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it Introduction

This technical note describes some results from two two-dimensional
atmospheric models used for research purposes in the Mesoscale Dynamics
group in Met O 11. They are a semi-geostrophic (S.G.) model and a primi-
tive equation (P.E.) model, with sigma as the vertical coordinate, and are

extensions of the height-coordinate models mentioned in [1].

The S.G. model incorporates a different iteration procedure to the one
described in [1]. This is because it was found in the frontal deformation
case that the iteration used to calculate the cross-front ageostrophic flow
was not converging well with the forward-backward scheme in use then. This
was revealed by oscillations with a period of about 12 hours. The scheme
was therefore changed to be backward-implicit, as in [2], solving for the
ageostrophic stream-function by relaxation. This improved the convergence.

The scheme and the full S.G. model are described in section 2.

The P.E. model (advective formulation) is described in section 3. A version
of the model was written in flux form to achieve better conservation
properties in the model [3], but in the presence of steep bottom topography
as in [4] it became unstable after a few hours, despite increasing the
horizontal diffusion coefficient and including vertical diffusion. This
may be due to non-linear instabilities generated by having a small
grid-length (0 (10 km)). The formulation was essentially the same as in
use in the Met O 20 GCM [5]. The form of the horizontal diffusion in the
advective formulation presented here was chosen to maintain conservation of

mass and momentum.



Section Y4 describes a formulation of vertical diffusion, dependent on the

local Richardson number, which was used in both models.

The results from two different cases are then presented in section 5, with
a comparison of the models. The first case is similar to the frontal
deformation case looked at in [1], but including a representation of the
tropopause. The second case includes bottom topography in the form of a

ridge and a realistic vertical profile of 6.

Eis The semi-geostrophic model

The two-dimensional semi-geostrophic problem solved here can be written

(following [1], [6] and [7]) as;-
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Included in the above equations is a horizontal geostrophically balanced
deformation field of the form u = - ax, v = ay; Uag 1s the deviation from u
= -~ax. This deformation field was used to produce frontogenesis in the
first set of experiments to be described. The equations given are for the
plane y = 0 and all variables used are independent of y. The only y
variation is that of the basic state. In the second set of experiments a
was set to zero. The equations also include horizontal diffusion of vg and
8 (with coefficient K), in a form which ensures mass and momentum

conservation.
The lateral boundary conditions are
Ugg = 0 at x = re”ot L, (6)

where 2L is the initial length of the model domain. The vertical boundary

conditions are
§ =0at o =0, 1 (7)

To solve the system of equations (1) to (7) they are split into an
advection step and an adjustment step, similar to the procedure in [1].
It is convenient to calculate the vertical mean ageostrophic wind and
surface pressure adjustment separately from the remainder of the

ageostrophic wind which maintains thermal wind balance, by writing

Yag = u *+ u¥*, where u= u(x). The continuity equation (4) then naturally

splits into:

Py , 3 (Pxu)_ . 3Py _
3t ax o 2 (8)




3 (Pxu®) + 3 (Pys™) =0
X 30

and

(9)

For the adjustment step, which is carried out first, the vertically varying

ageostrophic component of the flow is dealt with by solving auxiliary

equations which calculate g* iteratively by advancing it a pseudo-time T:
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Px does not vary during this iteration.
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With a physical time-step of At, it is necessary to integrate (10) for a

pseudo time period At of several times At in order to maintain sufficient

accuracy in g*. g* can be described by a stream-function t defined by
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stream-function into (10), we multiply equation (10a) by Px and take a

backward time difference to obtain
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Now differentiating with respect to o and using 5, 10(b) and 10(c) to give

the time derivatives of Vg and 6 we can extract a Poisson equation with

variable coefficients:

2 2
AN, 5 g TRAT | (12)
9X 90
where A = -(A1)2 R(-E”**)Ko'(_1 (291
Py 90
B =1+ f2(a1)2

2
and €= (30T + at = [Px(E2 + REDS oK 3(nPx) - fvg)]".
o 9x

The remaining terms of the form-%;&%;..) have been omitted in order to
make equation (12) strongly elliptic; this leads to slow but safe
convergence of the iteration. 1Inclusion of the other terms could lead to

failure of the iteration. Equation (12) is discretised to the form
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which is then solved by an inner iteration for ¥i,5 (5 v(iAx, jAo)) using a

successive over-relaxation technique:

r+l_ 1 r 2 r+1
¥y 0.66[A(w1_1'J+w1+1'3/Ax +B(w1’J_

24 4 A B = r
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(13)
where r is the iteration index. For the runs to be described later we
iterated 40 times, which seemed to produce reasonably good convergence. The
values of Y are then used in (11) to obtain u* and 6*, which are in turn
used to advect M (= vg+fx, the absolute momentum) and 6 using centred space
differencing as in the advection step below (15). A pseudo-time integra-

tion in 1 for 10 time steps of 2000s was used for each physical timestep of
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200s to iterate Vg and 6 towards a balanced state. The physical values of

u* and 6* are calculated by integrating over the pseudo-time iteration and

scaling by the ratio At/At.

To ensure convergence of the iterative adjustment step, the vertical
gradient of 6 occurring in equation (12) must not be allowed to become too
small. If it does, it is replaced by that of a reference profile. As is
usual in semi- implicit schemes for operational forecast models, a

reference 6-profile is used such that the temperature is constant with

height.

The advection step (including the horizontal diffusion) then consists of

solving oM = M % Eug_(P*QM)

3
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98 _ | (4 —ax)28 , K 3 Px36
ot (u “X)ax 4 Py ax( ax)

and equation (8). These are solved numerically (for the (n+1)'D time-step)

by discretising to the form
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where (...)* denotes the value of (...) after the iterative adjustment. u has

to be calculated implicitly using the vertical mean of the geostrophic relation

(1), the momentum equation (2) and the continuity equation (4). Because of the

nonlinearity of this system, u is estimated from a linearised system in which Vg

only depends on u through the Coriolis term. We can thus obtain the following

equations:
n+1 = * +1
[(vg)" - (vg ) Vot + £3° =0 (16a)
3¢ , RT 3Py _ . - n+1 p
(3% * Py 3x ~ Vel =0 (16b)
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Substituting for Vg and Px"*1, and using the linearised versions of (2) and

(4), we obtain
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Equation (17a) can then be discretised to the following form and solved for

u by iterating to convergence:
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where r is the iteration index. The value of u obtained from (17b) is then

used in the advection step (15) to update M, 6 and Py,

Care has to be taken in choosing initial data for the semi-geostrophic
model so that the potential vorticity (q) is positive and values of 6
increase upwards along lines of constant M; otherwise the implicit equation
for the stream function becomes hyperbolic in some regions and the solution
would be unstable to slantwise convection. To ensure that the 6-profile
remains statically stable a simple convective adjustment is included in the
model (implemented prior to each adjustment step). This is applied to each
column and instantly mixes any statically unstable layers to produce a
slightly stable profile while conserving 6. No adjustment to vg was found

necessary in the problems solved in this paper.

The grid used in the S.G. model and the P.E. model is shown in figure 1.
The potential temperature (6) and along-front/mountain wind (v) are stored
in the centre of each grid-box; the cross-domain wind (u) is stored on the
sides of the box, and the vertical velocity (&) is stored at the top and

bottom of each grid-box.

3. The primitive equation model

The equations for the deformation problem studied in section 2 can be

written as

a1 P(ue). B ap 3_(1nPy)_ K23 (Pxdu
ag. T auan a Rilan b Reis R Es R e, (18
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The variables are again independent of y and the deformation field has been
included such that the total cross-domain wind is u-ax (ie u here

corresponds to Usg in section 2). The boundary conditions are

u= 0at x = %+ (L- ég)
v= 0
| 06
i 0 at x = + L (23)
Pyx_
ax 0
: and § = 0at o = 0, 1.

A4

These equations are integrated forward in time using a simple centred (or

'leap-frog') scheme, and discretised to the following form:

0 s ¢ b7
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where u = & ;_1 uj,
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where the standard notation Syu = (u(x

and 0 = (u(x - éi) + ulx +'§£))/2 has

The vertical grid-spacing is uniform in

number of model levels in the vertical.

In order to prevent grid-splitting with

scheme, a time filter is applied to all

the form

n - nit
6 (1-8) e + 5

8
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(28)
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+ 55 - ulx - 55))/ax,
been used.
0, with Ao = E%T » Wwhere N is the

the leap-frog time integration

the dependent variables. It is of

(30)

where on' is 6 at timestep n before being filtered. The value of B was

kept at 0.05 for the results shown here.

Unlike the S.G. model (equation (6)), exact lateral boundary conditions

giving a well-posed problem do not exist for the P.E. model. Therefore a

region of high horizontal diffusion is included near the boundaries,

increasing linearly towards the boundaries, to produce a shear zone and

allow the interior solution to decouple from that at the boundaries.

Similarly, a zone of increased diffusion was applied near the upper

boundary in some experiments, to prevent spurious reflections of wave

energy.
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The same simple convective adjustment as used in the S.G. model is included

in the P.E. model. It is applied every 10 timesteps, at the same times as

in the S.G. model.

y, Vertical diffusion

Vertical diffusion is applied (in the 'ridge' case) in the same form to
both the S.G. and P.E. models, at the end of each main timestep. The
scheme is based on that used in the UK operational model's boundary layer

scheme [8]. It takes the form

a6 9 06
5t = 3z (Ko 33) an

where Ke(z) is the diffusion coefficient given by

dd
Kg = 2 fg(Rj) Iéil ;

96/
Ry = & 223z, s the local Richardson number,
8o |3u/3z]

3
and fg(Ry) = ( (1-16 By) ¥ , Ry $ O (unstable)
(

(exp(-3Ri), Ry > 0 (stable).

Similar equations are used for v and u, except that fyru(Ry) = (1-16 Ri)v2
for Ri S 0. This formulation assumes a constant mixing length of 100 m
throughout the model, and the dependence on Ri (f(Rj)) has been chosen to
remove areas where Ri < 1/u more effectively than with the operational

boundary layer scheme.
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% Results

(a) Deformation front case

The initial data for this case is similar to that used in the final case
shown in [1], but altered to be somewhat more realistic. It is shown in
Figures 2 and 3; and the results up to 12 hours into the integrations, with
a deformation rate (a) of 2 x 1075 s~1, are shown in Figures 4 to 11. All
the figures show the lowest 12 km of the model domain and the fields have
been interpolated from the model sigma levels onto height as the vertical
coordinate. Figures 4 to 7 show the effect of the inward-moving boundaries
in the S.G. model. There were 20 levels in the models for this case, and

200 grid points across the domain of length 2000 km.

Generally, there seem to be less differences at the front between the two
models here than is seen in the results shown in [1]. Comparing the fields

shown in Figures 4 to 7 with those in Figures 8 to 11, the overall frontal

e

slope is slightly greater in the S.G. model and generally the front is a
more distinct feature in this model. This better definition is probably
due to the S.G. model requiring less horizontal diffusion than the P.E.
model to prevent the fields becoming too rough and the model 'blowing-up'
(K = 500 m2 s~ in the S.G. model compared with K = 6250 m s~! in the P.E.
model). There is a little noise in the S.G. model's u and w fields

(Figures 6 and 7) on the warm side of the front.

13
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The largest difference at 12 hours is to the right (the warm side) of the

front where there is a bulge in the isentropes of the P.E. model, associ-
ated with a minimum and maximum in the vertical velocity field (Fig 11
(b)). This feature was noticeable earlier at 6 hours (Fig 11 (a)) as a
maximum of vertical velocity extending vertically throughout the model's
troposphere, superimposed on the larger scale cross-frontal circulation
with its sloping up- and down-drafts. There is little sign of this
vertically-orientated region of upward motion in the results from the S.G.
model (Fig. 7). Instead, the surface front is stronger, with the isentropes
packed closely together at the surface (Fig. 4) and with an associated
stronger shear zone (Fig. 5). Also, there is a region of strong upward
motion in the warm air centred much closer to the surface, and the area of
descent on the cold side of the front is centred higher up near to the

model's tropopause.

(b) Mountain ridge case

Figure 12 shows the initial data used in this case: simply a stably
stratified potential temperature (6) field including a representation of
the stratosphere, which is horizontally uniform, with an infinitely long
mountain ridge in the centre-right of the domain. This 6 field has been
interpolated from constant height levels onto the model sigma-levels using
a cubic spline. For plotting the cross-sections the fields are
interpolated back to height levels. The along-mountain wind (v) was set to
zero, but a cross-mountain wind of 10 ms~! was simulated by moving the
mountain to the left (by updating ¢x in the models). The mountain was

started-off moving very slowly and gradually increased in speed to 10 ms™ !

14



after 1/2 hour, to reduce the formation of transient gravity waves, which

would be excited by an impulsive start. In this case there were 40 levels

in the models, and 100 grid-points across the 2000 km length of the domain.

The mountain is of simple cosine shape, of height 1.3 km and half-wdith

3000 km. So, the Rossby number for this case (RO = U/fL) is 1/3, based on
the half-width of the mountain. The horizontal diffusion coefficients for
this case were K = 1000 m?s~'! in the S.G. model and K = 20000 m?s~! in the

P.E. model.

The fields after 24 hours of integration are shown in Figures 13 to 22.
Common to both models, one can see a "start vortex" produced where the
mountain was positioned initially, consisting of a dip in the isentropes
(Figs. 13 and 18) and a cyclonic vortex with its maximum amplitude at the
surface (Figs. 14 and 19). This is caused by the expansion of the column
of atmosphere above the mountain initially, and the conservation of
absolute vorticity. Compression of the air flowing over the mountain has

similarly led to a positive vortex being formed above the mountain.

More interesting is the S.G. model's representation of the flow over the
mountain. The lowest isentropes have been compressed slightly above the
mountain with an associated strong cross-mountain flow (maximum ~ 22 ms"1)
very close to the surface at the mountain peak (Fig. 15). This
acceleration over the mountain peak has led to upslope motion on the
windward and downslope motion on the leeward slopes being confined to low
levels over the mountain, with little or no disturbance away from the

mountain (Fig. 16).
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This result contrasts greatly with the results from the P.E. model

(Figs. 18 to 22), where there is a great amount of wave activity above and
downstream of the mountain. The cross-mountain flow (Figs. 20 and 21) near
the surface exhibits a strong downslope wind with a maximum speed of

23 m s~1, which decreases to 2 m s approximately 2 km above and slightly
further downstream, and these oscillations in u continue upwards through
the model. From the potential temperature field (Fig. 18) one can see that
the phase lines of these large amplitude waves (up to about 3 km) tilt
upstream with height, characteristic of upward-propagating gravity waves.
Where these waves reach the model's tropopause it appears that one has
started to overturn andvformed a 'jump-like' feature with a vertically
orientated isentrope. This jump is produced by the action of the
convective adjustment on the breaking wave, and also by the vertical
diffusion, which tries to remove the instability associated with the very
low Richardson numbers in this area (Fig. 22). It is associated with
strong shear in the horizontal wind field, and also in the vertical
velocity field (Fig. 21), with a minimum of -15 cm s~! and a nearby maximum
of 7 cm s~! actually in the jump. The vertical velocity field near the
mountain shows much more assymmetry than the S.G. model's, associated with
the strong downslope wind (minimum w = - 24 cm s'1), and it also shows up
the waves downstream of the mountain. The along-mountain wind (v)
similarly shows up these waves (Fig. 19), superimposed on the two main

vortices seen in the results from the S.G. model (Fig. 14).
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6 Discussion

The features discussed in section 5(a) concerning the S.G. model,
especially the sharper surface front and low level vertical velocity
maximum, seem to agree quite well with detailed analyses of cold fronts
made by both Ogura and Portis [9] and Sanders [10]. The seemingly spurious
bump in the isentropes and associated vertical velocity maximum and minimum

in the P.E. model may be associated with internal gravity waves, whose

origin is in the geostrophic adjustment process as the front collapses. 1
Lee and Peltier [11] suggest that such waves can initiate squall line

development ahead of a cold front. In their analysis a maximum surface

pressure fluctuation of 5 mb was computed, and here we observe a pressure

fluctuation in the P.E. model of 2.0 mb with a period of about 2 hours.

Thus the P.E. model may be correct in producing these waves here, but their

horizontal scale seems too large. The S.G. model, which cannot support

these gravity waves, seems to produce a better large scale solution with

more realistic fields and a tighter front.

v

The results from the P.E. model for the mountain case described in section
5(b) show some similarity to another case (shown in [4]) run from initial
data taken from observations over the Alps with somewhat higher static
stability and a higher mountain (2 km). In that case a very strong
downslope wind was produced, together with an associated large hydraulic
Jjump just downstream of the mountain. Here, with much lower static
stability in the troposphere, there still seems to be a tendency to form a

Jjump-type feature (similar to that formed near the tropopause) just

17



downstream of the mountain, where the isentropes are almost vertical and

there is a large area with R; < 0.6 (Fig. 22), although Rj has not fallen
to the critical value of 0.25.
m

The time-mean of the pressure drag over the mountain (%
mtn

Load e B

%g* Ahj)

s A
where the length scale Lmtn is taken as the total width of the mountain and
the sum is over the Np.. grid-lengths across the mountain), calculated for
the P.E. model, is 0.75 N m™2, which is similar to values that have been
observed over mountain ranges but with much stronger flows [12]. This
value for the drag oscillates greatly in time between 0.02 and 1.5 N m~2
with a period of about 3 hours, associated with an oscillation in the
surface pressure of about 5 mb, resembling a sloshing to and fro in the
model. This is related to the large amount of wave activity in the P.E.
model (produced despite the inclusion of a zone of increased horizontal
diffusion near the top of the model), which is not seen in real situations
of uniform flow over a mountain ridge with similar low static stability.
There is also the tendency here, as in [4], to form waves on too large a
horizontal scale — the scale of the mountain. As in [4] the over-response
of the P.E. model here may be caused partially by the two-dimensionality of
the model and the fact that all the flow is forced to cross the mountain

rather than be deflected round it, as can happen in reality.

On the other hand, there are no gravity waves in the S.G. model and this is
shown in the time-evolution of the pressure drag in this model. After
firstly increasing steadily to a maximum value of 0.35 N m~2 after about 5
hours, associated with the higher 6 values in the start vortex moving down

the mountain side, and then decreasing approximately exponentially, it

18



tends to a constant value of 0.18 N m~2, Also, the ageostrophic
cross-mountain flow is mostly confined to the immediate vicinity of the
mountain, as predicted theoretically. Although there is a little roughness
in the otherwise uniform u-field above the mountain; and the ageostrophic
component of the along-mountain wind (shown in Fig. 17) increases upwards
from about +2 m s~! near the mountain surface to about +5 m s™1 in the
stratosphere, whereas it should be zero if the iteration was converging
exactly. 1In the case shown in [4] where the mountain was higher there was
a lot of noise generated by the iterative adjustment failing to converge,
which was seen in the cross-mountain flow above the mountain. This was
partly due to the convective adjustment and vertical diffusion being called
in the larger unstable areas in that case and producing greater imbalances
in the model, which the iteration scheme could not reduce effectively.
Changes to the order of the steps in the integration scheme had little
effect. The only difference between the model used in that case and the
one here, is that Py was not included in the stream function used in the

adjustment step (equation (12)) in [4] as it is here.

Thus, overall in the two cases presented here, the S.G. model appears to
give a more realistic large-scale solution, without the corrupting influ-
ence of the gravity waves produced in the P.E. model. Although the
additional features produced in the P.E. model have counterparts in the
real atmosphere, they seem to be exaggerated, especially the horizontal
scale and extent of the gravity waves. Some of this is undoubtably due to
the two-dimensionality of the model, but runs with the operational Fine
Mesh model in [4] showed some similar features in this three-dimensional

primitive equation model. So, from the cases shown here the S.G. model has
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certain advantages, but in the more severe case shown in [4] the iteration

did not converge adequately; and for this reason a fully implicit :S.G:

method has been formulated [13] and is now being tested.
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