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ABSTRACT

This paper considers the advantages of the using multiple fields of view to specify the cloud
top pressure for use in a TOVS retrieval scheme. It is discussed initially as a physical constraint
applied in a 3-D analysis but the viewpoint taken is one of retrieval accuracy rather than as a
more general NWP analysis problem where priorities and considerations may be different.

Because strong physical constraints on the retrieved field are already present to a large degree
in the model background used, it is thought that full 3-D analysis will be of limited benefit ex-
cept insofar as the reduction in measurement noise that it gives.

A strong physical constraint not available in this way is the consistency of the cloud top pres-
sure between local soundings. A method of applying this constraint is presented and a practical
implementation described. It is found that the constraint has beneficial effects on retrieval accu-

racy in a significant number of cases.

INTRODUCTION

TOVCEFG is an iterative scheme for retrieving atmospheric parameters from cloud-contami-
nated TOVS radiances (see Eyre 1989 for details). An iterative method is required because the
presence of cloud makes the relationship between radiance and atmospheric state highly non-lin-
ear and a solution to the inverse problem cannot be found analytically. TOVCFG employs
Newton's Method to find the most probable atmospheric state given a forecast model back-
ground and the measured radiances. For TOVS sounding purposes the atmospheric state con-
sists of temperature and humidity profiles, microwave surface emissivity, surface pressure and
cloud top pressure and amount. Retrievals are made for each field of view (FOV) separately
and as such they are effectively one dimensional (vertical) analyses of the radiance data. In the
future we might hope that analyses of radiances would be done in 3 or even 4 dimensions and
simultaneously with all other data in order that the information contained in them is fully
utilised. Qualitatively, the strong correlation between background errors for a local group of
soundings allows all the radiance measurements in the group to be used to estimate a single at-
mospheric state. Of course correlations are not unity and the measurements should be weighted
appropriately (in a statistically optimum scheme) by a background error covariance which
specifies these correlations. (They should also weighted by a measurement error covariance.)

We may expect most state variables to be slowly changing in the horizontal and, by implica-
tion, the corresponding background errors will be highly correlated over short distances. The



exceptions are likely to be microwave emissivity, surface pressure (over mountainous terrain)
and cloud amount.

Suppose we had a set of measurements at different frequencies for each sounding location.
Then, with the horizontal correlation of background errors we would effectively have many
more measurements of the state variables than from a single FOV. In fact the channels are the
same at each sounding, and we do not have this luxury, we merely have duplicate measure-
ments of the state which can be combined to reduce noise errors in the normal way.
Unfortunately most significant radiance errors are of a systematic nature (especially in a local
area) and such averaging will not be effective at noise reduction. For the state parameters with
uncorrelated background errors in the horizontal, the 3-D analysis is equivalent to individual 1D
analyses. In the vertical we are making different measurements and analysis is useful not to say
essential.

Analyses can also be beneficial if there are physical constraints on the retrieved state fields. In
4-D analyses the model dynamics and physics provides a strong constraint. For example, a
sounding analysed at model time zero may affect the model state and therefore the analysis of a
sounding at some later time. Similarly in the 3-D case a sounding at one location can affect the
analysis of a sounding at another location because atmospheric fields are only allowed to take on
balanced or realistic forms; gradients must not be too high, curvature not too great etc.
However, a large part of these physical constraints are already implicitly in the model back-
ground used: realistic dynamics and physics have produced the background field by integration
from the previous analysis. One physical constraint not implicit in the background involves the
parameters describing cloud conditions in the FOV. This is because the NWP model used (Fine
Mesh) does not carry cloud explicitly (and is unlikely in the forseeable future to be able to
specify cloud cover in the small area of a FOV). Physical constraints relating to these param-
eters are therefore not implied in the background field and there may be a strong case for 3-D
analysis to apply them.

We can put no realistic constraint on the the cloud amount, n, found in FOV. If we knew we
were observing a large cloud opaque cloud bank then there may be a case for setting n=1 for all
such soundings. But generally the cloud amount in adjacent FOVs will be random and therefore
unconstrained.

The cloud top pressure, Pc, is however correlated between FOVs. It is not the same for all
FOVs but, for local FOVS, it is probably not too different. How tight the constraint can be is
dependent on the type of cloud present: for stratus it can be very tight, for mixed layer cloud it




must be loose. Information on cloud type is not generally available in real time TOVS process-

ing especially where imagery data is not used, it is certainly not available in TOVCFG.
Inevitably then, the constraint on P¢ must be fairly weak, so will it be at all useful?

The next section describes how the initial estimates of the cloud parameters are obtained in
TOVCEFG and the ambiguity that arises between n and P¢. This ambiguity allows large compen-
sating errors to exist in n and Pg¢ especially when n is small or P¢ high. It is possible then, that
even a weak constraint on P¢ may be effective.

FIRST GUESS CLOUD PARAMETERS

The model background does not contain a cloud amount or pressure, so they are set arbitrar-
ily at 0.5 and 600 mb and with errors of 0.5 and 400 mb so that there is no effectively no con-
straint from the background values. TOVCFG then proceeds by solving for the most non-linear
parameters first, namely the cloud, then for the weakly non-linear parameters as well, humidity
and temperature. A refinement is an initial adjustment of the temperature and humidity by the
microwave measurements which are transparent to most cloud. The cloud estimation proceeds
as follows. Clear radiances and overcast radiances for cloud at all model pressure levels are
calculated and the straightforward relationship between cloud amount n and the FOV radiances
then allows an analytical solution for the n and P that best fit the measurements (with the
temperature and humidity profiles fixed). The measurements used for this 'first guess' cloud
estimation are just the HIRS longwave channels 7 and 8 (for a full discussion see Eyre 1989).
For each possible n and P the calculated HIRS 7 and 8 values will differ from the measured
values, the squared difference is often called the 'cost' or distance. Since we only have two
parameters in this initial estimation we can actually draw this Cost function as a two
dimensional field. A diagrammatic example for cloud conditions of 0.6 amount at 400 mb is
shown in figure 1:
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Figure 1 Cloud parameter Cost function
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We have shown a case where the minimum of the cost function corresponds to the true n and
P¢ and has a value of zero. That is we have fitted the measured radiances exactly with correct
cloud parameters. In a real case there will be background! (profile) and measurement errors so
that the minimum will neither be zero nor found at the true parameters. We have to accept that
the true n, Pc may lie anywhere where the cost is below a certain value, €, defined by these er-
rors. Suppose that this cost level is shown by the shaded region in figure 2, then the range of
possible cloud parameters can become large. Two cases are shown in figure 2. The left hand
plot is for a large amount of cloud, the right hand one for a small amount, both with the same
true cloud pressures. In both we can see the n-P¢ ambiguity, decreasing n can be compensated
by decreasing Pc_ i.e. by having less but colder cloud. It is also clear that the ambiguity is
greater for smaller cloud amounts. In the limit of small true n (or high P¢) then all values are
possible because there is no effect on the radiances: zero cloud at any level has no effect; any
amount of cloud at the surface has no effect. This is not to suggest that the cloudier FOVs are
more useful because the cloud conditions are better defined: more cloud implies less radiance
comes from the atmosphere and therefore the less information on the state parameters we really
want to retrieve. It is possible to retrieve cloud parameters well from the cloudy FOVs, but not
the temperature profile. Conversely, FOVs with very little cloud provide good profile retrievals,
poor cloud retrievals. FOVs with intermediate amounts of cloud may give poor retrievals of
both and it is with these that we hope the 3-D analysis of cloud pressure can help. If we know a

1 the background appropriate to the cloud estimation is the original NWP model background modified by
one iteration using only the MSU measurements.
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priori that the cloud in each FOV is at a similar height then we can reduce the uncertainty in P¢

in the less cloudy FOVs to the range of pressures common to all FOVs. The uncertainty in n
will correspondingly reduce.

Figure 2: Cloud cost functions for small and large amounts of cloud
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A possible APPLICATION of the CONSTRAINT

The cost function referred to in the last section may be written as,
8
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where R; is the radiance calculated in the ith HIRS channel for n cloud cover at Pe. R;n is the

measured value and E is the expected measurement and forward model error2 . (jf is propor-
tional to the exponent of the gaussian probability of occurrence of the calculated and measured
values when all errors are equal and uncorrelated.) We can write the cost function for all the M
FOVs considered in the analysis as,

2 pecause the profile is constant during the cloud estimation, the forward model error should include the
contribution from background errors. I.e. the cost of not fitting the measurements with the calculated
radiances is reduced to allow for fact that the background profile is erroneous.
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We can write the physical constraint on P¢ as a cost function or 'pressure penalty':

= 1
1
Py ), ol 5
ep
m=1
where Py, is the cloud top pressure estimate for the mth FOV, Py is the mean value for all
FOVs and op is the expected spread of the pressures in the group. (This formulation assumes
that the group is small enough that o is appropriate to all members, with a large group the Ppar
could be replaced by Po for some central FOV, and o} could be a function of distance.) The

total cost function can now be written,

J=rem-g E [jrm*{Pm'Pbar}z“l—z} s
Cp

m=1

and can be minimised with respect to the M cloud amounts and pressures. Note that in the
limit of high Ops i.e. no physical constraint, the solution reduces to individual FOV cloud esti-
mation. Equation 4 would be minimised iteratively, first finding the ny, and Py, without the
constraint to obtain a starting point. There are several considerations if equation 4 is to be min-
imised. Initially ny, and P, could be found without a constraint since there would be no mean
pressure. The iteration would then be allowed to proceed until convergence defined by negligi-
ble further changes in ny and Pp. E and o must be specified reasonably well if only to
preserve the relative size of the two terms in the cost function. 6 may be set to achieve different
things. Set to accommodate most spreads of cloud heights (i.e. large) it will then apply a loose
constraint but one which should operate everywhere. However it may be desirable to apply the
constraint to those cases where there is more uniform cloud and therefore a good case for it. p
should then be small. This runs the risk of forcing erroneous cloud pressures on FOVs that
genuinely have cloud at a different height to the rest of the group. However, it should be possi-
ble to check the individual jT term as the iteration proceeds and where it gets too large, i.e.> €,
remove the FOV from the analysis. This is a form of quality control.
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A PRACTICAL SCHEME

The 'pressure penalty' method of applying the constraint outlined in the last section has not
been tested here. The uncertainties in the cost function weights and the need to investigate a ro-
bust minimisation scheme and quality control suggested that initially a simpler implementation
was needed. The method used we might call the 'preferred pressure' method.

The projection of the shaded regions in figure 2 onto the pressure axis give the possible cloud
pressures for the FOV. A large range of pressures is found for small cloud amounts, a small
range for large cloud amounts. The method matches the possible pressure ranges to find those
‘preferred pressures' which are compatible with each FOV in the group. This is shown dia-
grammatically in figure 3.

Figure 3: 'Preferred pressure’ method
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are shown by a vertical bar, example cloud amounts are given and the set of preferred pressures
is indicated. ny, and Pp, are found by minimising the cost function within the range of preferred
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pressures and for each FOV separately. In this way the information on P in the cloudiest FOVs
is conferred to the less cloudy whilst allowing for inevitable variation in cloud top pressure.
Establishing the cost level € which defines the possible pressures is an analogous problem to

that of E and op described in the previous section except that here only the combined effect is

required. Nevertheless, calculating the cost level from the available information (measurement,
background errors and spread in P¢) is non-trivial and open to interpretation in the same way
that op is. For the experiments described here the cost level was set empirically to obtain plau-

sible possible and preferred pressure ranges.

The method can in principle allow for groups containing one or more FOVs which have dif-
ferent cloud heights (non-homogeneous). There may not be a set of preferred pressures for such
a group, and in this work, where this happens we resort to individual unconstrained estimation.
A more sophisticated version could identify the homogeneous members of the group and subject
just these to the constrained estimation. There will, however, be cases where preferred pres-
sures are found for non-homogenous groups and the constraint will be applied to some FOVs
inappropriately. However, since the estimate obtained from minimising the cost function subject
to the constraint will still have a cost < €, it is effectively no less reliable than the estimate from
the unconstrained minimum. We therefore expect the constrained minimisation to produce better
estimates of the cloud parameters when the constraint is valid, and estimates as reliable as the

unconstrained solution when it is not.
IMPLEMENTATION with the CATHIA data set

The scheme was tested using the CATHIA data set supplied by the Centre Meteorologie
Spatiale. CATHIA comprises high quality colocated radiosonde, TOVS and AVHRR data from
the NOAA-7 and NOAA-9 satellites though only NOAA-9 data were used here. Each
radiosonde in the set is colocated with between 8 and 12 TOVS soundings immediately
surrounding the sonde location. The set was designed to represent all types of cloud conditions
and is therefore well suited to testing the cloud analysis. One limitation is the lack of a forecast
background profile needed by the inversion scheme. This was circumvented by generating
profiles from the radiosonde with error characteristics given by the background error covariance
used in the retrieval. The retrieval accuracies shown later are therefore optimistic in that real
forecast profiles do not have errors defined exactly by this covariance. However, the removal of
a source of retrieval error not directly connected to the cloud estimation problem is unlikely to
invalidate results and may, in fact, clarify them somewhat.
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The CATHIA colocations provide a straightforward way of defining the groups needed. The
crucial cost level was obtained completely empirically by seeing how the preferred pressure

ranges formed with different values. Table 1 shows the preferred pressures for the NOAA-9
groups as an underlined number; the cost level that gave this was 5 (mw.st-1.cm.m"2)2. The
number itself shows how many FOVs for that group had that pressure selected by the original
unconstrained estimation. Consequently, a non-zero figure that is not underlined represents the
FOVs where the estimated pressure changed when the constraint was applied. The number of
these for each group is indicated in the right hand column and totalled below. The exception to
this is where no constraint was applied because no preferred pressures were found (indicated by
bold face 0 in the change column). For example, the fifth row reading 071000.... means that
the preferred pressures were the uppermost two levels, i.e. 150 and 200 mb, and that the 1D
estimate gave 7 FOVs at 200 mb and 1 at 250 mb. The 1 at 250 mb was moved by the 3D
estimate to be either 200 or 150 mb (depending on which had the lower cost).

55 FOVs, about 20%, have a different cloud pressure as a result of the constraint though 14
of the 32 groups had no preferred pressures. 9 of these 14 groups were classified in CATHIA
as mixed cloud type; this classification is given in the last column of table 1. Overall, if we
consider the use of the constraint an indication of single layer cloud and no constraint to indicate
mixed layer, then the scheme 'agreed' with the CATHIA classification for 20 groups and
'disagreed' for 9 (2 groups have an ambiguous CATHIA class). Probably a more sophisticated
scheme could have identified homogeneous subsets in many of the mixed layer groups and the
constraint could have been applied more often. Of course, we could have achieved the same
with a cost limit higher than 5 mw2 but the preferred pressure ranges would have become wider
and consequently the number in the change column correspondingly smaller. We re-emphasis:
this method is very empirical. It is interesting to note that many of the changes are from the
lowest pressure level allowed in TOVCFG (950 mb i.e. second column from right in table 1) to
higher levels.

VALIDATION

The broad agreement with the CATHIA group classification indicates that the constraint is
being applied in appropriate cases. A more detailed validation is required to establish whether
applying the constraint is of any use.

A validation of the cloud estimates, although the most direct measure of success, was not
possible; good cloud estimates are hard to come by. Two estimates were available: the classifi-
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cation of cloud type and cover by CMS which is in the CATHIA data set and an estimate from
the AVHRR data. The human estimate from CMS was made from examination of the AVHRR
imagery in a rectangular box large enough to accommodate the HIRS FOV. Consequently, the
estimate is not of the actual FOV coverage. Additionally, the cloud amount defined in TOVCFG
is an effective amount which allows for semi-transparent clouds. For example, a FOV fully

covered with cirrus with a transmission of 0.5 would have a TOVCFG n of 0.5. The human
estimate would be 1. This is a problem also with AVHRR. Estimates from the image data can be

Table 1: underline 0052 = preferred pressure with cost limit @ 5§ mw?2

Pressure levels: no. in group: Changes: CATHIA
150 Mb..cvrreeeeieeeeennns 1000 mb (O:no constrajnt) mixed ?

000000011301000020
000000000010023020
000001000001241000
030200100200000020
071000000000000000
000000010000000080
000000000000003050
020031020000000000
000000000000000080
000322001000000000
002411000000000000
010000120111000020
000000223200000000
030000000000000320
011001000001000050
000000000000000090
020002210000000010
011000000000000060
031100000000000040
021200100000200010
000000000100022120
000000000121201020
021000000000010050
000000000100100600
000001001000001140
044210000000000010
001125000000000000
010011000000000050
000000000000070010
000000000000027000
060000000000001110
000110000100000060

Total: 276
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made in at least two ways. By identifying and counting cloudy pixels in the HIRS FOV the
estimate will be similar to the human one and will be over or under depending on whether the
tests for cloud contamination are more or less stringent (see Saunders 1988). Another method
with AVHRR is to establish the cloud top radiance, Ro, from fully cloudy pixels (tests are
available, see previous reference) and also the clear radiance, R¢. The cloud amount then
follows from the expression for the FOV radiance R:

R = nRg + (1-n) R 5.

Two assumptions made here make the estimate unreliable: that the cloud is opaque so that R,
contains no contribution from the underlying atmosphere; that the cloud is flat so that the pixels
used for R, are typical of the whole cloud top. If the cloud is at all transparent Ry will be too
high and the cloud amount too large. If the cloud is not flat it may be that the fully cloudy pixels
will be biased towards the central higher parts leading to an underestimate of the mean cloudy
radiance. AVHRR estimates are therefore most accurate for opaque flat clouds which are mostly
found at low levels. TOVS cloud estimates, conversely, are best for high cloud. Similar prob-
lems arise with AVHRR estimates of cloud top pressure.

Scatter plots of the AVHRR and TOVS estimates were not encouraging and certainly any
subtle improvement in the TOVS estimates would be hard to see. It is conceivable that with
carefully selected FOVs the AVHRR estimate could provide a ground truth for TOVS cloud un-
der certain conditions. AVHRR can measure the clear radiance in a FOV very well because there
are no transparency problems and, away from coastlines, the scene is usually homogeneous,
particularly over the sea. Some indirect validation of the cloud may well be possible by compar-
ing this clear radiance with the clear HIRS 8 radiance after the full retrieval process has finished.
Of course, this will include all the effects of the inversion rather than just the cloud estimation
and it is not a validation of state parameters. It may nevertheless be interesting.

The validation presented here also includes the effects of the inversion but it is a validation of
state parameters. The CATHIA radiosondes have been used to obtain mean and rms errors
(strictly differences) of the retrieved temperature profiles. Apart from the distance of the
retrieved product from the cloud estimation process there is the additional problem of colocation
error between the sounding and the sonde. This is less of a problem than is usual because many
of the sondes in CATHIA were released especially to coincide with the satellite overpass. Figure
4 is the standard deviation of retrieved temperature profiles with respect to the sonde profile for
just the 55 cases where the cloud estimate changed significantly with the constraint.
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Figure 4: Standard devlation of retrieval errors
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The background accuracy is shown for reference and it is interesting that for most
tropospheric levels the retrievals the retrievals are more accurate for both the 1D and 3D
(unconstrained and constrained) cloud estimation. Other experiments with TOVCFG on real
data fail to give results as good as this but, as mentioned earlier, results here are optimistic
because of the exact specification of the background error covariance.
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The increase in accuracy of the retrieval when the constraint is applied is very apparent espe-
cially at levels below 600 mb. It is at low levels that we might expect most gain because the 1D

cloud errors here are larger than at high levels (see Eyre 1989). The gain in accuracy is
around 0.1 K rising to 0.5 K at the surface. Figure 5 is the mean retrieval sonde difference and
shows similar improvements with the constrained cloud estimates. A reduction in negative bias
of around 0.1 K is found up to 400 mb.

SUMMARY

The use of multiple FOVs to aid the estimation of cloud parameters for a non-linear TOVS
retrieval scheme has been discussed as a physical constraint in a limited 3D analysis of the data.
Cloud parameters that are well defined in cloudy FOVs are used to constrain the parameters and
therefore to aid the profile retrieval in less cloudy FOVs. One semi-rigorous (‘pressure penalty'’)
method of applying the constraint was outlined and a more ad hoc and simpler (‘preferred pres-
sure') method was described and tested on semi-real data (measurements were real but the
background was simulated). The scheme's classification of groups of soundings as to whether
they had single or mutli-layer cloud was largely successful as judged by independent human
classification.

The impact on temperature retrieval accuracy in cases where the constraint was applied was
small but significant: the same impact in real situations, where retrieval and background accura-
cies are very similar, would be very welcome. This has not been tested here.

The constraint could only be applied to 18 of the 32 groups because we insisted that it applied
either to all group members or none at all. It is likely that the pressure penalty method would be
able to identify sub-groups and apply the constraint more often - if 40% of soundings were to
benefit from the constraint it would be a significant gain. We think the pressure penalty method
would be generally more flexible and powerful than the preferred pressure method and is likely
to be the subject of any future development.
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