and

hence enstrophy) is freely created or destroyed by frontal adjustments.
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FIGURE CAPTIONS

Figure 1. Schematic cross—-section through a finite-element solution
A
showing the relationships among So, So, b.

Figure 2. Illustrations to show the effect of 'padding' the margins of
the support of p. (a) shows the solution with fronts
corresponding to unpadded data (b). (c) shows the solution,
with fronts smoothed out slightly, corresponding to the data.
(d) modified by padding the shaded regions with small values of
p.
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