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RETRIEVAL AND ASSIMILATION: SYSTEM CONSIDERATIONS

Andrew Lorenc
Meteorological Office (S)
London Road

Bracknell, RG12 2SZ
England

1 INTRODUCTION

The information content of a piece of information can only be defined with

regard to what is already known. An expression, following Shannon, for this

is given in section 3. But for practical =zpplicztions, this is not a
sufficient measure. We need also to consider the usefulness of the
information.

Data assimilation, like the retrieval of information from remote sensing,
can be considered as an inverse problem. The ecuations derived in section 3
are applicable to either problem. It is shown that the error of the forward
process, estimating the observed parameters from the model parameters, must

be considered in the inverse process, deducing model parameters fram

observations. In the infrared remote sensing wiich Is the subject of this
workshop, the forward process is the radiative transfer equation. If we
cannot calculate that accurately, radiances zre 1less useful. In data

assimilation, the forward process is a Numerical Wezther Prediction (NWF)
model (or a very similar General Circulation Mocel (GM) if the assimilatiom
is for climate studies). Since assimilation is an inverse problem, if the
model errors in prediction of a parameter are large, observations of that
parameter are less useful. Thus, by definition, the model can make
reasonably accurate predictions (if it has information from earlier

observations) for observations which are useful in the assinilation.

This reasoning has lead some NWP centres to use the forecast fields as
background information, when retrieving temperzture soundings. Satellite
radiances from the current TOVS instrument do not contain Information about
detailed vertical structdre, compared to the moczsl prediction. By usirg the

forecast as prior to fill this lack of information (rull sgpace), instead of




information from another source, information on larger vertical scales can
be extracted from the radiances without introducing 1less accurate

information on smaller scales.

The Met Office was perhaps the first to use this approach operationally;
some results are shown in section 2. Experiments at NMC (Baker 1991) and
ECMWF (Eyre personal communication, and this workshop), have confirmed that
results are better than with separate retrieval and assimilation. Although
the next generation of high-spectral resolution sounders will give
information on smaller vertical scale, the scales resolved by the model will
also have increased, so this qualitative conclusion will probably still

hold.

In section 2 the Met Office’s research into the use of satellite soundings
is reviewed. Development is concentrated on the use of a forecast
background, and on accounting for cloud in the radiative transfer (rather
than using "cloud-cleared" radiances). Possible strategies for developments
to cope with high spectral resolution sounders are discussed. Clouds make
the radiative transfer equation very nonlinear. Equations for the inverse
problem, are derived in section 3, and nonlinearities are discussed. Final,

in section 5, some conclusions and options are discussed.

2 METEOROLOGICAL OFFICE SATELLITE SOUNDING RETRIEVALS

The Met Office has since 1983 run a Local Area Satellite Sounding System
(LASS). Initially the system was based on the International TVS Processing
Package from the University of Madison, run on a dedicated mini-computer
(Turner et al. 1985), using direct read-out data from the TIROS satellite.
A new cloud clearing scheme was developed (Eyre and Watts, 1987), but it
proved difficult to demonstrate a positive impact of the data on the quality
of operational forecasts. In 1987, the system was changed to use forecast
backgrounds in the retrieval (Lorenc et al. 1986, Eyre and Lorenc, 1989).
This is the scheme operational in March 1992.
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Fig 1. Ratios of rms forecast errors with and without satellite soundings.

Monitoring of the background profiles, and the retrieved profiles, against
independent radiosondes does not show a clear impact from the retrieval
process; the backgrounds fit the radiosondes about as well as the retrievals
do. However impact tests on the quality of forecasts (Bell and Hammon,
1990) do show a slight positive impact. This depends somewhat on how the
forecasts are verified. Figure 1 shows the error measured against
radiosondes over the whole regional model area, of forecasts made using
various forms of the TOVS satellite data, relative to the error in forecasts
without the TOVS data. Each set of three bars shows the score for one
verification parameter. The top bar in each set is for the operational
system, with direct assimilation of the forecast background retrievals. As
the retrievals have model information used as background, it 1is not
statistically optimal to use them in this way. Lorenc et al (1986) proposed
a constraint method to remove the background information (this is discussed
further in section 3). The second bar shows results using this method.
Results for height verification in particular seem to indicate it is a

little better. The third bar shows results from forecasts using the NESDIS




retrievals sent out on the Global Telecommunication System (GTS). If
anything they have a slight negative impact on forecast quality. In our
local area, the forecast backgrounds are usually very good, because even
over the Atlantic there is a variety of data. The NESDIS retrievals, made
not using these backgrounds, actually damage the model state when we
assimilate them. (It might be possible to devise an assimilation method
which extracts the useful information while avoiding the damaging bad

information from NESDIS’s backgrounds, but we have failed to find one).

Since there is little useful information in our local area, we are setting
up a scheme (GLOSS) to apply the forecast background retrieval technique to
the global cloud-cleared radiances, which are now sent on the GTS in binary
(BUFR) code. It is hoped by this means to get useful information in areas
where our model backgrounds are less reliable, for instance the Pacific and
southern hemisphere. In order to have the computer power for this, and to
facilitate closer coupling with the forecast model, GLOSS is being set up on

the mainframe Cray YMP computer.

In parallel with the GLOSS development, a scheme for direct use of cloudy
radiances is being developed (Eyre, 1989a&b). This technique inverts the
radiative transfer equation including clouds. As well as temperature and
humidity profiles, cloud parameters can be retrieved (Watts, this workshop).
Over the next decade, the accuracy of representation of clouds in forecast
models is expected to improve dramatically, so although at present there is
no coupling with the model’s clouds, it is expected that eventually
background cloud parameters will be provided to the retrieval, and the
retrieved clouds will be used in the model. The technique also extends
naturally to the microwave sounders planned for ATOVS in 1995. The output
from the radiative transfer equation is nonlinearly related to the cloud;
the effect of low level temperatures depends strongly on the presence or
absence of cloud. So an iterative retrieval method 1is necessary.
Experience with the cloudy radiances in LASS is that about four iterations

are necessary.

The retrieval methods described above are one-dimensional. Although
background information from a model is horizontally consistent, and most

cloud clearing algorithms use information from adjacent fields of view, the




actual inversion from radiances to a profile is done for each sounding

separately. The nonlinear scheme does not even use any horizontal
consistence prior "information" about clouds. If the retrieval were made
part of the model assimilation, the derived profiles would be constrained to
be consistent with the model’s physical parametrisation of cloud, and with
other observations, both from the same instrument, and others. Since the
assimilation method used at the Met Office (Lorenc Bell and Macpherson 1991)
is iterative, it would be feasible to combine the iterative retrieval with
the assimilation, by making the iteration module of GLOSS a subroutine of
the assimilation. We hope to perform some simple tests along these lines.
ECMWF are developing a combined retrieval (of clear-column radiances) and
analysis (3DVAR), using the variational method set out in section 3.
However it will be hard to extend this to use cloud radiances (Eyre,

personal communication).

It is necessary when planning future operational systems to consider the
computer requirements. In setting up GLOSS we estimate that for: ~75000
soundings per satellite per day of ~20 cloud-cleared channels, at ~120km
spacing, GLOSS will take ~3500 CPUsec/day, on the CRAY YMP.

To extrapolate this we need the following factors:

2 satellites 2

40km spacing 9

cloudy radiances 4 (extra iterations)

ATOVS (19957) 2 (~40 channels instead of 20)

IASI or AIRS (19987) 100  (~2000 channels instead of 20)
Thus for ATOVS we need 100 Cray YMP single CPU hours per day. Although the
computer is a multi processor, and is to be upgraded, this is still a very
significant part of the expected capacity. We will have to justify this
with a significant benefit, and probably cut back on the ideal system (e.g.
by not processing every sounding; 40km resolution may not be needed
globally).

For IASI or AIRS we might need 50 times the computer power of needed for
ATOVS. By the end of the decade, we are likely to have available massively
parallel computers that can provide the required raw CPU power. It will

however be difficult to apply these computers to the very large and complex



forecasting systems used today in NWP. Reverting to a system dedicated to
the retrieval problem may be the most economical way of providing the power.
This however rules out our ideas about a closer coupling of the retrieval

and assimilation.

BAYESIAN DERIVATION OF INVERSION, AND NONLINEARITIES
3.1 Bayes Theorem

Notation
atmosphere as represented in model
. model representation of the true state of the atmosphere
7 prior estimate of x, (e.g. from forecast)
y observations
¥ observations that would be given by error-free instruments
K(x) forward operator for calculating y from x
K tangent linear operator of K,
such that K(x+8x)=K(x)+K&x+0(5x°).
2 probability
p probability distribution function
P(x) = probability that xsxt<x+dx
= p(x)dx
P(A|B)| the conditional probability of A, given B.

For satellite retrievals, x is an atmospheric profile, y is the set of
radiances, and K is the radiative transfer equation. For assimilation, x is
the model state, y is the set of all observations, and k is an interpolation

or extrapolation (including an extrapolation in time).

This derivation follows Lorenc (1986). Probabilities are used in a Bayesian

way to describe the state of information. We have some prior information1

1Note that the whole retrieval philosophy is based on the idea that there is

some useful prior information about x. Hence the name "prior", or




about x. We add to this information from observations y. We need to know
the posterior knowledge about x. Operator K does not have a normal inverse.
Since we start with our prior knowledge, all probabilities are conditional
on knowing X, . To simplify notation we write P(-) instead of P(-be).

Basic relationships for conditional probabilities give:

P(xny) = P(xly) P(y) = P(ylx) P(x)
= p (xly)dx p__ (y)dy = pof(ylx)dy pb(x)dx
where
P(xly) =pa(x|y)dx, is the analysis probability, i.e. the probability that
xSxt<x+dx, given the background X and the observations.
P(y) =pM%(y)dy, is the probability of getting observations y.
P(ylx) =p°f(y|x)dy is the probability of getting observations y given
that x=x .
t
P(x) =pb(x)dx, is the probability that xsxt<x+dx, given only the prior

knowledge of X .
P iwix) = I p (yly nx) p (y Ix) dy,
po(ylytnx) is the instrumental error distribution.

pf(ytlx) is the forward operator error distribution.

poly) = J' p_(ylx) p (x) dx

ofb

= I I PO(YIYtNX) Pf(ytlx) dy, pb(x) dx

Bayes’ Theorem can be derived from the above:

pa(xly) = pof(ylx) pb(x) / pofb(y)

"background", is to be preferred to "first-guess", which is often used. An
ideal iterative method should be independent of the first-guess, it should
not be independent of the background.



I po(ylytnx) pf(ytlx) dyt pb(x)

I I PO(Y|YtHX) pf(ytlx) dyt pb(x) dx

This p.d.f. describes our total posterior information about x, given X and
y. It is exact; no assumptions have been made. The information content,
following Shannon’s ideas of information entropy (e.g. see Tarantola 1987

p28) is given by

p (xly)
w1 piely) Inj———1 ax.
i pb(x)

Note that this definition makes no allowance for the relative importance or
usefulness of the different components of x.
3.2 Linear retrieval for Gaussian p.d.f.s

If we assume all the p.d.f.s are Gaussian, and K can be linearized in the

region of X and X such that
K(xa) = K(xb) + K (xa—xb),

then, using the properties of Gaussians described in the appendix, we have:

the background error distribution:

pb(x) = N(xb—x,B),

the instrumental error distribution:

p (yly nx) = N(y-y ,0),

the forward operator error distribution:
pr(ytlx) = N(yt-K(x),F),

where B 0 and F are covariances.

The observational error distribution, (knowing xt) is given by:

podyix) . = J- po(ylytnx) pf(ytlx) dy,




= N(y-K(xt),0+F)

where 0+F (=E) is the observational error covariance.

The observation distribution, (only knowing xb) is given by:
i x T
potb(y) = N(y K(xb),0+F+KBK ) 4

Substituting in Bayes’ Theorem gives:

pa(xly) por(ylx) pb(x) / potb(y)

N(y-K(x,),0+F) N(x -x,B) / N(y-K(xb),0+F+KBKT)

N(x -x,A).
a
where X and A are defined by

A =B - BK (KBK+E) 'KB

X
a

ks BKT(KBKT+E)’1(y—K(xb)).

3.3 Variational retrievals

If K is more nonlinear, or the p.d.f.s are non-Gaussian, then the direct
solution derived above cannot be used, although the Bayes’ Theorem for the

analysis p.d.f. is still valid:

pa(xly) - pof(ylx) pb(x) / pofb(y).

The expression for pa which results is usually too complicated to be very
useful in describing our knowledge about x; we want an estimate of the
"best”, most probable, x. In order to avoid a definition of "best" which
depends of the choice of model basis for x, we normalize the probabilities
with respect to a null prior, pmnl(x), a probability distribution which
describes our knowledge before we knew even xb. We further assume, for
simplicity, that the basis for x has been chosen so that ;%u“(x) is a

constant over the range of values of interestz. Then the most probable x is

2Note that if we change variables from x to u by a nonlinear mapping, then

pmul(u) is not a constant.



that which maximizes pa(xly)/pmnl(x). Since pmul(x) and pofb(y) are
independent of x, this is the same as the x which minimizes a penalty

function ¢ given by

= -ln(pof(ylx)) -ln(pb(x)).

If we substitute the Gaussian p.d.f.s of the last section into this, we get:
1 T -1 1 e

F = E(y-K(x)) (0+F) " (y-K(x)) + E(xb-x) B (xb-x) + constant.

If furthermore we make K linearizable, we see why the linear problem with
Gaussians is easier to solve: ¢ becomes a quadratic in x. Using the same
algebraic manipulations as are needed to establish the properties of

Gaussians used in the last section, gives:
3= 1x -x)"™A"'(x -x) + constant.

2 a
where xa and A are defined by

A =B - BK (KBK +0+F) 'KB

i =% 4 BKT(KBKT+0+F)‘1(y—K(xb)).

a

If K cannot be linearized over the whole range containing X and possible
xas, then an explicit solution 1is not possible. )l P RN - e T

differentiable, so that
K(x+3x) = K(x)+Kx6x, as 8x-0

then we can look for the minimum of % using a descent algorithm. At the

minimum, the gradient of % with respect to the components of x is zero:
; T -1 -1
¥ = - Kx (0+F) "(y-K(x)) - B (xb-x) = 0.

This formula is exact; we can find the most probable x. The next stage of
generalization is to allow the p.d.f.s to be weakly non-Gaussian. That is,
we use the Gaussian formulae with 0x Fx and Bx being slowly varying
functions of x, whose derivatives we can neglect. We also neglect

derivatives of Kx. Then if we define xa as the x which minimizes %, i.e.

e T o S i A 2
F = Kxa (oxa+an) (y K(xa)) Bxal (xb xa) = 0.

10




Then

PEE BT e e S e T
Xa Xa Xa

Then, in the neighbourhood of X
n=1
pa(xly) o N(xa %0

If K ¢ ls sufficlently nonlinear, 'or . the p.d.f.s -are ' sufficiently
non-Gaussian, pa(xly) may have multiple maxima. We have then to consider
how to decide which is best. It may well be that the "best" x is that which
is most likely to be in a finite, rather than an infinitesimal, region
around x . This likelihood may then be more related to the integral under
the above approximate Gaussian, rather than its peak value. To find the x
which maximizes this integral, we should not search for the maximum of

1/2

pa(xly), but rather |A| pa(xly). Note that between local maxima, |%’| may

become zero. In these regions our assumptions about slowly varying K B O

: 2 =1 . oIS
and F are not good. However our approximation |A | remains positive.

3.4 Weight given to Background
If we perturb x to x +6x , and x to x +x , then
a a a b b b
VAT ” i =1
F & 6xa B axb.
So to remain a solution of $'=0
5x = 3 B'sx = A Box .
a b b

This can be used to find the ia which would have been found using a slightly
different background ib, without repeating the full nonlinear solution.
If we wish to repeat the analysis, using a slightly different background and

perhaps additional observations, then we can use
Z(y-K(x))"(0+F) " (y-K(x)) = 2(x -x)"A (% -x) - (x -x)"B'(x -x) + const.
2 - R a 2 b b

Then we have the new penalty given by




3= %(xa—x)TA-i(xa—x) = %(xb—x)TB—l(xb—x) + %(ib-x)TB-l(ib—x)

+ penalty term for additional observations + constant.

If we define C and X by

e 1 e R

c'x=A'x- B'x.
c a b
Or equivalently

C = (ream) a

x =x + (I-ABH)'(x -x ).
b D
Then
1 T.-1 1,~ T-1,~
3 =S(x-x)C (x-x) + (% -x) B (x-x)
+ penalty term for additional observations + constant.

x_can be thought of as a linearized representation of the information in
the original observations, without any information from x . It can be
reused in a subsequent analysis (with the same or a different background) as

a pseudo-observation.

In practice, things are not this simple. Because of the null-space not
properly defined by the observations, (I—AB_I) is not invertible. A
pseudo-inverse can however be defined by excluding the null-space (Purser

1990).

The method wused in assimilating the LASS retrievals for the second
experiment shown in figure 1, was a simplified version of this (Lorenc et
al. 1986), appropriate for the horizontal and vertical splitting of the
assimilation method (Lorenc et al. 1991).

12



a4 DISCUSSION OF THE FUTURE

Experience with the current generation of sounders, in particular the
failure despite years of effort to get consistent positive impact in the
northern hemisphere, until the forecast background methods were developed,
indicates that for data assimilation uses we should stay with the forecast
background retrieval method. In this, information from the model is
available during the retrieval, and only the new information from the
sounding is used in the model. (Note that this conclusion may not apply to

other uses, such as atmospheric studies, and climate change detection.)

Improved cloud and moisture information in the soundings from future
instruments, and in the NWP models and GCMs currently being developed, means
that this two-way interaction will be extended to cloud and moisture

parameters.

There are theoretical advantages in combining the retrieval and assimilation
even more closely, so that the interaction takes place within a single

(iterative) solution of the combined inverse problem.

However this will require a large computer system, capable of simultaneously
handling both the retrieval and assimilation steps. It may be more cost
effective to perform a forecast background retrieval on one system, and use
it on another. A linearized correction to the retrieval, to take account of
the background information used, 1is possible during the assimilation
process. This requires that background profile used for the retrieval, and
some covariance statistics, to be passed to the assimilation along with the
retrieval. (Unfortunately the effect of cloud are nonlinear, so an accurate
correction for changes in prior cloud information is not possible in this
method).

Until such time as decisions have to be made about computer and system
architecture, it would be wise to develop retrieval and assimilation as
compatible systems, to keep both options open. Future decisions must take
account of the operational benefits achieved, relative to the effort

expended.
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Appendix PROPERTIES OF GAUSSIAN DISTRIBUTIONS

A multi-dimensional Gaussian ("normal") distribution is described by the

function:

-1/72

N(x,B) = ((2m)"|B|) exp(- -;:xTB_IX)

where B is an NxN positive definite matrix, and |B| is its determinant.

]
o

Mean of x = Ix N(x,B) dx

I
w

Covariance of x = IxxTN(x,B) dx

Product of two Gaussians:
N(x -x,B) N(x -x,C) = N(x -x ,B+C) N(x -x,A)
b c V... 0 a

where xa and A are defined by

Pl A

Alx =B 'x +c'x .
a b c

Hence the convolution of two Gaussians:

IN(x -x,B) N(x -x,C) dx = N(x -x ,B+C) IN(x -x,A) dx
b e b . © a

= N(x -x ,B+C).
S

Product of two Gaussians in variables related by an operator K:

As long as K can be linearized in the region of X and X such that

K(x) =K(x) +K (x-x),
a b a2 b
then
N(x -x,B) N(y-K(x),E) = N(y-K(xb),E+KBKT) N(x_-x,A)
where X and A are defined by
A =B - BK (KBK +E) 'KB
x_ + BK' (KBK'+E)™' (y-K(x )).

X
a

If K(x)=Kx, then equivalent definitions for X and A are more like those
earlier:
At =B «KEX
A'x =B 'x +K'E'y.

a b
Hence the convolution of two Gaussians:

J’N(xb-x,m N(y-Kx,E) dx = N(y-Kx_, E+KEK") IN(xa—x,A) o
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