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1. INTRODUCTION
Gadd (1978) has reviewed the Lax-Wendroff approximation to the advection
equation (equation (1)) and described a modification that is simpie, but
results in significantly improved phase speed errors. The new scheme is only
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second order accurate, but compares favourably with Crowley's (1968) fourth
orcer accurate extension of the Lax-Wendroff scheme and with a fourth order
accurate leap frog approximation. The usual approach to the concept of accuracy
centres on the calculation of individual terms e.g. d 9/5)< in equation
(1). Tkere is no prima facie reason to suppose that high order accuracy in
this sense will lead to improved solutions in all circumstances, and Gadd's
results confirm that it does not. It is natural to seek a definition of order
- of accuracy that is directly related to the effect of an approximation.on the
solutions of the equations. In this note I point out that
(i) there is such a definition of "order of accuracy"
(ii) Gadcd's new approximation is second order accurate, but close to an
approximation that ig third order accurate.
(iii) there exists a leapfrog, or time centred, approximation to the

two-dimensional equation that is fourth order accurate in this new sensc.
The two-dimensional version is not a naive combination of two one-dimensicnal

versions. As in the case of Gadd's modification of the Lax-Wendroff

approximation, this new approximation is stable for longer time steps
- -than those possible when the spatial derivatives are calculated with fourth
order accuracy.
2. THE ACCURACY OF GADD'S APPROXIMATION
The accuracy of a finite difference approximation to an equation can be assessed

using the dispersion relation equation (2), provided only that a dispersion




relation exists. The dispersion relation is usually obtained by substituting

solutions of the form exp ¢ o~ E-lex ) , where, for simplicity, I have -
supposed that there are only two indepen&ent variables X and £ , and
deriving

o~ p=( ) : (2)

For equation (1)

O\—.U-I( (3)

Any genefal solution to the equation and boundary conditions can be writte
as a linear combination of such Fourier functions, and it is reasonably to
hope that a definition of accuracy based on the effect of an approximation
on the dispersion rleation is more useful than one based on the accuracy of
approximations to individual terms in the equations.

When functiors of the form exp (0~ E£-lkx) are substituted in the finite
difference equation 5: will only appear on the product ~ St and k as

the product ¢ X « The dispersion relation takes the form
~CEb =S (lSx) W)

where, as in the continuous case, the function o~ depends on other variabdles
e.g. (L , but now also €x and SE . The approximation is nth order accurate
if :

o O((kay“B (5)

The expansio: ig in the non-dimensional variable i.e‘SK , which i; small
for waves exp t;'(\( that are well resolved (i.e. have many gird points within
a wavelength). Since the derivation of equation (4) involves all terms in the ¥

original equations, it is clear that this approach combines the effect of
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time and space ( £ and x ) truncation, and this advantage is brought

out in the discussion of Gadd's modification to the Lax-Wendroff approximation.
It is possible to achieve higher orders of accuracy in the dispersion relation
using only second order approximations for the individual terms of the equation.

Gadd approximates equation (1) in two steps

*\.fw\ _ =X ~n }A -

O, = 18D, - % (SeX ®
A+ a+ b +h

9.) = 9-;\ .—/(/\E(I+Q\(gx9>) —“(ggg ey") ;(7)

where the no*ation follows Gadd i.e. where "1 labels the time level
( L=+ anlt ), ) 1labels the spatial grid point ( x=xXo+3y $x ),

and = wStl/¢x . Gadd showed that this spproximation is stable for

gt of
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and arbitrarily (or with a view to reducing the dissipation) chose the limiting

case. Substituting exp (k=1 x) in equations 6 and 7 gives

erp (CXEE) = 1- 2t smn ' LI+ ¥z el et
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where A = lkSx/2 . (Equation (9)is cquation (11) of Gadd (1978)).

The series expansion of O~ for small X gives

> Cles AL~ “’/3/4‘;(}( l—/ui-2c«\

(10)
T A AL Gy /) Yol



The exact dispersion relation, equation 3, can be re-written

rbE= 2 | (11)

oo > = 4 O(RY) onlyit

o sl T=Aa) (12)

For this choice of a there is an error in the < \ term, and the scheme is

third order sccurate and fourthorder dissipative. Tables 1 and 2 give

the damping per time step (exp ( —T,.c &~ $t )) and the relative phase spceds

( Re &/o~") as functions of A and wavelength and are directly comparable

with Tables 1 and 2 of Gadd (1978). It can be seen that equation (12) gives

a significant improvement in the phase speeds but, as eipected, it is more

dissipative than Gald's choice. Figures 1and 2 show the result of advecting

a step function through 100 time steps using the two schemes. It is worth

commenting that equation (12) gives fourth order accuracy in the phace speed,

and that the effect of the dissipation of either scheme is nc*t always

undesirable.

3, AN ACCURATE LEAFFROG APPROXIMATION TO THE TWO-DIMEHSIONAL ADVECTION EGUATION
The approach described above can be used to derive a fourth orde. accurate

approximation to the two-dimensicnal advection equation
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The new approximation is

" n- 2 5" -
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where ~ = vSe/Q\/,)a: '/3(!-—/&1> and L:l/?(l—\)“‘)-

Figure 3 shows the result of advecting a step function through 100 time steps using

this scheme in one-dimension, and can be compared with figures 1 and 2.

Equation (15) is stable for

|pal vl L 1-¢ {15)

where ¢ = 0,009. ¢£= (O if A and \) are both less than 0.856. > ©/>x

and 0O /5\1 are calculated with fourth order accuracy if ~ \—./u\ =)

and o= b= 1/32 , but the advantage of this accuracy is lost ii time

truncation is significant ( )A or V not small), and these choices give a

scheme that is only stable for l/./kl +1ivl € 3,
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Wavelength in grid lengths (L)

A 2 3 b 9 6 V4 8 9 10
1.0 l1.00 11l.00 1.00 11.00 1.00 1.00 1.00 1.00 1.00
0.9 0.83 0.92 0.97 0.99 0.99 1.00 1.00 1.00 1.00
0.8 0.59 0.83 0.94 0.97 0.99 0.99 1.00 1.00 1.00
0.7 0.31 0.76 0.92 0.97 0.99 0.99 1.00 1.00 1.00
0.6 0.03 0.74 0.92 0.97 0.99 0.99 1.00 1.00 1.00
0.5 0.25 0.77 0.93 0.97 0.99 0.99 1.00 1.00 1.00
0.k 0.50 0.82 0.95 0.98 0.99 1.C0 1.00 1.00 1.00
0.3 0.71 0.8 0.97 0.99 0.99 1.00 1,00 1.00 1.00
0.2 0.8? 0.95 0.98 0.99 1.00 1.00 1l.00 1.00 1.00
O.1 0.9?7 0.99 1.0 1,00 1.00 1,00 1,00 1.00 1.00

Table 1. Damping per timestep as a function of the non-dimensional advecting

Velocity (1) and the wavelength in grid lengths (L) for a ="2(i- Y

Wavelength in grid length (L)

ix 2 3 4 5 .0 8 9 10

1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.11  1.03 1.01 1.00 1.00 1.00 1.00 1.00 1.00
0.8 1.25 1.03 1.01 1.00 1.00 1.00 1.00 1.00 1.C0
0.7 1.43 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00
0.6 1.67 0.93 0.97 0.98 0.99 0.99 1.00 1.00 1,00
0.5 0.00 0.85 0.9% 0.97 0.98 0.99 0.99 1.00 1.00
0.4 0.00 0.77 0.91 0.96 0.98 0.99 0.99 1.00 1.00
0.3 0.00 0.70 0.88 0.95 0.97 0.98 0.99 0.99 1.00
0.2 0.00 0.65 0.87 0.9% 0.97 0.98 0.99 0.99 1.00
0.1 0.00 0.63 0.85 0.95 0.97 0.98 0.99 0.99 1.00

Table 2. Relative vhase speed as a functiorn of the non-dimensional advecting velocity

it T
and the wavelength in grid lengths (L) for o-= K (1- 4 )
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Figure Captions

1. A step function after advection through 100 time steps for 5 values of the
non-dimencional advecting velocity }A-:LLQ(:/§X'. Gadd's modification of the

Lax-Wendroff scheme was used with ex = 2/ ( l—/L(L\ .

2. A step function after advection through 100 time steps for 5 values of the
non-dimensional advecting velocity At=wuS&[€x . Gadd's modification of
the Lax-Wendroff scheme was used, but with cc = 732 ( l'/L(‘§ rather than the

value proposed by Gadd.

3, A step function after advection through 100 time steps for 5 values of the
non-dimensional advecting velocity iA= wlt/Cx, The advection scheme is
leap frog and leads to a fourth order accurate dispersion relation. A small

amount of fourth order dissipation gives results very similar to figure 2.
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