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Implementation of Digital Filters

Using Recursive Techniques

1. INTRODUCTION

The intention of this paper is to describe how filters, such as the classical
Butterworth, Chebychev, Bessel etc., or else control loop elements, can be
implemented in economic digital hardware or software using a recursive technique.
Some emphasis is placed on low-pass filters, although the methods are applicable to

all types of filter subject only to the Nyguist constraint.

The results will be appreciated, and can be avplied, most quickly if the
theory sections 2, 3, I are skimmed or even omitted at & first reading =zs Feva
worked examples are given in section 5. The interested resder will find much of

sections 2, %, 4 described at greater length in Tou (1959).

2. SAMPLING

A digital filter implementation ideally samples instantaneous values of
data from the input data stream %(f)regularly every T seconds. We will sssume that

there is no energy inx{t) with frequency above the Nyquist frequency F£32 ’/21‘ Ha.

<
The resulting time sequence X (t) can be represented by:

x°G) = x(e)- S () i

where Sr{t) is the ideal sampling function:

@) T S (z-nT) (2)

consisting of a series of Dirac Delta Functions S(t)separated by T seconds,
and:
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J{i’) T = / Function,
e
Note that in this form 2 (t> is a continuous function, and so is 5

5til)l amenable to analysis.

The Ideal Sampling Function is periodic in t (period T), and so can be

analysed into a complex Fourier series:

Sr(t) = 2 Cnz (1)

where &£ * i‘_{; and the €w A« are the Fourier coefficients. Multiplying
(4) by ji""‘t and integrating, we have:
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From (1) and (5), the sampled data stream can be expressed in terms of the

original data stream by:

o ;ﬂ‘)’t

Yale LS e 6

T ne -0 -

Thus the analytical form of XQ?) consists of the original x(t) {f'f- "’0).
multiplied by a gain factor -.-;: ; together with other freguency bands similar

to those defined by () but shifted in frequency by multiples of &% , and also
multiplied by‘ -.;‘.‘ « The latter property is mgre easily seen by taking the Laplace
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The original data can thus be recovered coﬁpletel& from.jénﬁt)with a low-pass
filter having a sharp cutoff at the Nyquist.Frgquency"E? and flat group delay,
provided that there was no energy in x[t) naving frequencies above 3‘ .

(Such a filter would have a long and complex impulse response and would be
difficult to realise in practice, but this does not invalidate the argument.

In practice we may be‘p}epared to keep the bandwidth of‘x{l)below the Nyquist
frequency in exchange for satisfactory realiseable filters), If fhis is done with
a unity gain low-pass filter, the original ﬁﬂ)is -recovered y:ith a gain factorT-L

due entirely to the sampling process.
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FILTERING

(a) Basic Filtering

One possible reason for sampling is that we wish to modify, or filter,
x’[t) using & digital system. This is more easily considered as a multi-
plication in frequency space of the input spectrum x’(‘)‘oy a filter

«
characteristic expressed in sampled form to produce an outputy (5)

We may require the filter to have the characteristic poles and zeroes
of a continuous filter F(s), and the corresponding impulse response f(t).
Sampling the impulse response as before, we may combine (1) and (2)

(substituting f for x) to obtain:

@) s bl 2, S(rnT

ns -

°° t
or: f"[z) = Z F(%T)'S(/t""_’-) (8)

w2

Ry analogy with eguation (6), this representation of F(t) gives a gain

of :'!_- . Therefore we will realise f{t) by Tf"(t)_:

@
Realise f(f’) Ar Tﬁ*(t)_ s T Z F(n'r). S/t—n-r) (9)

_ wre
and i2e Inverse Laplace Transform:
* - -n$T
Realice F($) by TF(s) = T 5 f(n7) 2 (10)
nwe

So that we have in the frequency domain
VH(5) KP()TFH(s) 2 = Y(5) + hight frquuamcice
vhure Y () = X(5) - F(s)

and a similar expression involving convolution in the time domain.

(1)

(b) Cascading of Filter Stages

It is possible to cascade filter stages. In the case of a multiple
low-pass filter, it is quite possible that after filtering )((_t)by the
first stage, there may be negligible energy in y{‘t)above some frequency
very much lower than the original Nyquist frequency. A great reduction in
computation can now be achieved by sampling at a lower rate. A small
penalty is incurred by aliassing the energy that does exist above the second
Nyquist frequency into lower frequencies, but this can be arranged to be

negligible.
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To accommodate varying sampling rates, we will now change our
notation, and represent the waveform »n(¢) sampled by the ideal sampling
function at intervals of To as X T"*(t) « To implement our first stage
with sampling period T, (T,s m,Te , m, >/l) , we need to relate

1",4=(‘) to an input function X '*(5) to the first stage:

—— —cv—
Consider a signal X(‘)sampled at the two intervals le and !¢ , where
in both instances the first Dirac Function occur at Z20 . By analogy

with equation (7) we have:

- o
o¥ L jn 2Z
X 7 (s) T 4 X(S#’n-r,

-
T, ' o
s S a— . AT
x () -r-‘ ’?:-”X($4)n,;:—

If we assume there is no energy present above -the lower Nyquist frequency
- " . .
Oy = -7’.‘ s then we can recover X(’) from the sampled gquantities by
’
filtering off any quantities & ) -.;r'.‘ . This leaves only the value
[

under the summation for n = o.

Denoting filtering by a bar, we have:

X8 e o X ps) n T o X )
o X))+ xT () . (12)

If we consider only the practically useful case where M .is an integer,

T.®
we can generate X (t) from NT”'(t) oy selecting the first and
7.8

thereafter every m, pulse. In this case equation (12) is what one would

expect intuitively.

We can now implement the first stage of our filter: .
| SR
\/ (;) )( (’) 7 (‘) To o, ‘/, (f) plus higher frequencies

)’, (f) plus higher frequencies

or for n stages, each having integrally related sampling pericds T; - "*.7—0 s
wo o~ -
'E:ptﬂ'; 9" Int My ln.y yhere the m values are all integers YV ly and

the first sample occurs in every case at t=o, we have:
I* e o o T
Yot tsla m o e T L)

G o B TRl )

& : ‘ (13a)

In® ) Tn"[ ) ‘”Tn*(f)

Tl (52




To- % g
where “f,}., (t)< an be generated from ey (/t) by selecting the first,

and every subsequent M.pz"'pulse, and: »

(8 2o VR B FnGY. i

/s

Provided that there is no significant energy in \/f/‘) above the

e

.T';qu

frequency &y= 7

{c) Mechanisation of the Recursive Filter

In practice the filter will be presented with a time series.ﬂ[?)
so that mechanising the filter spectral characteristic is most easily
performed in the time domain. This could be done by using equation(2) to
generate a sampled impulse response. Direct convolution in the time domain
would then give the sampled filter output. In principle, however, the
impulse response of a filter whose transfer functions can be described by
ratios ¢f polynomials in § is of infinite duration, and is likely to be
long even if truncated when the truncated tail contribution is °
of the corder of the expected noise levels. This is expecially true if
the ratio of the Nyquist frequency to the low-pass filter cutoff frequency
is large. This type of Direct Convolution digital filter requires typically
100 multiplications per timestep, which is computationally expensive. Filters
of this sort are described by Craddock (1968 ), Pesaresi (1971) and
Linnette (1961).

A more satisfactory solution is to make use of equation (10) which

describes the sampled Transfer Function:

FS
Vie' (5) a0 (14)
For filters whose continuous transfer function can be described as poly-
~(avib)T ]
nomials in s, f(nT) can be expressed in the form ZE:C y which .

means the R.H.S. of (14) can be summed as a geometric progression to a
concise expression. Multiplying out the concise form of (14) and taking
the Inverse Laplace Transform, ye obtain a concise recursive relationship

in1&~n- and19uv - This will be made clear from the examples shown below.
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Evaluation of ;‘V:n & ‘)";:oﬁx.r'p:‘e'vibﬁs" v&lue_s-»'pfrﬂrn-i"éné&w 'Vf!ﬁﬁbéi;uire»,’
cne multiplication per pole or zero in the filter stage "heing-conﬁidered
plus one. The first stage can often be "arranged to be a single pole, requiring b
two multiplications. It will be shown below how the multiplications can

often be degenerated into accumulator shifts, giving the bulk of the
multiplication as two accumulator shifts per timestep.
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L. INTERPRETATION CF THE OUTPUT

Analytically, the output of a sampled process consists of a series of
Dirac Impulees where strengths denote the required signal. In practice the digital
machine presents a value at each output sampling epoch which is a code pulse
modulated representation of the amplitude pulse modulated analytical signal.

To retrieve the continuous output signal (suitable, perhaps, as part of a
control system) it would be possible to fabricate a device which generated a
suitable approximation to the Dirac Impulse of designated strength which was then
filtered by a unity gain low-pass filter. The response (delay) of this filter
must be taken into account. A mathematical equivalent would be to take the
Fourier Series for the discrete time series, which will have a maximun
frequency of &dy= . s and then increase the number of high frequency Fourier
components by addiné?coefficients of zero. The inverse Fourier Transform will
give the output samples as before, but with extra samples at the correct
amplitude between the machine generated samples. In the limit of infinitely high

frenquency Fourier coefficients the output is described at all points in time

Q.
)

and effectively becomes continuous. EXither operation will generate a continuous
: ] ’ . ! :
waveform of precisely the correct shape, but with a gain factor ?:' corresponding
”
ts

te the effec of sampling (equations (6), (7), (13)).

et

n practice few would attempt the ideal filtering situation above. In
particular the Dirac Impulse generation might be approximated by holding the
output value as the equivalent analogue voltage'vssr for a vanishingly small time
T secs before low-pass filtering. The integrated area under this impulse would
ke 75QQ37 rather than the 14:;- of the Dirac Impulse, and the overall gain factor

becomes T/T; .

Increasing the value of T will bring the gain closer to unity, but now the
"holding circuit' itself becomes 2 filter. The "idesl zero-order hold circuit"
holds the voltage constant between output samples. It has the advantage of

being easily approximated physically, and has the transfer function:

-7

- £
éﬂo % ” (14)

If we coneider frequencies low compared to the reciprocal of 'ﬂ; y then

o 57; P44 ! 3 and:
Guo (s70) = lu({’%-'i) (15)
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samé‘hs the flrst order expanszon of exp@”f:. o 1nd1cating that to first order
the s1gnal JS delayed by Iu seconds.

For many applications we do a0t need to re-generate a continuous time
sequence. Sometimes the object of fllterlng was to reduce the bandwidth of
the input time-series so that it could be sampled (say) every 10 minutes and
the value recorded in order to best describe the low-frequency content of the

original time series. By analogy with equation (8) we have:

S 2 T ow(4) T (e-vR)

420

-

so that we have the expected result that the machine presented values are the

sampled points on the output waveform with unity gain.




5. FewR EXAMPLES

FPUR vorked examples are described. The first is for a single pole on the

negative real axis in the Complex Plane (corresponding to a single time-constant).

. - £ b
The second is for a complex conjugate pair of poles in the left hand half of the
Complex Plane (corresponding to a simple resonant damped low-pass circuit, such

as a single low-passSallan and Key Element). As examples the first is analytically
trivial, and so illustrates the application to digital filters very clearly. The
second illustrates the nmore general analytical approach. The two solutions are
all that is required to implement low-pass polynomial denominator filters of any

complexity.

(a) Single Pole on the Negative Real Axis.

F W1
The filter transfer function is
X > &
, N Ko
| —& —> F(S) N (K arbitrary)
(s+a)

and F(t):: Ka.t.

-
Applying equation (10), implement F(t) by TF (S):

-w3$7 el —faes)nT
TFQ(S) = T 2&7’(“7-) £ op NT Z;-e £ e
s dbeTon oo Fodl 26)
e g.(aw s) _V,n'; ( ‘)

-4'7' SR

ot : KaT - Vr;(f) z Vo-rr(f) Y M V,,:—(S)

Taking the Inverse Laplace Transform:

i & SN
KaT Vinln) 2 Var(n)=- £+ Vi (n-t)

| . ...I ( )r
\ : Vo (#) = KaT Vi(n) + ¢ VE (-0 %

Thus to calculate ‘V:,,—(n) we require two multivlications per timestep.

| However the factor K is present purely to determine the gain of the filter;
with K=1 the gain = 1. We could choose K such that KaT=| , and so avoid
this multiplication completely, allowing for the extra gain at a later
filter stage where the timestep can be much larger. However, for the :
common case where aT is small (and especially on cascaded filters) this

practice can lead to a situation where values of V,,r exceed the

T v nrl’fmx - oy - R N

‘



A

dynamic range of integer arithmetic. A compromise solution is to

implement KaT mainly by an accumulator-shift-right by & suitable number
of places, and allow for the exact gain adjustment in the final cascaded

stage.

This leaves the factor multiplying 1):Lr{\4) . For many applications
the precise value of a may be unimportant, and a suitable value for either
a #T can be selected so that this multiplication can be implemented
accurately by an accumulator shift right and subtract from the previous

value.

In implementing equation (17) the machine dynamic range may bte
important. Suppose we have a fast sensor delivering a signal with energy almost
up to 5Hz, so that T = 0.1 secs, and we require a time constant of 10 minutes.

Tren a7 = l/& 000

-
-

{
£ = 09998332
This number can barely be represented as different [rom unity in 12
in 16 bit arithmetic the accuracy of representing its difference from unity
(and hence the accuracy of representing aT in thie single calculation) is
about 10%. Clearly when aT is small, multiple precision arithmetic may be

required.

This situation can in practice be dodged quite neatly. For the
above example we can pre-filter the signal with an extra filter stage having
a single high frequency pole at s = ~a,. The precise value of & is
unimportant so that it can probably be implemented by an accumulator shift.
As a,T is chosen not to be too small we do not require high resolution,
we may be able to choose K so that Ka,T is unity. Thus the pre-filter
requires only one accumulator shift per timestep in lieu of multiplications.
The function of the pre-filter is to reduce the signal bandwidth so that
a longer timestep can be used for the main filter, making more time
available for multiplications.‘ For the main filter we use a pole at
$2 =&y yhere 4L . L

& " a, " ot . e

The overall filter response will be

R | !
F(s): = :
Gr o) s+ ay) to S2® g gt e B L
: a, e, &, e, «® &6
. rather than the required :
F{S) s Ty, il ! " ; ; :
o o b+
- P ¥ T . ~' ;. 7 st,
but these are equal for low frequencies where ;—; &L { Bl

Dt hs

=14




filter where accuracy is important) is %g‘ﬁigh”th&t the error in

& attgnuation ia unlmportant.
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(b) Complex Conjugate Pole Pair in the Left Hand Half of the Complex Plane.

Fe—— O —>)\ ) &

| MR
| i P 5 (
| Klatro') ~af

A
_‘i_ l | £le) e = . A (03T

K is arbitrary

YR

X -

Applying (10):

TF(s) = TE M) T

nwro
1, = ans?
s KT(QHO)[Z".C ‘ ,{M(unl)]

We wish to sum this infinite series. Let

” —
- o —-—tNE
e 2, . A;M(un'l_)
nee
z e ’
-Ms!
C = Z £ (Unl>
ne*e
ot - -
Then C+¢S - .‘.(ad—cu)n: (
g |~ sede(~(ars-iw)T)

| - }x/p(—(au»Sfc'u)T)
fo 2 ar(uT) (avs)T -(aws)zT'

"

We are interested only in the imaginary part:
-~ (a+s)T
£ N (u'i')
y -9 M(HT) (QOS)T ..(a+s) 2T

Thus
-Sl B

TF’(;) s KT a fU)( . 4.“(07) £ 3
] -~

BT IEGOS 2 BT
-Zm(uT).c-J o e

: : = chr ‘ s)
Vi” (s)

g0
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Cross-multiplying and performing en Inverse Laplace Transform to the

angy

Time Domain, we have:

s . P i o
ke (n) = 2en(0TY £ Vpplnrt) =L Var (D)
+ TK (52.“,,*) ‘e-af 42«(‘-’7)'1};" {n-1)
w
"
4 1],:,: (wn) = c, ¢ V':r (n-1) + Cy- Vier (n-z)
+Cz - Vi (n-1)
Vho The cos dond; axc:
il M
C‘ = 2 M(UT) - 2
c:z " ._‘ifZAT‘ o
Ci* #17F'<'€£;§£3t) £ - 4eal0T)

As before C, is a gain factor. K can be chosen to make C3 unity, or

2z
else the equivaleﬁt of an accumulator-shift-right. C1 and 02 define the po
locations. It may be possible to choose a, & or T to make one of tliese

an accumulator shift, but in general full multiplications must be performed
for an.accurate cascaded filter. t will often be possible to operate a
complex conjugate pole pair at a sampling interval much longer than the
basic data sampling interval because a previous stage (negative real

axis pole or pre-filter) has reduced the input bandwidth.

Using this type of analytical technique other pole-zero patterns
useful in high-pass and bandpass filters, or in control circuits, can be

implemented.

+ SEE  APPENDIX 2
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Ce Complex Conjugate Zero Peir in the Left-lHand-Half of the Compniex Plane

(with two Poles at the Origin).

 $1 Fls) = K{(S-w)zf- u’)
ot — s 2 ? j/
7 N (K artiZomy)
W 2ot T, 9}
H ‘ + "= ¢ o€ o g
G_JL l( g S s" i

¢
by

R Kzf(t) + 2et. 4 (o )2

Y
4
j

Avplying (10):

TF¥s) = T2 #=r) "

od ws7 T.l ) z);';' T“"‘T
i it KT (et v ni £
K + KTgozal g ( n:e '
* - P -ST -7 <2e? 3
K+ Z“Ks; + K7 {dz*Ut)i ;(’*2.:‘«&3,4254»-"5(
|~
T 2"‘__’{__7_. . KTz(o(t'f'U‘) .4“”
= LN
| = < (1~ 4 s')
g Movnls) |
Vi (5)
O+

g &

Vo:r (s) ; | - 2.¢-ST+ ;—Z‘T?
= o:[‘) 5}( -.ZKA"T-;"KIZ‘T-;- 2o KT ,._‘-.s‘r)
¥ KT (4 0Y) e }



Teking the Inverse Laplace Transform:

Vor (2) = 2 Vr(met) = Vour (n-2)
+C K Vi(n)
+ Ca 18 Vi (n-t)
+ K Vi (n-2)

| + 2T
- <2 -~ 24T -T'(a*+ U",))

,{} n
E "

(z0)

This particular Pole-Zero pattern is useful in implementing band-reject notches.,

ot. 1 wigmids

Fis) = £ F(2)= K

T FH(s) - Tf’ Eler)
£ P f,r.[ﬁ«r A }
o K 5 VQ:} (s)
i Viour £/

5- ) o @)

s - Plstlilidsig | et Taiing The Tnansne dofitace
T vt fura

P
Ml n) U lw ) R A )

= 16'_

(21)
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. A Related Topic - The Digital

Differential Analyser

Many functions that require computation can be expressed to first order in an
incremental form. Thus if a previous value of the function is known, and the
variables are incremented, the new value of the function can be calculated.
Specifically, if the solution to the function is calculated sufficiently slowly
so that variable increments can only take on the values -1, O, or +1 (least
significant bit) then evaluating the updated function requires only additions,

and no multiplications.
e.g. for the function Z = X.Y . S.Z s X;Y + V- o X

A e : ) il -
o to calculate varying values of &¥¢ or Aon O :

ain (0+50) = Al + TO- ax6
¢ i (0+¢50) : wrd -~ 36 Aen O

To build up a system, the output PZof a '"Digital Integrater" which
implements 72’7 ’X must also be in incremental ferm. This can be done
without loss of accuracy by taking the increment ¢ Z as the overflow from
an integer counter having the same bit length as the variables.

The Technique can be implemented in hardware or software, the hardware .
configuration involving basically adder and storage elements. Early aircraft
similators used the technique in the form of the '"Digital Differential Analyser"

for solving differential equations, which is one way of describing a filter.

The basic advantage of the method is that multiplications are avoided.
The important disadvantage is that computation asteps must be made sufficiently
rapidly that variables can change by only one legast significant bit, which may be %
very much faster than the rate required to satisfy the Nyquist condition fer
resolving the signal. This may even be useful if a non delayed 'continuous"
signal is required. However, it is probably true that the method is now of

- little relevance to most systems. The exception is in some very simple systems

-38-
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- require less hardware than a fast

where it can pfovidezféatiéoftwa}b
: Von-Neumann (computer) hardware structure. The interested reader is
referred to Sizer (1967). -

| | ' .
. BEFEREWGES .
Sizer T.R.H. 1967  "The Digital Differential Analyser"
Chapman and Hall.
‘ ‘




Aprendix 2
[ SR

POSTSCRIPT

1. Since the bulk of this paper was writien, some experience has been gained
in the use of these filters, and this has shown up deficiencies in the analytical
expressions given, These deficiencies are not sufficient 4o invalidaie the b2sic
arguments used, but appear to arise out of a bvasic non-linearity present in time-
sampling., They are comparable with the truncation errors experienced in digitising

analogue signals., The user should be aware of the problems, although in practice

they do not appear to be serious,

2. The simplest example can be seen by applying the expression for a single

pole on the negative real axis, eqn 17:

——

alv:,, {n-1) (17)

Vor () = KaT Vi (n) + £

If the gain of the filier were unity, and we apply a steady signal ¥ for a

sufficiently long time, then

l . Kal oy
~aT
or K - I - 4 . (22)
aT 4

But this is inconsistent with the statement in 5(a) that the filter gain is unity
when K =1, As al =» 0, then K % 1y but this near equality is often insufficient
in low-pass filters where ihe absolute gain near zero frequency can be critically
important, 1In this situation, the expression KaT in (17) should be replaced by

E (1=~ Ar‘v.). The impulse response will now be slightly wrong, but in this

eituation the exact high frequency response may well be less critical, .

3. It is useful to find the source of the inconsistency described above, I
believe that it first appears in eqn (8) where the impulse response of a continuous

filter f(t) is to be represented in sampled form f#(t), where

E¥(t) = k() f S(t-wne)

n:-.



s | o - . . +
The problem is that a continuous impulse response f(t) will contain hign
frequencies that are above the Nyquist frequency 1/2’1‘ for any finite sampling rate,
To this extent f*(t) cannot be an exact representation of £(t)s The proolem car

1/2’1‘ is such that:

i

be reduced if the Nyguist frequency fa

FN >>the 3 dB "ecorner frequency" of a low=-pass filte (23)

Eqn 23 is ithe same condition as al = 0.

Fu can approach the "corner frequency" more closely if F(&) is such that
attenuation increases rapidly above the “corner frequency", as there will be lezs
high-frequency energy available, Thus it may be advantageous to implement several

poles in one stage.

In & sirict mathematical sense, therefore, ihe resulte of this paper are invalid.,

However a similar non-linear effect occurs whenever linear nrocesses are applied

.

1o digitised data, In practice an engineering compromise can be reached - sufficient

digitisation levels must be taken to represent the data, and the Nyquist frequency
must be sufficiently higher than any significant frequencies in the filter to be
implemented. Any particular implementation must be tested to ensure that these

conditions are met,

4. VWhen implementing Low-Pass filters, the worst feature of the avove effect
lies in the slight change in absolute filter gain at low frequencies, As indicated

pragmatically in para 2 above, this can be avoided by using alternative expressions:

‘ S5
eqn (17): replace Ka7T by K (1~ 4 )
T, AT

eqn (19):  use 03 =K (1 - 2m(a1‘).¢ 2 d L &a

Equations(20) and (21) have no finite D.C. response.

-
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