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THE CORIOLIS FORCE IN GLOBAL ATMOSPHERIC MODELS:

I. THE NAVIER-STOKES EQUATION AND THE HYDROSTATIC PRIMITIVE EQUATIONS

A.A.White, R.A.Bromley and B.J.Hoskins

Summary

The spherical polar components of the Coriolis force consist of
terms in sin® and terms in cos®, where ¢ is latitude (referred to the
frame rotation vector as polar axis). The cosd Coriolis terms are not
retained in the usual hydrostatic primitive equations of numerical
weather prediction and climate simulation, their neglect being
consistent with the shallow atmosphere approximation and the
simultaneous exclusion of various small metric terms. Scale analysis
for diabatically-driven, synoptic-scale motion in the tropics suggests
that the cos® Coriolis terms may attain magnitudes of order 10% of
those of key terms in the hydrostatic primitive equations. It 18
argued that the cos$¢ Coriolis terms should be included in global
simulation models, but a review of the conservation properties of the
hydrostatic primitive equations suggests the high standards against
which any more accurate approximation of the Navier-Stokes equations

should be judged.




1. Introduction

Numerical weather prediction and global climate models seek to
simulate the behaviour of the atmosphere by wusing accurate
representations of the governing equations of motion, thermodynamics
and continuity. These equations contain terms describing intrinsic
fluid dynamical processes such as advection and the pressure gradient
force, and terms representing sources or sinks of momentum and heat,

The latter may be referred to as forcing terms; they represent the

divergence of subgridscale fluxes, and diabatic forcing due to

radiative flux divergence and latent heating.

Over the past 30 years much attention has been paid to improving
the representation of the forcing processes, especially in the context
of climate simulation using global circulation models. Over the same
period much progress has also been made in refining time integration
schemes and in accommodating increased spatial resolutions. The
emergence of competitively economic spectral models has been a notable
development. There has, however, been no change in the assumed
representation of the intrinsic fluid dynamical processes: almost all
global models are based on the hydrostatic primitive equations (HPEs) .
(The exceptions are models based on various geostrophically balanced
approximations of the HPEs. These models are used for the important
scientific purpose of developing comprehension of atmospheric
behaviour, and the more sophisticated of them may offer forecast

accuracy rivalling that of HPE models. )



The HPEs are simpler in several respects than the complete
equations of motion. In addition to the neglect of vertical
accelerations in the momentum balance, the HPEs use a spherical
approximation to the spheroidal geometry of geopotential surfaces and
assume the shallow atmosphere approximation. Various metric terms are
neglected. Of greater quantitative importance, the Coriolis terms
involving 2Qcos® which appear in the zonal and vertical components of
the momentum equation are omitted. (Here Q is the rotation rate of

the Earth and ¢ is latitude). The omission of these cos® Coriolis

terms is the "traditional approximation", which has been a matter of
controversy in the background of dynamical meteorology for many years
(see, for example, Eckart 1960, Phillips 1966, 1968, 1973, Veronis
1968 and Wangsness 1970). (As stressed in section 3, a close
relation exists between the shallow atmosphere approximation, the
neglect of certain metric terms and the omission of the cos® Coriolis
terms. Taken together, but not individually, they constitute a
dynamically consistent approximation which implies satisfactory
analogue forms of energy, angular momentum and potential vorticity
conservation. The term "traditional approximation" is customarily

reserved for the omission of the cos¢ Coriolis terms, however).

The cos® Coriolis terms have recently been considered in a number
of studies in meteorology, oceanography and geophysical fluid
dynamics. Leibovich and Lele (1985) included them in a comprehensive
investigation of Ekman layer stability, and Mason and Thomson (1987)
retained them in a numerical simulation of boundary layer eddies.

Garwood, Gallacher and Muller (1985) considered the importance of the



cos® Coriolis terms in the turbulent kinetic energy budget of the
oceanic surface mixed layer. The model of planetary geostrophic
motion proposed by Shutts (1989) includes the terms after consistent
approximation of the Lagrangian function. Burger and Riphagen (1991)
retained the terms (and others not included in the HPEs) in a study of
the equations of motion expressed in an arbitrary vertical coordinate
system. Draghici (1987), (1989) has argued that the cos¢ Coriolis
terms represent the most important nonhydrostatic effect in mesoscale
atmospheric systems. He proposed ways of including the cos¢ Coriolis
terms in formulations which use tangent-plane and other geometric
approximations to the Earth’s sphericity; analogues of energy and

potential vorticity conservation laws are retained.

In this paper we examine the importance of the cos¢ Coriolis terms
for synoptic scale motion in the tropics, and conclude that they may
not be negligible if diabatic processes are of first order importance
in the thermodynamic equation and are balanced by vertical advection
of potential temperature. We recommend that consideration be given to
the inclusion of the cos® Coriolis terms in simulation models of the
global atmosphere, but emphasize that the good conservation properties
of the HPEs set a high standard against which any new set of equations
should be judged. Ways of representing the cos® Coriolis terms in
acoustically-filtered models of a global, compressible atmosphere are

described in Part II of this study (White and Bromley 1994).



A list of symbols is given in section 2. Components of the
Navier-Stokes equation and the corresponding HPE forms are reviewed in
section 3, with special attention to conservation properties. Section
4 considers the quantitative and qualitative importance of the cos®

Coriolis terms, and a concluding discussion follows in section 5.



s List of symbols and definitions

a Earth’s mean radius

c, Specific heat at constant volume

cp Specific heat at constant pressure

f Coriolis parameter: 2Qsin¢

g Acceleration due to apparent gravity

g Magnitude of g

Unit vector in zonal direction

|

3 Unit vector in meridional direction

k Unit vector in direction of apparent vertical (direction
of -g)

P Pressure

P, A constant reference surface pressure

E Position vector relative to centre of Earth

r Distance from centre of Earth

t Time

u Velocity (relative to Earth)

u Zonal component of u

v Horizontal part of u (= (u, v, 0))

v Meridional component of u

W Vertical component of u

7 Height above mean sea level

D Scale height of reference atmosphere (= RTS/g)

E 2QUcos®/g

I™=1

= (FX’ F¢, Fr) Frictional force per unit mass

F,  Horizontal part of F (=(F,, Fgs 0))



0w = 9 <

<

Vertical space scale

Horizontal space scale

Buoyancy frequency: ((g/e)de/dz)“2
Diabatic heating rate per unit mass
Gas constant per unit mass

Rossby number: U/fL

Temperature

Horizontal velocity scale

Vertical velocity scale

= (Zl’ Z¢, Zr) Absolute vorticity (see (3.12))

Absolute vorticity in HPE models (see (3.26))

R/c
Potential temperature: T(po/p) P

Longitude

A typical atmospheric pressure
Density

Time scale

Latitude

Geopotential

Angular velocity of Earth’s rotation

Shallow atmosphere gradient operator (in height coordinates):

see (3.20), (3.24) and (3.26).




3 Components of the Navier-Stokes equation and the hydrostatic

primitive equations

The components of the Navier-Stokes equation in a spherical polar
coordinate system are derived in standard texts (see, for example,
Gill (1982)). The HPEs and their conservation properties are discussed
in detail by Lorenz (1967), Phillips (1973) and Hoskins et al (1985),
as well as in textbooks. Only those aspects which are important in

the present study are reviewed here.

(a) The Navier-Stokes equation

If velocities u are measured relative to a system rotating with

angular velocity 2, the Navier-Stokes equation is

Du

1 &
DE * 2xu - g + p gradp = F (3.1)

Here g is apparent gravity (true gravity plus the centrifugal term
Q@ x (2 x r), where r is position relative to the centre of the Earth);
g = - grad®, where ® is the geopotential. The three spherical polar

components of (3.1) are

r 3

Du _ u Bty 1 9p _

Dt 2Q + rcoS¢J (vsin® - wcos®) + P ik e Fy (3.2)
\
( 3

Dv u : ool 20p

Se.t |29 ¢ rcos¢J using + ol B T (3.3)
\

Dw u v2 1 9p
Dt " (29 + — ) ucos¢ - — + g + T Fr (3:4)
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and u, v, w are the components of u in the A (longitude), ¢ (latitude)

and r (radial) directions; the polar axis is in the direction of 9.
See Fig. 1 for the coordinate configuration and section 2 for a list

of symbols.

In fact, some approximations have been made in writing Eqs (3.3)
and (3.4). The magnitude, g, of apparent gravity (g) appears in Eq.
(3.4), and no component of g in Eq. (3.3), because the adopted
spherical coordinate system is an approximation to the spheroidal
system defined by geopotential surfaces in the rotating frame. (See
Phillips (1973), Gill (1982) and White (1982)). The replacement of
spheroidal geopotentials by spheres is conceptually important, but it
involves only a slight geometric distortion in the terrestrial case

5 2 =3
since Q' r/g < 3 x 10 in the troposphere and stratosphere.

When taken together with the continuity and thermodynamic

equations
Dp L
pc FPdivu=0 (3.6)
e B
Dt = {Tcp] Q (3-7)’

Egs. (3.2)-(3.5) imply the following conservation laws for axial

angular momentum, energy and pdtential vorticity:



D i ' Op
pﬁg[(u + Qrcos¢)rcos¢} = prrcos¢ ETY (3.8)
PR R S e T s i i) s O aE (3.9)
Dt 2 — v = = =h
D Z.grad6 DO
pﬁg T A Z.grad Dt + grad O.curl F (:3:10)

Perfect gas behaviour, p = PRT, has been assumed. In Eq. (3.10), 2
is the absolute vorticity, curl u + 2Q2. The components of Z in the

(A, ¢, r) system are

Z¢ = 2Qcos¢ + % Q;(ru) - rcis¢ g: (3.11)
e = 2Qsin¢ + rcis¢ [g% - 26 (ucos®) ]
The divergence of a vector field A= (AX’A¢’Ar) is
div A = [% + g—¢ (A 4c0s9) ] + ;1? g—r (r%a ) (3.12)
and the gradient of © is the vector
grm9=[mg,%%,%] (3.13)

The notation ‘grad’, ‘div’ and ‘curl’ will be reserved for the
quantities defined by (3.13), (3.12) and (3.11). Shallow atmosphere
versions of the respective operators are indicated by 'V (see

below).,

10
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(b) Height coordinate forms of the HPEs

The hydrostatic primitive equations (HPEs) which correspond to

Egqs. (3.2)-(3.4) are

ou er + acgsdj vsing + mgf £ o (3.14)
\ /
'8 3

Xs o0+ Aol using + 1SR p (3.15)
\ J

g+zl)_g§=0 (3.16)

with
Rt R (3.17)

The terms omitted are those in 2Qcos¢® (the cos® Coriolis terms), four

metric terms, the vertical acceleration Dw/Dt and the vertical
component Fr of the frictional force per unit mass. The shallow
atmosphere approximation has also been made: r has been replaced by a,
the Earth’s mean radius, except in the derivative terms 8/3r which are
retained as 9/3z, z being height above mean sea level. In Eq. (3.16),
g€ 1is to be understood as an appropriate mean magnitude of g,

independent of position and time.

The remaining Coriolis terms in (3.14) and (3.15) may be written
in the familiar form fkxv if a horizontal vector equation is
constructed. Here f= 2Qsin¢$, k is unit vector in the local vertical
and v is the horizontal part of u. The HPE continuity and

thermodynamic equations are

11



Dp 2

%, pv.u=o0 (3.18)
e [o

Dt [Tcp] Q (3.19)

Here D/Dt is defined as in (3.17), and

ol o
V= po [ » * 3 (vcos®) ] t 3, (3.20)

Analogues of the conservation properties (3.8)-(3.10) are implied

by the HPEs. The axial angular momentum principle is

Fe
rf

[(u + Qacos®) acos¢} = pFlacos¢ - g% i (3.21)

the energy conservation law is

D | Blea
- v = .
Poe (3¥ +8z+cT)+V.(pu) = p(Q + v.F) (3.22)
and the potential vorticity law is
¢.ve
D 2 DO
_— = V| — v
pD—t [ ) } C. [Dt] + VO, th s (13.23)
=3 1 LORe 00 gl
flore « End @ = [ Aolh O S o ] (3.24)
and C = 2Qksin® + Vxv , (3.25)
) dv  JOu 1 dv a
with Vxyv = [— 35 Be! nad [a—)‘ e (ucos9) ]] (3.26)

A proof of the potential vorticity law (3.23) is given in the
Appendix. Although (3.23) is a celebrated result (see, for example,
Hoskins et al (1985)) so far as we are aware no direct derivation of
it from the HPEs (3.14)-(3.19) has previously appeared in the

literature.

12



The conservation properties (3.21), (3.22) and (3.23) depend on
the simultaneous application of the shallow atmosphere approximation,
the neglect of four metric terms and the neglect of the cos¢ Coriolis

terms. Consider, for example, the angular momentum conservation law
(3.21). The action of the shallow atmosphere operator D/Dt, defined
by (3.17), on the shallow atmosphere zonal angular momentum (per unit

mass), (u + Qacos®)acosd , gives

acos¢ [ L 2Qvsin® - uvsing®
Dt a

which accounts for the Coriolis and metric terms in (3.14). On the
other hand, the action of the unapproximated operator D/Dt, defined by
(3.5), on the unapproximated zonal angular momentum per unit mass,

(u + Qrcos®)rcosd, gives

rcos® [ ou 2Qvsin® - uvsing® + 2Qwcosd + ¥
Dt r T

which accounts for all the Coriolis and metric terms in (3.2). The
height variation of the planetary angular momentum Qrzcosz¢ gives rise
to the term 2Qwcos¢ in (3.2). This height variation is neglected in
the shallow atmosphere form Qazcosz¢, and so the term 2Qwcos® does not
appear in (3.14). It is very difficult, if not impossible, to
accommodate the term 2Qwcos® in a shallow atmosphere formulation so as

to imply a consistent angular momentum principle.

The omission of the cos® Coriolis terms from the HPEs is motivated
largely by a desire to preserve good conservation properties when the

shallow atmosphere approximation is made.

13



4. The importance of the cos® Coriolis terms

Inaccuracies are inevitably introduced by the omissions (and
geometric distortions) made in replacing the Navier-Stokes equations
by the HPEs. Under a wide range of conditions the cos® Coriolis terms

are by far the largest of the omitted terms.

(a) Scale analysis of the zonal momentum balance

Consider the term 2Qwcos¢ in Eq. (3.2) in relation to the material
derivative Du/Dt. In quasi-hydrostatic motion, continuity sets an
upper bound on vertical velocities as

W < UH/L (4.1)
where W and U are vertical and horizontal velocity scales, and H and L
are vertical and horizontal length scales. Taking Du/Dt ~ UZ/L, gives
1 2Qwcos®! /IDu/Dt | < 2QHcos®/U , which is independent of L. The
condition for the neglect of 2Qwcos® in comparison with Du/Dt in Eq.
(3.2) is thus

2QHcos®/U « 1 (4.2)
or 2QUcos®/g « Uz/gH (4.3)
With Q = 2% per day, H = 104m and U = 10 ms-l, the quantity 2QHcos®/U

takes a value of about 0.14cos®.

The upper bound (4.1) will be attained on the synoptic scale
{1, 2~ 106m) only if diabatic processes play a dominant role; standard
scale analysis shows that free synoptic scale motion is
quasi-nondivergent in the sense that W « UH/L (Charney 1963, Phillips

1963, Pedlosky 1987). In the tropics - even on the synoptic scale -

14



diabatic effects may determine the vertical velocity, and the upper

bound (4.1) may be approached (see Holton 1972, McBride and Gray 1980,
Webster 1983 and Hoskins 1987). Synoptic scale systems of this type
are presumably very important in the thermodynamics and dynamics of
the tropical atmosphere, and probably of the entire circulation. Even
accepting the magnitude of likely errors in estimating the forcing
term Fl in Eq. (3.2), it would appear that retention of 2Qwcos® is

necessary for accurate and reliable simulation.

The ratio 2QMcos®/U (see (4.2)) occurs if the effects of the
height variation of the planetary angular momentum per unit mass,
Qrzcosz¢, are considered. As noted in section 3, the term 2Qwcos® in
(3.2) arises from this height variation. Suppose that a parcel of
fluid is initially at rest relative to the Earth’s surface at latitude
¢, and that it then rises a vertical distance H. It will acquire a
zonal velocity AU = - 2QHcos® in the absence of zonal pressure
gradients or other zonal forces, if the height variation of the
planetary angular momentum is taken into account. Thus, relative to a
typical zonal velocity U,

I%gl ~ 2QHcos®/U

Dr G J Shutts (private communication) has pointed out that values
of U are useful measures of the importance of the term 2Qwcos® in
(3.2). At the equator, a 15 km ascent from surface to tropopause will
be associated with upper level easterly flow of about 2 ms—l. This
effect does not seem small enough to be easily neglected in simulation

models, but it is not described by the HPEs. We note that the above

15



arguments suggest that the effect may not be entirely negligible even

in middle latitudes.

The scale estimate (4.1) also allows a time scale T to be
associated with the term 2Qwcos® in Eq. (3.2). Taking Du/Dt ~ U/T,
and assuming a balance between Du/Dt and 20wcosd gives T ~ L/2QH.
With L/H = 100 we find T ~ 10 days. Although this is large compared
with dissipation time scales in the tropics, the effect is not
obviously negligible in numerical simulations (especially those
designed to reproduce oscillations having a period of 40 days or

more).

The term 2Qwcos® in Eq. (3.2) may also be assessed in relation to
the other Coriolis term, -2Qvsin® . Large scale motion in the tropics
may to a first approximation be described by a Sverdrup-type balance
of planetary vorticity advection and vortex stretching (Gill 1980,
Hoskins and Karoly 1981):

2vcost _ o6 .0 g‘z
a z
Hence
H 2
2Qvsing a cot ¢ (4.4)
If H ~ 104m, (H/a)cot2¢ takes a value of about 0.1 at ¢ = 60, while at

I 2Qwcosd

o

¢ = 2 it approaches unity. The clear suggestion is that 29Qwcos®
cannot comfortably be neglected in Eq. (3.2) when applied to synoptic
scale motion in the tropics. We note that the equatorial Rossby
radius of deformation, which is the natural latitudinal scale for

equatorially trapped motions, is typically equivalent to 6 - 12° of

latitude.

16



(b) Scale analysis of the vertical momentum balance

If 2Qwcos® is retained in Eq. (3.2), then -2Qucos® must be
retained in Eq. (3.4) in order to preserve consistent energetics. It
is nevertheless helpful to carry out a scale analysis of Eq. {3:4)
irrespective of energy consistency with Eq. (3.2). The quantity

il (4.5)
g
takes a value of about 1.4 x 10—4cos¢ (assuming terrestrial values of
parameters and U = 10 ms_l, as in the previous section) and so it
might appear that the term -2QUcos¢ is insignificant in Eq. (3.4).
But E is not a universal measure of the importance of -2uQcosd;
deviations from a spatial mean hydrostatic balance are much smaller
than g, and it is these deviations which affect the horizontal motion
through the horizontal pressure gradient terms - see, for example,

Holton (1972). If a mean, hydrostatically balanced state is

introduced, then the pressure p and density p may be expressed as

pepir)typ
(4.6)
p=p (r) + p
dpo
with ~—— = oo (4.7)
o
dr
Eq. (3.4) can then be written as
2 2 ; -
Dw _ —at v agp A 0pt o
Dt 2Qucos? 2 + W i 5 ar © 0 (4.8)

upon removal of the mean state balance. The importance of 2Qucos® in
Eq. (4.8) may be gauged by a comparison with (1/p)(dp’/dr) (which
contributes to the deviation hydrostatic balance). We assume tropical

scaling, with the Rossby number Ro = U/fL ~ 1. From (3.2), if Ro .~:1,

17



ey 2
4 ~ U
lﬁp’
2Qucos 2QHcos®
Hence ~
13 U
p Or

The cos¢ Coriolis term in Eq. (3.4) is thus negligible compared with
the horizontally varying part of the vertical pressure gradient term

only to the extent that
2QHcos¢

3 | (4.9)
UZ
or E « 2h (4.10)

which are the same as the conditions ((4.2) or (4.3)) for neglect of
the cos® Coriolis term in Eq. (3.2). We expect therefore that neglect
of -2Qucos® in Eq. (3.4) will lead to errors of up to 10% in the
horizontally varying balance which affects the horizontal motion
through Egs. (3.2) and (3.3). (We repeat that this argument applies
to tropical balances. 1In middle latitudes, at least on the synoptic
scale, geostrophic control gives larger variations of ®° for a given
horizontal velocity scale U: @ | ~ UZ/Ro, Ro « 1. The cos¢ Coriolis

term in Eq. (3.4) is negligible in this case to the extent that

2QDRo
U

Condition (4.10) is typically well satisfied in middle latitude

).

(% g) & f (4.11)

motion, for which Ro ~ 10_1 and D/L ~ 10_2

It is interesting to note that the derivation of conditions (4.8)
and (4.9) does not depend on the upper bound (4.1) to the vertical
velocity. Eq. (4.1) may be used, however, to show that Dw/Dt is

negligible compared with -2Qucos® on the synoptic scale:

18



Bl UMt WH
Dt [E o e
[Dw/Dt | o
¢ =8po~107%,
[ 2Qu | 20L

assuming L = 106m, U =10 ms_1 and H = 104m. Draghici (1987), (1989)

notes that -2Qucos® dominates Dw/Dt for a range of mesoscale motions
also, and thus apparently represents the most important nonhydrostatic

effect in such cases.

(c) Previous adiabatic analyses

The above scale analysis suggests that the treatment of
dynamically important balances in Egs. (3.2) and (3.4) may be subject
to errors of about 10% (at least in the tropics) if the cos® Coriolis
terms are neglected. Phillips (1968) and Gill (1982) have considered
these terms to be less important. From the dispersion relation for
linearized waves on an atmosphere at rest, Phillips identified
492 « N2 (where N is the buoyancy frequency) as the criterion for
neglect of the cos$ Coriolis terms. Gill gave the more stringent
condition 22 « N after a scale analysis of the linearized, equatorial
B-plane equations. If N is of order 10-2 s—1 (a typical tropospheric

value) then 2Q/N ~ 10_2, and the cos¢ Coriolis terms appear negligible

even according to Gill’s criterion. (In the deep ocean, N = 10-3 s-1

or less (Gill 1982), so 2Q/N ~ 10_1; in this case the cos¢ Coriolis

terms are not entirely negligible by Gill’s criterion).

However, both Phillips’ and Gill’s analyses assume adiabatic
motion, vertical velocities being related to horizontal density

fluctuations and the buoyancy frequency. In deriving the condition

19




2QHcos®/U « 1 for the neglect of the cos® Coriolis term in Eq. (3.2)
(see Eq. (4.2)) we have estimated vertical velocities from the
continuity equation and have thus used an upper bound which may be
approached in regions of strong diabatic heating. This seems a
suitable treatment for tropical synoptic-scale convective complexes in
which diabatic heating plays an important role in the dynamics
(including the determination of phase speeds). We consider that the
cos® Coriolis terms must play a small but not negligible part in the

dynamics of such convective systems.

Even if Gill’s adiabatic criterion 22 <« N 1is considered
appropriate to the tropical atmosphere, it seems undesirable that the
HPEs do not remain a physically acceptable approximation as the static

stability (and hence N) tends to zero.

(d) Some further considerations

Two theoretical arguments for the inclusion of the cos¢® Coriolis

terms may also be noted.

(i) From the Navier-Stokes equation (3.1) the natural definition of
hydrostatic and geostrophic balance is
22x2-g+‘-1)gradp=0 (4.11)

In some theoretical treatments (see, for example, Hide (1977) and
references therein) Eq. (4.11) is the starting point for systematic
study of slowly evolving motions in rotating systems. Eq. (4.11) is

also the definition of balance used by Shutts (1989) in his study of

20



planetary geostrophic motion. The HPEs cannot represent (4.11) intact
because of their neglect of the cos¢ Coriolis terms. It seems
undesirable that basic theory and the dynamical equations used by
global simulation models should part company at such an elementary

stage.

(ii) Neglect of ﬁhe cos® Coriolis terms leads to a change in the
direction of the Coriolis force as well as its magnitude. The true
Coriolis force, 2Q x u, lies in the plane perpendicular to the Earth’s
rotation axis, but the HPE version, fk x v, corresponds to an
"approximation" in which the force lies in local horizontal planes.
See Fig. 2. The omission of the term -2Qucos® from the vertical
component of the momentum balance is responsible for the change of
direction. The usual justification for this omission is that
g » Q%*r » 2Qucos¢
but we have seen that the horizontally fluctuating part of the

vertical balance requires a more discriminating treatment (section

4(b)).
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Hie Discussion

In this paper we have examined the importance of the cos¢ Coriolis
terms which appear in the =zonal and vertical components of the
momentum equation. These terms are unimportant in synoptic-scale,
quasi-adiabatic motion in middle latitudes: they attain magnitudes of
only 1%, or less, of the Lagrangian rate of change in the zonal
component equation and of the horizontally-varying part of the
pressure gradient term in the vertical component equation. In the
tropics, where the Rossby number may be of order unity and vertical
velocities may be determined by diabatic heating even on the synoptic
scale, the cos® Coriolis terms may attain magnitudes of about 10%, in
the above senses, in both the zonal and vertical component equations.
Similar magnitudes may also be approached in middle latitudes in
frontal zones - where diabatic heating may be large and isentropic

slopes steep (Draghici 1987, 1989).

Terms attaining such magnitudes might reasonably be considered
negligible in theoretical treatments and models aimed at developing
conceptual understanding of atmospheric behaviour. But it seems
inconsistent with the rationale of numerical flow simulation to omit
known terms which attain these magnitudes. In view of the
sophistication attained in modern weather prediction and climate
simulation models, we consider that the cos® Coriolis terms should now
be retained in such models. Certainly, scale analysis suggests that
their retention is more comfortable than their omission. There are

also several theoretical reasons why retention of the cos® Coriolis
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terms is desirable (see section 4(d)).

The hydrostatic primitive equations do not include the cos¢
Coriolis terms, but they imply good conservation properties (as
reviewed in section 3(b)). Indeed, the theoretical acceptability of
the hydrostatic primitive equations probably rests as much on the
existence and nature of the conservation laws (3.21)-(3.23) as on a
conviction that the omitted terms are small (and the geometric
distortions negligible). The HPEs set a demanding standard against
which any proposed extended forms should be judged. If the
conservation laws are to be fully respected, the cos® Coriolis terms
cannot be included in the HPEs without making other changes to the
equations at the same time. Several extended forms of the HPEs are

described in Part II of this study (White and Bromley 1994).
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Appendix

Derivation of the HPE potential vorticity conservation law (3.23)

Egs. (3.14) and (3.15) may be written (if sz F¢= 0) as

~

2
R S o )
bt = 20wy (p)ax
i S o 2
Ve sa ol ne F v eyt Op
PpE = 2uy [ 2 ] ( P ) dy

-~

where u = u cos® , v = v cos¢

: a3 B
Y= -sind . 5 Ty
cos ¢
D 3 e
—_— —_— v
Also, Dt (at FomaVy,
with u = (u, v, w), and V = (g;, Q;, g;
_D£ ol 3
Eq. (3.18) becomes pt * PV.u = 0.

~ ~ ~

Define v = (u, v, 0) and

.E_=(C$CaC)=2le_(+va

£1 203 N -
Fdn e & Ix ay’
Note that £.v6 = £.VO

(see Egs. (3.24) and (3.25)).

The operators g; and g; do not commute:

(A1)

(A2)

(A3)

(a4)

(A5)



Hence, for any B,

D98 0 B, Mo 3y o8
Pt 9% = 0% ‘Dt ax’ 2. Ox

(1-y )
D8 .2 o8 Mo 2w o
DEAOY" T8y DY dy " 20 0%

(1-y )

Bu

B Obce 0. DB =5
Dt (az) " Oz (Dt) dz’ B

DA D aV Ny IR v PN A
5;g=ﬁ(—$)-@Nm—cyg+—*7——(u+v)+..

(1=y)
e T R s (A7)
Dt =2 Dt ' Jg’ " ‘& VIV Dl T Ee e
D"_D a:' 8:1 S e SR
ﬁga-ﬁ(‘é;-a—y) + 2Qv = (g.V)w—CBV.g $isiainn

(Here + .... indicates pressure gradient terms. They are of no
special interest since it is readily shown that they vanish in the

subsequent manipulations).

Put B = 6 in (A6) (assuming D6/Dt = 0) and multiply by aci (where

G T
A -

o 00 st — o o 2, 06
TR L o 5 (1-v%) S ) 3x
O‘E D_(Q)-_a& :agﬁe.,,JL_a_(hz)Q (A8)

2 Dt YOy 2 dy’ 2, oz ‘U Ix

r % (1-y )
~ ~ alAl
D ,06 -2

Hamw - %, 7
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Use (A3) in (A6) and multiply by 90/3x, 06/dy, 06/3z:

36 D it aey Tisn ay 9z, "2 0@
Gene XGleeg (L V)u e S ) Sra .
ey
aeD -~ ae I TN
ot L o0 S
3y Dt (x T)) % 5 (CV)v 2,05, (A9)
o6 D A 90 22
=2 a2 (r v
3z bt * $a) = @ 3= (L.V)w +....

Upon addition of the 6 equations (A8) and (A9), the third order terms

A A

involving Ci or (C.V) sum to zero, as also do the terms in y/(l—yz).

Hence
\v/
Dot
Dt P +
Mhach:: =" jn. view: of (A4) -~ establishes (3.23) in the case

| F¢ = D8/Dt = 0. The general form (3.23) may be obtained by

. 3 2 ; / y:
repeating the derivation with the term (1—y2)1 2 FX included on the

r.h.s. of (Al), (l—yz)”2 F¢ on the r.h.s. of (A2) and ag.V(%%) on

the r.h.s. of (A8).
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Figure 1 The (A,9,r) spherical polar system.
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