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MET O 11 TECHNICAL NOTE NO. 182

Geometric solutions to the Lagrangian Semi-Geostrophic Equations.

Summary

An algorithm is described which produces a solution to the two dimensional
semi-geostrophic equations using piecewise constant data. Subject to the
limitations of such data, the solution is exact and can be used as a

reference for comparison with numerical models.




This paper describes an algorithm to solve, for piecewise constant data,
the two dimensional semi—geostrophic equations in conservation form, in the

- presence of the deformation field.

u = -o0x, v=ay

The equations are as derived by Hoskins and Bretherton (1972);

DM + oM = 0

Dt

D@ = O

Dt

DA + oA = 0

Dt

where D = 2 + ud + wo , M=v + fx,
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0 is the potential temperature, and A is the area of a fluid element in the

(x, z) plane.

The equations are solved for a pressure variable ¢, such that

, = ¢g + l/zfxz



where ¢g is the geopotential. Thus the hydrostatic equation and the

equation for cross front geostrophic balance give

2¢ = ©
0z
°0p = M

]

In Purser and Cullen (1983), (referred to hereafter as PC), the symetric,
inertial and static stability of the solution is shown to be analagous to
the convexity of the function ¢ up until the formation of a discontinuity.
However for a solution involving a discontinuity, the analytic stability
criterion which involves derivatives cannot be defined. Therefore
stability is redefined purely in terms of the convexity of the solution
surface of ¢. This allows the calculation to be taken beyond the formation

of the front.

Thus the problem is reduced to a geometric construction of a convex

surface, ¢ (x,z), as follows.

The initial data consists of a bounded region Q, in (X, z) space over which

the problem is considered;

2 = {(x,2)|Xmin € X € Xmax, Zmin € 2 < Zmax)

N is partitioned into a given number, N, of fluid elements Qi, for each of
which the potential momentum Mj, the potential temperture i and Aj, the

area of the element are prescribed.




Mj = 92 and 6j rfbg for (x,z) € 0j

0 x dz

we have

¢ = x.Mj 4+ z.@i + Si for (x,2) € Qjf

where Sj is a constant of integration.
Define

$i = x.Mj + z.0; + Si for all (x,z) ¢ A
Given the initial data and some first guess,
{sjli=1,..,N}

a shell ¢* can be constructed such that

Q'(x,Z) - max {§i (x,2)) for (x,2) ¢ 0

i=1,..,N

For each i, this defines an area

Ai® -~ IIﬂi axdz where 23’ = {(x,2)19'(x,2z) = §(x,2))}



We now seek to obtain the correct areas Aj, by modifying the Sj. If there
is some i such that Aj* # Aj, then adjust {Sjil|i=1,..,N} and rederive
$'(x,z) until Aj' = Aj for all i=1,...,N.

It is known that there is a unique way of achieving this (PC), therefore;
¢'(x,z) = x.Mj + 2.8 + Sji ¢<=> (x,2) €ni

Then let §(x,z) = $'(x,z) and the solution is obtained.

In order to describe the algorithm, the following definitions are made:
The shell is divided into N segments;

Fi = ((x,2,4'(x,2))19'(x,2) = §i(X,2)}

A fluid element Qj is the projection of Fj onto the plane 4——0;

Qi = {(x,2,0)|(X,2,$'(x,2)) €Fi)

(see Pigure 1).

Such points on ¢ = o will henceforth be described by the coordinates (x,z)

which should be read as (x,2,0).




The intersection between two elements defines an edge;

Eij = 0 N nj for distinct i,5
and the intersection of three elements defines a vertex
Vijk = @i \ @5 N 0 for distinct i,j,k.

Partition the boundary of Q, Ofn into the following

91 = {(X,2)|X = Xmin, Zmin € Z € Zmax)
92 = {(x,2)1Z2 = Zmin, Xmin € X < Xmax)
93 = {(x,2)IX = Xmin, Zmin < 2z < Zmax)
94 = {(X,2)|2 = Zmax, Xmin € X € Xmax)

(see Figure 2).

2. GEOMETRIC CONSTRUCTION

This section describes how the convex shell is constructed, given values
{sili=1,..,N}). The strategy followed is to consider recursively, a set of

elements By, moving outwards until the whole shell is covered. Having



previously obtained By ,Bpyq comprises all adjacent elements to one or more
members of By which are not themselves members and whose areas have not

previously been calculated.

Let [a be a cumulative total of the areas calculated. Then when

o

the construction is complete.

In order to initialise the recursive procedure, an arbitrary point (xo, Z20)

is chosen on dfl. The element to which this point belongs is found by

(X0, Zo) € B <> $i(XosZ0) = max {$j (Xo,20))

If Qj is not unique, then another (X, Zo) is chosen until the point

belongs uniquely to some element.

This element then becomes the sole member of By, Bj comprises the
neighbours of Qj, all of which are isolated in the calculation of f25. The

recursion then proceeds as previously stated. See diagram 1.



CONSTRUCTING AN ELEMENT

To calculate the area of an element, its geometric location must first be
described. The members of flj are uniquely defined by the members of the

finite set of vertices of that element:
Ci = {(xij,Zij)I3=1,...,Ni)
o (Vigkl3.k=1, . .N;3#k; 3.k, #1) U (EijN O8lizi;3=1,..,N)

In order to construct Cj, one of its members, (x3,z)1) say, must be known.
Some edge of i incident upon (x3,21), whether an edge with an adjacent
segment, or part of D N, must also be specified. 1In the general case, if
NjeBy, both items of data can be determined from information derived in the
calculation of elements which are now members of By-3. In the initial case
when r = 0, (x3,21) is determined by the' intersection of some edge Ejj with

the boundary on which (xo,2Zo) lies.

Given (x),z1) and some specified side of fj, this side is followed until
the next vertex (x2,z2) is reached, and the next side to be followed
becomes the edge or boundary whose intersection with the first side defines
(x2,22). This procedure is followed until some (Xm.2Zm) = (X1.21) when the

calculation of Cj is complete. See diagram 2.

Having found (Xm,2Zm), the side of Qj specified, 2 say, is either part of

the boundary or an edge Ejj for some j € Br-1.



Consider the case when £ = Ejj (see Figure 3).

we must first find the point (x',y')«sarb which, should no intersection '
with an edge exist, would be the next vertex. The two points (xXp',zn')

n=1,2, where Ejj intersects oa are located. If the previous side, 2 °,

was Ba, some a, then (xng,2m) will be once of these points and hence (x',z')

is trivially determined.

If #' was Ejkx, for some k # i, j; then (x',2') = (Xpn',2n') satisfying the

inequalily

¢i(%n’.2zn") > $x(xn'.2n")

However if (xm,zm) is the initial point considered on the segment, then k
is not known. Such a k can be found by comparing (Xm,zm) and Vijk';:

KEl,i. My x5, 4. -

The next step is Lo consider the intersections with Ejj of all lines of the

form Ejh for h=1,..,N; h#i,j.

First isolatc thosc edges (Ejh In=1,..,T} some T, such that Vijh lies
between (xp,4p) and (x',2'), or equals (x',z'). If there exists an h' such
that

1(Xm,2m) = Vijhl<|(Xm,2m) (X,2)|

for all (x,z)c[Vijhnlnvl,..,T; hph' JU{(x',2"'))
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then (X m¢1, zZmel) = Vijh' and the next edge to consider is Ejp’'. If

I(Xm,2 m) = Vijh,|>(Xm.2m) — (x',z2')| for all hp, n=1,..,T then

(Xmt+l, Z mtl) = (X',2') and the next side of the element is the boundary

upon which (x’,z') lies.

However if (x',z') is the intersection of two boundaries, then comparing ﬁi

and ¢j at some point of known displacement along one of the boundaries will

determine that which should be followed.

The other possible outcome is that of a multiple vertex. That is when

Vijk=Vij1 for distinct i,3,k,1; or Vijk = 9aNob.

In this case the basic strategy is to compare the gradients (B z/ Dx) of
the edges and boundaries considered. The problem can then be split into
three cases. The case where the side of the element being followed is a
boundary is relatively simple. If however the side is some Ejj, then it
first determined in which direction the next side is to be followed i.e.
the element being constructed in a clockwise or an anticlockwise sense.

This is done by rotating (xpm,z;p) about (x',z') to the point (xy,z2y) say,
and thepy comparing the values of $j(xy,zr) and $j(xr,2zr). The cyclic

orders of the gradients are then compared to obtain the required edge or

boundary.

is

The above describes the construction of a side, 2, of Qj when that side is

Ejj for some j. If 2= da for some a=1l,..,4 then the method is similar to

that above.
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Initially an approximation to the data is made which allows an analytic

solution to be obtained. This is used to initialise the set

K = {8jli=1,..,N)

Having constructed the shell Q', say the areas of the fluid elements are;
{(ai*|i=1,..,N)

If Aj‘'=A;j for all i=1,..,N, then the solution has been obtained. If there

is some i such that Aj'#Aj, then K must be adjusted by some means.

The problem is non-linear as the rate of change of area of an-element with
8, b\q'*/bS;_ changes as its neighbours change. Therefore a simple matrix

inversion will not suffice.
The method used is a two step iteration. Find j such that

N
135 -A5121Ai"-Ajl for all i=1,..,N. If Aj'=0 orzAi, then Sj is
=
successively incremented or decremented respectively until this is not the

case.

12



Then, in order to obtain a linearized approximation to the rate of change
of area with s, 85 is incremented by C, a multiple of (Aj-Aj°'). The ncw

shell is then constructed. The approximation is then made;

aAi = Aj'm - AJ.Old for all i=1,..,N

ds; c

and an increment is calculated for each Sj;

Increment = A  Aj - Ai' pew

i/ dsi
for some constant A.
:' The geometry is then calculated and the interation is repeated until
|1Aj'-Aj| < € for all j=1,..,N for some predefined e.
4. RESULTS
The method was applied to a model of a front using an initial distribution

of © following an arctangent curve with respect to X, where the x axis

bisects 1. M is considered linear in X.



We have

® = 300 + tan—1lx (1)

M = 105.f.x% (2) .

for x € [-5,5]

The data was converted to piecewisc constant in a manner such ithal element

boundaries represented isotherms al intervals of 0.1. From (1)

x = Lan (6-300) (3)

therefore for any element, Qj, a value of X can be ascribed Lo each of its

bounding isothcerms, say xj,, XR. -

Then @ is calculated by averging © over i,

Py =0 R

6 dx

X X1,
X3,

This can be solved analytically using (1).

14
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Thus from (2) and (3), a value of M can be calculated for the element

Mj = 105.f.tan(©i-300)

The area of the element is taken as

Aj = (XpX1,).H

where H is the height of Q.

See Figure 4.

Subsequently at time t, Aj and Mj are multiplied by exp(-ot) where a is the

deformation constant of the field. 0 is made to shrink at the same rate by

moving the left and right boundaries inwards.

Figures 5, 6, 7 show the initial distribution of the fluid elements and

then progressive deformation of the field causing the formation of two

distinct discontinuities within the fluid.

These can be compared with results from a semi—geostrophic finite

difference model (see Cullen and Purser 1984).
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CONSTRUCTION OF Q

Find some fj and let Bo=(fji)

Construct members of Bg, thus

defining Byj. Let r=o.

No.

Let r=r+l

N

4

Construct members of By

N

4

Let Bryy = {Ri adjacent to members of By)

N

y

Is Q covered by elements constructed so far?

*

y

Construction of Q complete.
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CONSTRUCTION OF Qy€By

Starting from (x3,z3) follow

Ejj where jeBr-1

v
Find closest intersection

(*Xm, zm)

v
Is (Xm,2Zm)=(x1,21)?

Yes —3 Construction of {1 complete

N
No
Vv
Is (xm Zm) = Eij\Eik? OF (Xm 2m) = Eijndg?
Some k Some 4
wL .\y
Follow edge Ejx Follow boundary Bl

i8
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FIGURE 3 '
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Fauee S Time = 20,000 Secs.



l(lcfu.?e T Time = S-O)OOO SEcs .
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