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ABSTRACT
The Lagrangian conservation law form of the semi-geostrophic equations used
by Hoskins and others is studied further -in two and three dimensions. A solution
of the inviscid equations containing discontinuities corresponding to atmospheric
fronts is shown to exist for all time under fairly general conditions, and to be
: unique if the potential vorticity is required to be non-negative. Computational
results show that this solution agrees with high resolution solutions of the
viscous semi-geostrophic equations. - The solution, however, disagrees with that
obtained from the two dimensional viscous primitive equations. An important
aspect of the difference is tﬁat the semi-geostrophic solutions allow the front
to propagate into the interior of the fluid while the primitive equation solutions
do not. This is discussed. If correct, it may indicate a tendency for a

separation effect in the atmosphere where frictional effects are present.



1. Introduction

This paper considers an attempt to model mature atmospheric fronts by
extending the frontogenesis model originally developed by Hoskins and Bretherton
(1972) . Their model uses the semi-geostrophic eqﬁations,in particular a
Lagrangian conservation form of them. In a previous paper, Cullen (1983), referred
to henceforward as C, one of the authors proposed an extension to this model by
continuing to solve the Lagrangian conservation laws after the initial formation
of the frqnt. In this paper we develop and examine these ideas further.

The theory of Hoskins and Bretherton ig now widely accepted as a mechanism
for producihg atmospheric fronts. However, comparison of their predictions with
observation is difficult because their solutions only continue up to the initial
formation of a disontinuity. At this stage frontogenetic effects dominate
frontolytic effects. Observations of mature fronts, for instance those described
by Sanders (1955), show a balance between the effects. Thus authors who have
attempted to compare the Hoskiﬁs and Bretherton model with the atmosphere, such as
Blumen (1980) and Ogura and Portis (1982), have found disagreements. Despite this
a number of qualitative featuvres of observed fronts were successfully predicted.
Attempts to resolve the disagreements by adding frictional effects to the model

were not very successful. In particular it was still found to be impossidble to
reproduce an observed vertical velocity maximum near the ground. There is thus a

strong incentive to try to extend the theory to cover mature fronts.

The difficulty in using semi-geostrophic theory to describe fronts beyond
their initial formation is that it is clear that the scale analysis used to derive
the equations is no longer valid everywhere.. In C it was suggested that the
Lagrangian conservation laws derived from the equations might still be valid for
most fluidbpart101es~ This is plausibie becaﬁge no fluid crosses a front, by
gefinition, and thus only a small proportion of the fluid is likely to come close
to the frontal surface. The solution is constructed geometrically, assuming that

certain volumes of fluid have specified values of absolute momentum and potential
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temperature. Thus chaﬁges to the values of these quantities for a small

proportion of the fluid particles caused by local breakdown of the conservation
laws may only have a small effect on thé solution. If organised convection were
present, however, the conservation laws could be violated for a large proportion
of the fluid and the solution would not be expected to be very useful.

The likely validity of the model proposed in C thus depends on the prcportion
of the fluid volume in which the sesnle analysis leacding to semi-geostrophic theory
breaks down and the ageostrophic accelerations are large. According to Hoskins
and Bretherton, this should only happen when the frontal vorticities, ES , reach
about 25f. They also suggest that three dimensional turbulence would have set in
before then, because the local Richardson number is of the order ’g/ﬁs . However,
computations by Orlanski and Ross (1977) and Ross and Orlansk& (1982) using the
primitive equations suggest thaf the‘scale analysis is not valid for vorticities
larger than about 2f. After this stage the ageostrophic wiﬁd parallel to the front
became significant. A possiblé explanation for this disagreement is the different
method of determining the cross frontal circulation. In the semi-geostrophic

model the cross-frontal flow is determined implicitly by an omega equation. The

‘implied accelerations can be estimated from the rate of change of the forcing terms

in the omega equation, as was done by Hoskins. In a primitive equation model the
circulation can only be changed explicitly by an ageostrophic wind parallel to the
front. Orlanski and Ross found that the resulting circulation was similar to

that obtained using the omega equation method with the addition of an inertio-
graQity oscillation. It is possible that the larger accelerations were associated
with this oscillation. The calculated pattern of the ageostrophic wind and the
separétion they obtained between the line of maximum wind shear and temperature
grgdient are on scales close to thei; model grid length and will require further
investigations using higher resolution models. At the present time there must

therefore be uncertainty about the fange of validity of semi-geostrophic models.



Theugh the method described in C of extending the solution to cover mature
fronts seems plausible, it may not be the only way of doing so. In particular,
the results reported in C suggest that a different type of solution is obtained
by solving the primitive equations with artificial viscosity. It is only possible
to choose between such solutions by incorporating the assumptions into realistic
three dimensional models and testing against real data. .

This paper continues the work started in C end is divided into two parts.
The first shows how the geometrical method which was applied in an ad-hoc manner in
C can be shown rigorously to give a unique solution for data with non negative
poténtial vorticity under certain conditions on the physical domain. The method
is also shown to be applicable to the three dimensional equations derived by Hoskins

end Draghici (1977) using the geostrophic momentum epproximation. The method allows
a number of additional properties of. fronts to be deduced, for instance that a
discontinuity in temperature and velocity cannot be formed even at a finite
iscontinuity of potential vorticity. This is a stronger rosult than that cbtained

by Hoskins and Bretherton. The results also mean that such flows are predictable of

type 1 or 2 in the sense of Torenz (1969) . This means that the solutions are
determined for. all time by the initial and boundary conditions, and are continuously
dependent on the data. The latter requirement is essential if the neglected

ageostrophic accelerations are to be small.

The second part presents further computational results. A model in which the :
two_dimensiona} semi~-geostrophic equations are solved using finite differences is
described. In this model the ageostrophi¢ winds have to be determined iteratively.
This has two purposes. It allows a direct comparison with finite difference
integratioﬁs of the primitive equgtiQns;' Some of the differences reported in C
may have simply represented the difference between two types of computational
method, despite the use of very high resolution. Secondly, since artificial
viscos#ty has to be added to tﬁe semi-geostrophic equations when solved by finite o

ﬂifferences, we can check the agreement betﬁeen the inviscid Lagrangian solution
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described in C and a slightly viscous solution. This is important because an

inviscid solution can only be regarded as physically useful if it is the limit

as the viscosity tends to zero of a viscous -solution.

Comparisons between solutions obtained by the Lagrangian constructioﬁ and the
two finite difference models are presented. The same values for the artificial
viscosity are used in both cases. The results show closer agreement between the
finite difference semi-geostrophic solution and the Lagrangian solution than
between the two finite difference solutioﬁs. The largest vertical velocities are
concentrated necrer the boundary in the semi-geostrophic solution.

The most important qualitativg difference between the semi-geostrophic and
primitive equation solutions is in the handling of the upper and lower boundary
conditions. The Lagrangian theory gives a unique: solution if thevrigid wall
boundary conditions are interpreéed és meaning only that no fluid can cross the’
boundary. If the requirement is that fluid initially in contact with the boundary
remains there, then no solution exists. Therefore fluid has to be squeezed away
from the boundaries by lateral motions; in effect the boundary is sucked into
the fluid. In the primitive equation model the vertical velocity is zero at the
boundary and so fluid cannot move away from it. Therefore at least one of the
Lagrangian conservation properties cannot be satisfied.

" In reality, this need not be such a contradiction. A real fluid would not
contain an actual discontinuity and the conservation laws would not be valid for
every fluid particle. If the discontinuity iz replaced by a shear layer, the
kinematic boundary condition can be satisfied. The semi-geostrophic results
suggests a tendency for a separatién effect at the boundary. The physical

correctness of this prediction caﬁ.only be checked by tests against real data.

It is tempting but speculative to relate it to the occlusion process.




22 Basic theory for the two-dimensional deformation model.

a. Basic equations

Consider the dimensionless Lagrangian form of the equations

used for the deformation model introduced by Hoskins and Bretherton

(1972) and studied in C. These are:

DM
e M=0
Y.
DO
A = 10 (2.1)
D
2—5 +od A=0
D
where
5 ST W 2
D = O : dx § wc)z,
M =2 Vva4x

J is a given deformation rate.
M is called the potential momentum and A is the area of a fluid
element in the (x,z) plane. The coordinate z is a function of pressure
as defined in the references above. The equations for cross-front

geostrophic balance and the hydrostatic equation give

o4

-g; : V
@ p ' (2.2)
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The problem is to be solved in a closed eonvex region (L with rigid upper

and lower boundaries at z = 0, 1 .
Since fluid elements shrink with the basic deformation rate it is

convenient to consider a domain in the (x z) plane which also shrinks

at this rate, so we suppose that the boundary conditions in x are

SR
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b.

rigid walls at ) .

3 R . (2.3)

Smooth solutions .

It is convenient to start by recalling some standard analysis
of the solutions of (2.1) assuming that they are differentiable.

In this case the potential vorticity

oM o) :

%l ————a—

. Q(x, ; ) : . (2.4)

is conserved following the motion:

fied‘pres&urg}?gfiably



Then :

' 0P P\
( M, © ) - 0% -Jg (2.7)
Define the Hessian matrix
9 = Ox* dx 9y (2.8) ;
o' P 3P . | :
' 03 O -ng.
Then . ‘

- a" % deks ( Q ) (2.9)

i - This matrix is of special importance in determining the ageos trophic

circulation (M' w ) and the pressuré tendency T' 2 ad’/&e .

For example, we have 5 R



The continuity equation:

C)QA aW
O T S S 0
v OX 0
:S (2.11)
can be used to eliminate the velocity components to give:
. | ) oo -l
\7 . : VT\ = o 4 . b
\/ ((3 v V b (2.12)

K 4

This equation can be solved; su§ject to suitable boundary conditions,
provided that it is elliptic, implying that Sg is positive definite.
In some circumstances (2.1”7) can be solved when qg is singular by
using an integrated form of the continuity equation (integrated

along the line of the characteristics bétween opposite boundaries),
but the problem is ill-posed when qg . has a negative eigenvalue.

In the latter case the physical system would be subject to convective,
inertial, or symmetric instability; it would not be properly
describable by the sémi-geostrophic.equations because accelefation

components then became of comparable magnitude to the corresponding

pressure gradient forces.

The following geometric picture of this constraint is important.

Regard’ P(,.z ) as the elevation of a surface above the (x,; )




plane. Then qg gives the curvature componente of the surface,
in the case where P varies slowly with % and 3 e« Thus the

potential vorticity % is essentially proportional to the Gaussian

curvature of the surface. The condition that () has no negative

L

eigenvalues, assuming that P is twice differentiable, is
equivalent to stating that the surface P()gz) is convex when
viewed from below. It will be shown that this geometrical inter-
pretation can be used in cases where the solutions are not
differentiable.

Discontinuous solutions

In C it was demonstrated that, for simple piecewise constant
initial data, a solution of (2.1) and (2.2) could be constructed by
geometry. The construction is.illustrated in Fig.1. The values of
M and © are constant on each element, and the slope of the line
separating the elements in the (aclz ) plane is given by the geostrophic
and hydrostatic relations by the formula first pointed out by Margules

in 1906:

L : (2.13)

The solution then appeared to be uniqﬁely specified by the areas of
the elements, the values of M and © within them, and the condition
that the solution is statically stable.

The modified pfessure P defined by (2.6) can be used for piece-
wise constant data also. The surface P(x's\ is now made up of flat

éf

faces on which 3';‘ and 3‘5 .are constant. If P is continuous, the

the jump condition (2,13) is automatically satisfied for the edges

‘where faces join. The surface corresponding to the solution in

Fig. 1 is shown in Fig. 2. The condition that the golution in

physical space is statically stable becomes a condition that the

=80 =
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surface P(x,s) is convex viewed from below. This suggests that

the convexity condition can be used as a condition for dynamical
stability for solutions not differentiable everywhere, instead of the
potential vorticity which is difficult to define. By using

convexity to define dynamical stability it is then possible to prove
a rigorous existence theorem for piecewise constant-solutions of (2.1)
and (2.2).In this paper a somewhat intuitive version of the proof

is given, a more rigorbus tréatment will be given elsewhere (Purser
and Cullen (in preparation)).

Definitions and consequences

A solution of the semi-geostrophic problem (2.1), (2.2) is
called dynamically stable if the associated surface P(x's) is
‘ 3
convex (viewed from below), i.e. the region in 5 with coordinates

(2, 3' $ ) defined by

8. P(x‘&) (2.14)

is a convex subspace of 53
Write the convex subspace defined by (2.14) as V. Then V has
the following properties (e.g. see Rockafellar (1970)).

(i) V can be represented as the intersection of half spaces
LGx) 20 : (2.15)
~ ’

where L is a linear function of % . The planes

L (%) = © (2.16)

are called tangent planes of V.

- 11-



(ii) Every point on the‘boundary of V has at least one

tangent plane touching it.
Theorem 1

The problem (2.1) (2.2) in L nas a unique dynamically stable
solution for all time given bounded piecewise constant initial data
for M and @ at t = 0. The solution is continuously dependent on the
initial data.

Proof - basic construction

This theorem is proved by .explicit construction of the surface
P(x,z ) . The essential step is shown in Fig. 3. Given the region
_{L. in the ( X, } ) plane, consider an infinite extension.of it in

the s-coordinate to a convex cylindrical surface V in R3 (Fig.3(a)). Now.

with V, subject to the condition that the planes are not perpendicular to
the plane S = O. (Fig.3(b)). The angle of each plane W, with the § axis is
specified. At each stage the lower boundary of Y, denoted Yi’ is a piecewise

flat convex surface. If the planes wi are moved up and down, the areas of

v
those parts of Yi which have a given tangent plane change. (Fig.3(c)).

Suppose the initial data are given in the form of a list
(M;, 65, A;) of values of M and © on finite elements with areas A; in

the (x'}) plane. Suppose that

T Ooh s we o)

(2.17)

Then at any future time t, we seek to arrange the elements with values

of (M, ©) given by ( °4;C'&&, ©; ) by (2.1) and areas A;Q'*E 80

that the continuity equation is satisfied. This is done by -

15 i ol 1 ) { E"I‘
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associating the ith element with a plane wi with gradient

oP M.

REE - V & X
O%

i 0
%

(2.18)

1}
(O
"

and seeking to construct the surface Y in Fig. 3 such that the area of the
face of ¥ formed by the plane.v.'i is Ai. fince the angle of each plane wi
with the £ axis is fixed by (2.13), the areas can only be changed by moving
tge wi up and down. The remainder of the proof shows how this is done.

An arrangement of the planes wi can be uniquely defined by
specifying their 8 coordinates at x = z = o (Fig. 4).

Any increase in 8, with S, (i#k) and M;, ©; all kept constant

will result in an increase in the area A, balanced by a decrease in

K

the areas of each of the neighbouring faces.
Proof

This follows immediately from the convexity of the surface Y.
The effect of a perturbation in $4 is shown in Fig. 5.

The area A1 changes monotonically'with the same sign.

Unigueness

Given the values of Mi’ Gi and Ai' then if a solution characterised by
the coordinates Si exists, it is unique within a .uniform change in all the
8.. '

i
Remark

The fact that (. is convex is essential for this result.
Proof :

Suppose two solutions, represented by surfaces !1 and YZ exist. Suppose
th;t the associated coordinates are Sl and Si. Calculate the éifferences

a 1 ; 2 .
(8% - 8,). Divide the planes W; into two sets, E, and Ej. E, contains the

2 1
planes for which Si - Si attains . its maximum value, say $ , EB contains

T



7 e /
. areas E} 8 2 Aq ‘ . Some of the A{ may be zero. Define the

the remainder. Becauvse there are a finite number of planes, E, contains

A
at least one member. If the theorem is true, then EB must be empty so
that Sf can be obtained from Si1 by the simple translation- .
2 - ‘
st e § + (2.19)

Suppose, conversely, that E_ ‘is not empty. Then, after carrying out

B

the translation (2.19), all the coordinates of members of EA in the

two solutions agree, and Si<< S; for all members of EB. Conversion
of Y1 to Y2 now requires negative changes to all the Si associated
with EB, while preserving the areas of all the faces. Since the

area of a face changes monotonically with its Si at the expense of
its neighbours, and since at least some members of EB must adjoin
members of EA; the fequired changes in Si must affect the areas of

these members of EA' This contradicts the requirement that the areas

are the same in the two solutions. Therefore EB must be empty and

-)

the result proven.
Existence

Given bounded Mi' 6, and A, satisfying (2.17), a solution
exists. ' 4

We construct a-firét guess by assigning.arbitrary ;oordinates
to planes wi with the correct slope'and constructing the surface Y.
fhe areas of‘the i;tersections of wi withNY need not be correct and !

some planes may not intersect Y at all. We then adjust the coordinates

Si‘iteratively to obtain the correct areas. At some stage of the

)

iteration, assume that we have a set of coordinates 5’: €S~g

yielding

- AN

r»




error norm

N;(2)= EXZsW A; - A:'z

(2.?0)

Because Mi and Gi are bounded, the planes Wi cannot be perpendicular
to the plane S = O. Since there are a finite number of planes, they

must all intersect each other and the surface V at a finite angles.
(If two planes are parallel then M; = Mj 0, = GJ and their

b
associated areas can be combined). Therefore all possible inter-

sections of the planes Wy with V can be obtained within a finite

range of S, as can be seen from Fig. k.

Therefore, for some S = §4 ) Nz(i) attains its minimum.
. ~ A
Write the associated values of (A; - .ti) as E " e

Divide the elements into two sets; Ea and Eb' Ea contains elements

.for which E_ is the maximum, E Eb contains the remainder.

R
Then since Nz(i\ has been minimised, if Eb is not empty, at

least one member, k, of Ea adjoins members of E . Element k may also

b
adjoin other elements of Ea' By reducing Sk we can reduce Sk
by en arbitrary amount: say (a + b). By doing so we increase
the éombined areas of other eleaents by (a + b).
Suppose that the areas of elements in Ea are increased by a total
amount a and in Eb by a total amount b. The resulting change A Nz
in N). comprises three p;u'-ts: |
(i) Asz due to changes in areas of elements in E_
excluding k.

(ii) AN:M due to the change in the area of element k

(1id) ANIM due to changes in members of E,.



Let E_‘ be the maximum error for members of Eb; then, by definition,

2'k C z“ . Use the simpl.e inequality, for positive a;t
: S B 2 .
. (Z(A\ '“".') ' Z-A; ) - (Mw‘- A.- + 2.0 ) - (Max‘./\‘-) (2.22)

Then it follows that

AN ¢ 288 + &

AN e 28k« O

A Nz(k\ S - ZZ“(O\-b.‘:\ + o+ 5}. - Zc.L
hence

ANZ S, "2(2““25)L + 2(.“14 B%*“L) (2.23)

Since the rate at which the area of an element changes with

respect to its S coordinate is bounded; it is always possible to find

a change in S and hence a and b, which is sufficiently small such that

(2‘&-2&)5 w il g b 5 okl

(2.24)

and s0 ANZ. &0

I.‘:b must therefore be a null scft and!so the errors Ei in the
areas of all the segments are equal. Since they sum to zero, they
must all vanish. Therefore the desired solution mo‘f the problem has

been obtained.

he Continuity

The solution, characterised by the set of coordinates {S‘.} 2

depends continuously on M, Qi and A e

- 16 -



Proof

Only an intuitive proof is given here, since a rigorous proof
requires consideréble care. It is clear that, since Mi and Oi are
represented in (2.18) by the components of the gradient of the solution
P(x,a) ; we can consider perturbations in Mi and Oi together, and
treat perturbations in Ai separately.

Given an &rbitrarily small quantity € , which measures a
change in the coordinates (5‘)0f the planes making up P(x,z) 5

we seek to find a § such that for any two sets of data satisfying

Toh ety (o) -01) <8

iel

| 2 (2.25)
A = A
we have
2
g (P‘(X,Z) - Pz(x.g)) < ¢

. (2.26)

The proof first of all assumes that, for any i and j;

\ 2. \2 | y ok S

(M" - M_\) * (9‘ - QJ) > (2.27)

If (2.27) is not satisfied for all element pairs, then elements with
similar Mi and Qi are combined into larger elements. By convexity,

all such elements with almost equal slopes must be contiguous on the
solution surface. Once (é.??) is satisfied, then a perturbation to

the slope of any one elemént will not change its position on the
solution surface; (Fig. 6). Thus the effect on P(x,s) is

localised and can be estimated in terms of the size of the perturbation
% y and the maximum linear dimension of the region. This is because

P‘ pl( ) i s ; 3
(x,z) and x,3 have gradients everywhere which either differ

-0 o



by less than S or differ by a larger amount & , representing

the difference in slgpe between adjoining elements, on a region of

size S/J. , where the inter-element boundaries have moved in .
( X,} ) space (Fig. 7). A similar argument proves that combining

elements with nearly equal slopes so that (2.27) is satisfied has

a small effect on P(x,g) .

1 General initial data

The theorem that has been proved establishes the existence of
a bounded solution to (2.1 - 2.3) for general piecewise constant initial
data. If the initial data can be approximated to arbitrarily high
accuracy by a piecewise cénstnnt field, then a corresponding sequence
of approximate solutions can be generated. Provided thaf these can
be bounded independently of the degree of approximation, they will
converge to a limit which is the solution for general initial data.
While it seems clear tha§ any meteorologically relevant data satisfy
this condition, provided turbulent regions are not resolved; the correct
mathematical conditions are not obvious. :

3.  Three dimensional semi-geostrophic theory.

a. Basic equations

The three-dimensional equations are the natural generalisation
of the two dimensional set studied in the previous section. The

potential momentum now has two components M and N, closely associated
with '‘geostrophic coordinates', X and Y, which change non-trivially
in time. A detailed study of the equations is given in Hoskins and
Draghici (1977). ' The essential dimgnsionless problem, where the

f plane and Boussinesq approximations have been made, is

(3.1)
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with : : (3.2)

du ov dw
o + 3‘3 o z,-g 0
. 84 o 6
| Va-"";~_5'3—5"635
where
D3 \2 3
e = o ! Ly + oy )55 (Vé“"b)‘a |
{5:3)
)
+ W
%
N W = ua-f-u.a 3 Vs vé"'v‘&
Defining:
M = \/‘3 4+ %
(3.4)
N = -ua_ + Y .
.then |
oM
| fe = . | e
e -4
The set (3.5) can be rewritten in 1I‘:h»e form

ol
ON




and we have

ou p
Ry .oV
i O (3.8)

i 2 —::5 ;- é:f = 0O
03 OB

These equations can be solved by a splitting technique, as is often

&

used in primitive equation models (e.g. Gadd (1978)). Suppose that

at any given time, the value of ¢ is known everywhere. Then 6, M

and N are determined as the gradients of @ by the geostrophic and
hydrostatic relations (3.2) and the definitions (3.4). The
ageostrophic wind is implicity determined by the equations of motion
(3.6) and the requirement that %’E‘ : %EJ: and %(S must be related
by the geostrophic and hydrostatic relations. This can be achieved

by regarding the fluid at the giveq time as made ﬁp of elements, each
with a definite value of M, N and ©@. In the first step of the solution
the values of M and N aré updated by HaAE' and vbN: , where Ok ie
the timestep; and the elements are then advected into new positions
by the geostrophic wind. The behaviour of this part of the equations

can be analysed by considering the associated ordinary differential

equations following fluid elements:

dM

e —-— - p— N

i SR

aN L Vet (3.9)

de
On a doubly periodic domain. X and D,are bounded; and the part of
the solution of (3.9) which depends. on M and N is just an oscillation.
Therefore there is unlikel;.r to be any difficult.:y in this part of
the solution to (3.6). ‘
The remainder of (3.6) describes advection by an unknown wind

’%‘3 satisfying the incompressibility condition (3.8), so that

fluid elements gré moved without change of volume or of their values

i




b.

of M, N and © to new positions such that the geostrophic and hydrostatic

relations are satisfied. We niw prove the existence of such an

incompressible ageostrophic wind field.

Existence of implied ageostrophic circulation

The natural definition of potential vorticity, generalizing

(2.4), is
XN -m o)
[T g 6
Define |
Pe ¢+ 2(xteyt)
then i '

Hence

where

(3.10)

(3.11)

(3.12)



Definition

A solution of the three dimensional semi-geostrophic equations
ie called dynamically stable within the ( x'a. (! ) domain D; if the
hypersurface in (x'b.a' § ) space defined by $§7% P(x,a’zs is
convex.
Theorem 2

Inside a convex three dimensional domain D, there is a unique
arrangement of a given‘finite,collection of elements of the fluid,
each with uniform prescribed values Mi’ Ni and Qi and volumes 1& "

that is dynamically stable provided that

where 15 is the volume of D.
This is identical to the proofs of existence and uniqueness
for the two dimensional problem in section 2; since convexity is an
n-dimensional property.
Remarks
The proofs of continuous dependenge on the data and extensions
to general initial data are also identical to the two dimensional
case.
4. Further results
The theorems proved in the previous two sections ghow that a great deal
can be inferred about the solution of the Lagrangian conservation law form
for the semi-geostrophic equations from geometrical arguments, in particular
thé identification of dynamically stable solutions with convexity of the
solution surface. These arguments can be used to establish a number of
additional resuits, some of which are described in this section. They will be

stated for the two dimensional problem so that the arguments behind them can

£
i
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be easily illustrated by accompanying diagrams. Similar results hold in

three dimensions.

ae

Non-existence of internal fronts

Theorem 3

If the potential vorticity is bounded, solutions to the semi-
geostrophic equations cannot possess localized internal discontinuities
in M and ©. Any discontinuities must intersect the boundary of the
@omain.

The preceding results show that there is a unique convex
solution surface P(X,a) . The gradients of this surface are M and
6. Suppose that its gradient changes discontinuously at some isolated
point. By changing coordinates, this ‘can be treated as the origin.
Thus suppose that at (0,0) VP changes from (—3,0 ) to (3,0) and
that P(O,O) =0 . AS x decreases {rowm sero, the convexity of f means
that %g_ must decrease from -—3 and so P must satisfy

p(xz) > ~3x. x< 0

d
P(X'3)' > g x %0 G )

The magnitude of \/P must increase as X moves away from the origin and so

URLx) i 2Pl ) hoeallix “llicg) - ha)

Consider the rectangular circuit ABCD shown in Fig. 8(a), whose
dimension A is choseﬂ such that ¢on segment BC_
P(x) % §°

(4.3)
It must be possible to satis%y this éondition because the
discontinuity at the origin is isolated. At each point on ABCD,
inequality (4.2) defines a set of values which cannot be taken by
the gradienfs of P . This is shown as a region in gradient space

in Fig. 8(b). Therefore, the potential circulation
3 = ' Axdy
Co = Saacocb Sk
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around ARCD im greater than that defined by the region in Fig. 8, tei

cls 1) » g8/4 (b.4)

However, since the potential vorticity everywhere is bounded; say
by Qe and the area of circuit ABCD isl-QS ; then
A%y
VE G
and

LY at/dw"' (4.5)

i
Conversely, for any)\ y with 41 < 3%“:
%S %M” implies that
£ : (4.6)
Pix,3) < 39 |
somewhere on BC for anﬁ . Hence

P(o,L) = O (4.7)
. The ik

(4.1) and (4.7) together imply that the discontinuity in gradient
muet extend from the origin to % 31,:2" along the 3 axis -
This argument can be rebeated at the ends of this line segment to
continue it as far as the boundary, thus completing the proof.

Analogous constructions may be made in the three-dimensional
equations of Hoskins and Drag'hici (1977), initially by replacing
circuit ABCD by the surface of a disc formed by rotating ABCD about
AD. 'I‘_he corresponding excluded region of gradient space is the

double-cone formed by rotating triangle gL@B about 'Lx .

This theorem is a stronger statement than that in Hoskins and

Bretherton (1972, p.16) as it prohibits fronts even at a finite

..21;.:



discontinuity of potential vorticity.

Behaviour of fluid elements on the boundary

Consider the case used to prove the theorem in section 2, where
thé data are piecewise constant and defined by values Mi and ©; on
elements of area Ai’

Definition

The 'convex hull' of a set is the smallest convex set containing
it. The convex hull of the set of points in gradient space with
coordinates (Mi' Oi) is shown in Fig. 9, denote its boundary by G.
Theorem 4

Elements of the fluid with gradients on G remain in_contact with
the boundary of the convex physiCal domain {L .

Suppose that there is a fRuid element with associated values
Y = ( M,,Q, ) such that 9y lies on G, (Fig.10). If ‘ﬁ is an outward

pointing vector from G at gx » then it is clear from Fig.10 that no

fluid element can have gradients

gd 4 &

for any positive « . Suppose that this fluid element is not in contact

(4.8)

1D >

with the boundary of the physical domain. Let Xy be a point in the

element. Then, the convexity of the solution surface means that

VPG - (2 ~xy)

P e

increases as |x - x, | increases. Thus if (xu-x*\ is chosen to be
parallel to ﬁ_ g Vzgsj§) must take on values of the form (4.8) with

L4 >0 (Fig.11). This contradicts the hypothesis, and proves that the
element must be in contact with the boundary.
Note that this does not mean that elements of the fluid originally

on the boundary of the physical domain Jl_ remain there.
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éh;facterizafion of détéuleédiné fo'ffontogenesis , ]

The process of frontogenesis studied here.involves the pinching
together of boundgry points of the fluid, usually followed by the
‘intrusion of the resulting dontact discontinuity into the interior
of the domain. When the initial potential vorticity is bounded, the

possible locations of frontogenesis are restricted by the following

theorem: ,




d.

Theorem 5

Given initial values of M and © which are continuous functions
of (x’} ) and bounded potential vorticity 9 - The values of
(M, ©) for all points in L define a région :}C in (M, ©) space
with boundary T1 (Fig. 12). Then frontogenesis can only occur at
points (x,} ) whose associated values of (M, @) are on a concave
portion of T . 1t T ois convex, then M and © remain continuous
functions of ( X, ¥

Because of the convexity of the solution surface P0@3> and the

continuity of the initial data, points not on the bYoundary of AL have
gradients strictly inside the region ;}{ in (M. ©) space. This follows
immediately from Theorem 4. It a discontinuity forms at a later time,
this corresponcs to a fold in the sclution surface where the gradients
necessary to smooth out the fold.are not in ;}[ . Suppose that the
points either side of the intersection éf the front with the boundary
of N are g, and 65 these must both be on | & in gradient space

(Fig. 13). Then the missing gradients lie on the straight line
connecting 84 and 53 since they are not in }{ , they must correspond
to a concave portion of T1 K 2 is everywhere convex, no
discontinuity can form andIX%z)stays smooth for all time.

This theorem generalises the observafion of Hoskins (1971, p.143)
that, in studies using the E«i%x) profile of poteﬁtial temperature,
the surface front forms in the warmér half of thé fluid and the upper
front forms in the colder half of the fluid, as seen schematically

in Fig. 1k.

Conservation of potential circulation -
An important and rather paradoxical feature of these frontogenesis
models concerns the total potential circulation, C, associated with a

material cross-section. Equations (2.1) suggest that C should obey
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the conservation law

__»'9_ 4k &
Dk(C(UQ ) O R

where the circulation round any circuit can only be changed by the
basic deformation field. This would certainty be the case if the
circuit in ( %, 2 ) space associated with C were purely advected.
However, if C is associated with a circuit at the domain boundary,
_(h.9) is no longer obeyed after a front forms because the injection

of a new region of (M, ©) space, (the shaded area of Fig. 14(b)) into
the interior of the fluid acts like an impulsive line source of
potential vorticity. Thus, while the potential vorticity is conserved
following each fluid parcel, the Eulerian mean potential vorticity
may change.

Non-convex physical domains

- N

The uniqueness of the solution to (2.1), (2.2) was proved only
for convex physical domains .IL . Since the 3 coordinate is a function
of pressure, this corresponds to a convex domain in ( x, P I &
the upper boundary is taken as P:() there is no problem there. The
lower boundary will normally have concave portions where surface pressure
is locally a maximum, e.g. in valleys.. In these regions distinct fluid
elements can be trapped and not interact with the rest of the solution.
These correspond to trapped stable layers near the'ground in
mountain valleys, (Fig. 15). Any of these can be interchanged without

affecting the rest of the solution.

The non-uniqueness only affects the rearrangement in Theorem 2.
Uniqueness of the solution to the true physical problem is obtained

by assuming that there is no sudden rearrangement of stable layers.

: -28 -
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f. Dynamically unstable data

The theorems proved in sections 2 and % give unique dynamically
stable solutions. These can formally be found even from an initially
given unstable configuration of the fluid. However, under these
conditions the assumptions implicit in the semi-geostrophic
approximation are no longer valid, since large ageostrophic
accelerations will be generated. The consequent rearrangement of
fluid elements is thus‘unlikely to proceed realistically. Thus the
theorems should not be used as a substitute for convective
parametrizations.

5. Finite difference solutions of the slightly viscous semi-geostrophic
equations.

a. Basic requirement

The physical validity of the inviscid semi-geostrophic equations
first breaks down because the Richardson number Ri falls below # and
turbulent mixing with associated large.accelerations sets in (Hoskins
and Bretherton (1972), Hoskins (1982)). If the effects of turbulence

are, as usual in numerical models, represented by an eddy viscosity;

then (2.1) becomes

DM : 1
o e S0P (5.1)

ol3
Dl
gl& + o A. £ <5
Dk

If € is chosen so that Ri » # for all time, then scale analysis implies

PRVAL

that the vorticity will remain less than 10f, where f is the Coriolis _
parameter, and the neglect of the.ageostrophic accelerations will
remain valid for the 'viscous' problem. In reality the neglected

terms will be crucial in the detailed dynamics of the turbulent mixing.
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It is then hoped that the solution of (5.1), which will contain

strong but smooth shear layers, will be a good 'broad-brushed’

approximation to the true solution of the primitive equations, which

contain turbulent shear layers.

Such approximations are routine in

other areas of computational fluid dynamics, for instance shock )

modelling.

It seems highly likely that, since the existence of solutions

to the inviscid problem (2.1) has been proved, that solutions to

(5.1) will also exist and be slightly smoothed versions of the

inviscid solution.

However, a.proof of this is not yet available. A

finite difference solution of (2.1) on a fixed grid could only be

obtained by solving (5.1), with €

regarded as an artificial

viscosity. Thus it is interesting to study finite difference solutions

of (5.1) to check their convergence to the solutions derived in C by

explicit construction;

and the solutions'obtained in C by finite

difference approximations to the two dimensional primitive equations

with artificial viscosity.

Solutions for the cross-front circulation

‘»)

Consider first how (2.1) could be solved by finite difference

methods. Write these in the standard dimensionless Eulerian form:

v
e
00
ok

Q:
%

o
%

99
i
M

W

&+

-

W=

9%
00

WA
dx

oL + W
+ V] 2

dv

4 o) + W«

0

(5.2)

(5.3)



This set contains explicit predictions for v and €, but u and w are
determined implicity by the diagnostic equations (5.3). The
continuity equation implies that u and w can be represented in terms
of a streamfunction qJ by
0
W = =~=dt = ¢/¢)é
L)
S (5.
W = 4’/&»
Then (5.2) and (5.3%) determine lp implicitly by the equation
d r d oM oy oM 4 o 'l
o l.( - 4AX = qvgz‘) 46x. ol o /33 P‘-
P
‘ 6@0
) obs \ O Qg 09, (5.5)
s =~ ~dx =~ Y/ ) ox * éx (] :
c)x.[ ( ‘ 9 3

It is well known that this equation changes type according to the
sign of the potential vorticity q defined by (2.4), being elliptic,
parabolic or hyperbolic according to whether q is positive, zero, or

negative. The discriminant of (5.5) is, in fact,

0Q OM \& M 90
CRRT Y
When a discontinuity forms; é_?j f)-ﬁ é.ol and 'ZE all
ox c)z’ I s d}
tend to infinity in the fixed ratio .

'I:S:S:S‘2

where S is the slope of the discontinuity, /6 7//M 7. If these
ratios are taken for finite values of the gradients, (5.6) vanishes.
This suggests that (5.5) wiil exhibit parabolic behaviour near a
discontinuity, and may thus be difficult to solve.

Now consider the problem of finding 4/ after a discontinuity

has formed and the solution is similar to those shown in C. The

velocity normal to the frontal surface must remain continuous, but



the tangential velocity may be discontinuous. In the special case
solved in C, where lines of constant M and € coincide, it is possible
to construct an equation ‘for q) along the isotherms. The geostrophic

and hydrostatic relations (5.3) then show that the slope of an

/67

isotherm is where the solution is smooth, and =~ //ﬁ'7 at a

49
j A
frontal surface. Since values of © are conserved and M is proportional

Q,ak

to following fluid particles, the slopes of isotherms are

t

proportional to Q‘ . Thus the streamfunction 4) obeys the

|
equation |
|
\
\
\

2
o P
oL | (5.7)

1"

where 1 is a coordinate along an isotherm with slope s.

The difficulty of sol;ing (5.7) is shown iﬁ Fig. 16. If an
isotherm intersects both boundaries, (5.7) can be solved with the
boundary conditions !¥>= 0 at 3= O,| . Otherwise, the problem
can only be solved by establishing the geometry of intersections of

isotherms and requiring 4) to be continuous at them. The well-

.

.poéedness of this is guaranteed by Theorem 1. However, it seems
impossible to solve such a problem directly where the discontinuities
are smeared over grid-lengths. The viscous problem (5.1) would
become similarly difficult to solve as & is reduced. It therefore
seems neccssary to use an iterative meﬁhod to calculate 4! .
This behaviour in the inviscid case suggests that the solution

is not locally determined, even though the ageostrophic accelerations
are small. The method of sblution muét therefore allow igformation .

to propagate a large distance at each timestep.
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Iterative method of solution

Solve (5.2), (5.3) by splitting as follows:

; d :
Step 1: -o-c(v +x) - -Lx:?-x(v-q-x) + o{(\/*)g) = 0
00 30 o
a—— ol % s = O
e ox
At the end of this step v and © do not satisfy (5.3).
Step 2: Introduce an imaginary iteration time T and solve
vax) v 2¢)
e o+ “/' e 4 w’a.(..v.i.f") - e'vi(v-ox)
J"E d3¢ c)s
é_e- & w’ é.@ Ty g -C)-Q - e’ W"@ (5.9)
0T )

; 5
/ / . .
where u and w evolve in T according to

-‘)—\:-/ iy - Ve szu/

kO (5.10)
%__u+ ac Al E SR W/=0“‘3=0,|

xX ‘)3 !

o4

- = 0O

)

If we %\ssume that (5.9), (5.10) have to be integrated for a time
'C:'f]t to obtain convergence, then the artifical viscosity ¢’/
must be set to q-le s

The viscous term in (5.10) ensures that the magnitudee of
u, and hence w/ decrease with T . Since (va4x ) and © ar;a
conserved following the incompressible motion (u , w ) under (5.9);
this iteration converges to the un.iq‘ue rearrangement proved possible
in Theorem 1; where areas gmd values of (v-nt)_and @ are preserved
and the conditions (5.3) satisfied.

This iteration differs from a solution of the primitive
equations for this problem in that (5.9, (5.10) have to be integrated

in T forlonger than real time to obtain convergence. This is

% 3G
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because the intefnal gravify waves carrying out the adjustment only
have a phase spee§ of greater than 10 ms°1 for the first five
internal modes. fThe solution of the semi-geostrophic equations
'reéuires information on detéiled vertical structure to be transmitted
equally fast for all internal modes. If the semi-geostrophic
solution is to be physically valid, a fast mechanism must exist for
transferring the information in Fhe atmosphere.

- A similar method can be used for the three dimensional semi-
geostrophic equations. Though the direct proof of Theorem 2 only

holds on an f plane, the iteration can be written for variable f as

follows, where a dimensional form is used.

Step 1: ) .
“u =
e T 2b.§7q3 =g )
3 : B (5.11)
-;-e + 33~Vva : O :
: A o
T + ::3 . Vo
19 -t 8 :
s = (g S0l )

such that

L




where é...“'
ot * &
AN d
FE R kviv’.
ou!

(5.13)

' /

S:i %VS +——-i; s 0

)

PO ﬁq/eo :

On an f plane, Theorem 2 shows that this scheme will converge to a

solution where ug, v8 satisfy the definitions

b 3
-31 2 -S-Vb ) "‘S s -&u&

If f is variable, convergence can only be established by experiment.

d. Lower boundary condition

The boundary condition wWwz0 at 3; Q and | corresponds to

assuming rigid boundaries at P20 and 7, ,

wthere To is a
fixed surface pressure. Heckley and Hoskins (1982) used m_ox:e
realistic boundary conditions. It is -also desirable to be able to
use (5.11) to (5.13) in sigma coordinates, to avoid the use of the

Boussinesq approximation as in (5.1). The correct lower boundary

condition at 3: Q is




o4, W é..f’.'."

e S o -\ (5.16)
Ok dae
and by the continuity equation
tdu

The effect of using this condition instead of the rigid wall

condition in Theorem 1 is that the areas of segments of constant

M and © are not exactly conserved, since the geopotential at
%:0 must adjust to satisfy (5.15). Since ‘P. only has to vary
by about + 5% of its mean valug under normal conditions, this represents
only a small relative change in areas of segments. It should therefore
be ﬁossible to extend the explicif construction uséd in the proof of
Theorem 1 iteratively. This involves the following procedure:

i) Solve with fixed areas, and obtain v at z = O

(ii) Calculate ¢~ and hence P from (5.15) e

(iii) Correct areas of segments in contact with lower boundary

to allow for transfer of mass across z = O.

(iv) Solve again with new areas, and repeat to convergence.
The result of implementing this procedure in the case studied in C
will be shown later. Convergence of this iteratioﬁ requires the
property from Theorem 1, that the solution depenés continuously on
the areas of the elements.

The condition (5.14) caﬂ be impiemented in the iterative

procedure (5.9), (5.10) by modifying (5.10) as follows:

/ ]
o . LB L .
T ox (5.18)
/ / .
é: - %3! =0 _
Ox 3
S35



Finite difference approximations, and horizontal boundary condition

The iterative methods (5.8) to (5.10) for the two dimensional
deformation problem, (5.11) to (5.13) for the three dimensional semi-
geostrophic model, and (5.18) with the correct lower boundary
condition can all be solved by standard finite difference procedures.

For the data used in C, it was found sufficient to use a forward

timestep in (5.8) and ‘a backward-implicit scheme in (5.9) and (5.10).

The horizontal boundary conditions must be precisely specified
for the finite difference calculations. These have to be consistent

with (2.3); and so the required conditions are

ws=z 0
-k
\ \ sk xz *¢ (5.19)
L3 olva x) )
ko = [ e : 0 7
ole 0k

The second condition ensures that spurious vaiues of © and ( va) are
not generated at the boundary.

It is important to note the difference in the way in which
artificial viscosity is used in (5.8) to (5.10). A large viscosity
is used in (5.10) to accelerate con§ergence; it has no effect on

A A ; 3 Shs Wi
the history carrying variables since the '"velocities" u , w are not
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physically réalistic, but just iteration parsmeters. The artificial
viscosity in (5.9) is used to capture the fronts, and since Theorem 1
proves the existence of a solﬁtion to the inviscid problem, this 5
viscosity can be reduced as the mesh is refined, 60 € will be
proportional to AX} . In a 3 dimensional PE integration there is a
single set of Qelocity components and there is no way of appiying
different diffusion coefficients to geostrophic and ageostrophic winds;
the best that can be done is divergence damping (Dey (1978)). In two
dimensions, as here, it is possible to use different diffusion coefficients
for u and v.

6. Results

a. Zero potential vorticity

The first case f&r vhich results are presented uses the same data
as in C. Plots of this data are giyen in Figs. 17 and 18. Though zero
potential vorticity ié not the most physically realistic case, it has not
so far proved possible to implement the exact geometrical construction
used to prove Theorem 1 as a practical computational tool in any other
case. Therefore this data was used to allow a comparison of finite
difference solutions with the exact construction. Using this data yields

a discontinuity at the boundaries when ok = 1.5. The initial data is

derived from TR TR )

—

il a) oy ' (6.1)
& o w"(sx(x‘.&))

vhere X(x's\ is defined by

s Mgl o -5 g (6.2)
3 - " ; Lles X_(x‘a))z) ‘ ‘
and boundary conditions (5.14) at 3 =0, w=0 at 3= ! and
(2:3):.8% - 2 et . The models compared are | e
: .
)
: - 38 -



(i) Explicit construction as in Theorem 1 with iterative

modification to treat the lower boundary condition (referred to as EC)

This model will exactly reproduce the Hoskins and Bretherton

solution up to when the front forms.

(ii) Finite difference solution fo the primitive two-dimensional

equations with artificial viscosity added (referred to as PE)

Second order central differencing is used throughout, as in C.

(iii) TFinite difference semi-geostrophic solution of (5.8)

and (5.18) (referred to as SG). The same finite difference

approximations are used as‘in.(ii), with a 200 x 20 grid.

The results from EC are given in Figs. 19 and 20, which show the
potential temperature and long-front component of velocity. The
comparison between PE and SG is complicated by the fact that the
proved possible to run{i& with a much lower value for the artifical
viscosity (190 m25-1) than PE (2.5 x10u mas—1), if the same coefficient
is used for all variables in PE. Sincg the frontal structure is
sensitive to this coefficient e.g. Williams (1974),two cases are
presented.

In Figs. 21 to 23 the potential temperature, K long-front velocity and
vertical velocity are shown from an integration of PE using a coefficient
of 190 mzs-1 for v and @ but an increased value for u. These can be
compared directly with Figs 24 to 26, obtained using SG. No vertical
diffusion was used, so that there is no attempt to model atmospheric
boundary layer effects in this work.

The results from PE look rather different to those presented in C
because of the different diffusion coefficients used here. %he overall
width of the frontal zone is éreater in PE than in EC and SG. The
potential temperature comparison (Figs. 19, 21 and 24) shows that above
aad below the frontal surface the slopes of the isotherms in PE disagree
with those in 5G and EC. Near z = %, the slopes are much shallower in

EC than in either PE or SG, which are similar. In the case of PE, this

gy,



difference remains as the resolution is further increased, in SG the

slopes show slow convergence towards the EC results. This suggests

that the errors at this level are caused by lack of resolution. The

problem only becomes serious after the initial formation of the front. e

The dimensionless slope given by thermai wind balance is givonthM%L@

which for the data (6.1) is proportional to secz(X). This has a sharp

minimum near the 6 = 0° isotherm. Smearing of the profiles by truncation

error could result in this minimum not being well resolved after a long

integration period.

- The differences in the long;front velocity (Figs. 20, 22 and 25)

dre less obvious. The magnitude ¢f v is consistently greater in PE

than in SG and EC. The jump in v extending away from the frontal zone

in EC is because of the use of data piecewise constant in M and the

change in aligumentof the segments because of the presence of the front.

This indicates a lack of realism in the choice of initial data. The

effect is lost in thé finite difference integrations by the numerical

smoothing. The maximum vorticity in SG and PE is about 12f, roughly

the maximum amount allowed by the validity of the SG equations discussed

by Hoskins and Bretherton. :
The vertical velocities are considerably different in character in

?E and SG. In PE there are regions of large values on either side of

the front. 1In Fig. 23 they fill much of the space between the vertical

lines defining the overall width of the frontal zone. In SG (Fig. 26),

the large values are confined much closer to the.frontal zone and to

separste regions extenting almost vértically from the points where the

frontal zone intersects the boundaries. .There are very large values

near the boundaries. It has-not yet.been possible to calculate

vertical velocities from EC. However, in order to produce the effect

of propagating the front into the interior of the fluid large values

will be necéssary"concentrated near the boundaries.

e



The experiments were repeated using the same diffusion coefficient

for all variables in PE. The value required to allow a stable
integration was 2.5 x 104 masec—1.The SG integration was then repeated
using this value. The résulfs for the © fields are shown in Figs. 27

and 28. The differences are less clear-cut than with the lower value of
diffusion. The vertical velocities (not shown) from both integrations are
mﬁch smoother. Those from SG have larger values closer to the boundary
than from PE and are less smooth. The reason why the PE integration
fails with less diffusion appears to be unrelated to the roughness of any
of the fields but coﬁcerned with the development of a singularity at

the boundary.

In Fig. 29 we show a comparison between NG across the front as
given by EC and the maximum value of égﬁx as given by SG and PE. The
effect of the diffusibn coefficient is very mapked. Both SG and PE with
low diffusion underestimate the gradients in the @id-troposphere. °G gives
consistently 10 to 20 per csnt-gfcﬁter values excepl near the boundary. The
value of AD® across the jump decreases very rapidly away from the boundary
even in EC, in common with observations of frontal strength.

- Though the use of data with q = O was necessary because of the
inability at present to implement the EC construction in any other case,
typical atmospheric data has positive q. There is a danger that the
case q = O may present special problems in a numerical model. The data is
only neutrally stable to symmetric instability, and numerical truncation
error may create regions of negative q. We therefore present a comparison
between the © fields given by SG and PE for positive q in Figs. 30 and
31. The same qualitative differences remain as in the q = O case.

The final experiment shown is to solve SGusing data with a
discontinuity in q, representing a tropOpéuse. The data used has zero
potential vorticity for 0 £ z < %. and large positive potential

vorticity for 2 < 2z < 1. A rigid wall condition is imposed at z = 1,



and © is not constant on z = 1. This is intended as a comparison with

the results of Hoskins and Bretherton on upper tropospheric fronts.

In agreement with then, ;nd with Theorem 3, no discontinuity is férmed .
-at the tropopause. The model produces a staticaliy uns£ab1e profile

just below the tropopause, (Fig. 22). This still océurs.if the data is
modified to héve q # O in the troposphefe, and- appears to bé caused by the
smearing of the sharp discontinuity in temperature gradient by the

finite difference scheme. The long-front velocity field (Fig. 33)

shows a well developed jet just below the tropopause with a secondary
maximum near z = 1. There is no tendency to form a discontinuity in

this field near the jets.




7o Discussion

In this paper the extension to the model of Hoskins and Bretherton (1972)
introduced in C is further developed. By extending it beyond the initial
formation of the front, a solution can be obtained which reflects a balance
between frontogenetic and frontolytic forces. It is more reasonable to compare
this solution with observations of a front than to use the solution before the
front forms, and it would be interesting to use it to repeat the detailed
comparisons of Blumen (1980) and Ogura and Portis (1982). The results
shown for the vertical velocity suggest that closer agreement with observation
may be obtained.

The solution obtained by Lagrangian conservation law arguments has been
shown to agree reasonably with that obtained by finite difference solution of
the semi-geostrophic equations. The latter model can easily be extended to
include boundary layer and moist processes, but it would alsc be interesting to
attempt this with the Lagrangian model. in view of the powerful theorems that
can be proved using the Lagrangian model, it is important to study its physical
validity in much more detail; a clear starting ﬁoint is the scaling assumption
that turbulent mixing sets in before the ageostrophic accelerations become large.

It is to be expected that this model would only be in agreement with observations

when this assumption is correet. The predicted separation effect at the boundary
may provide a good test.

The differences between the SG and PE finite difference éolutions are
disturbing. Some of the difficulty must be caused by the use of two-dimensional

models. The real turbulent breakdown, which should.be predicted by PE, is three
dimensional. It would therefore be interesting to extend the comparison into
three dimensions. However, since the PE can describe a scéle collapse in three
dimensions; the success of a PE model depends on a correct parametrization of
sub grid-scale turbulence, since the viscous dissipation scale cannot be
reéolvéd. It is therefore not surprising that it is difficult to model a
solution whefe the small scales are generated in as organised a way as near

a front.
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Figure 33 . y-velocity after 13.9 hr., model and data as Fig. 32.







SOLUTION-SURFACE

Ele
S

=



NS

(d)

.




. ke

-
71 i
S8

%
~

S

L
/7‘
-
7y,
’/

ey

\\ 'l 7’
/

L.

/

.




o




. b 0(%) 0(%) | | oy <t

W W W, W,

i
!
!




Nz
HI
B e
A\ Y
-o A _ (%) DJ+s el
- < O\\ ~
0p " oy e
axl_ ax |y 9
No

i -
« ’d
> M
—g +9
(b)







(Ksopunog) x
I




WIDA

|
!

»




AO

3 -
=
ad : = -
o
| 8
| . . .




.

. 5 =
(o]
e
= { 15
< S
i £ o2
[ L
O >:)
P : i
S
(o]
-
[0}
w
=
4
s
E -~
o] o]
L
lL .
L o
s | .
Q.
Q.
=1 B =
. 5 = -
5 v
p 0
O
L
k=
0 k%
% R ¢
: g8 Er
P B
RS -

\s
bid




.

) § ' X
' <
o~ N :
. SN = ' .
N ) s
< I .
- k . =

X

R TTIITT
0,



' )
. :
\
\
‘
1
. .
. 3
o




z







. ///s .. = /a,. /
. o A <9 o <
X, T y Y
£ o™ :
g% ;

1

:

e
-

ot G 15









g N

e










Wit
R

\)
\

va.%,wm. > 4
&

1 s ~ .
L ] :
o

.mmo
\ ’
2 ~
O.m\ 0 0 .
e

\\
S
o




paes B

P
\!., V“ ."



















—

—




Yl /////

€
N\
O Y Y N\o\u )
S 0% 0 \olHHD Dinbin |~
\ \'
\‘\\\\\f"{‘ ‘ %
A
AN
N
\
\\\
WK -
0, 0 @ 27 ‘\\ idh
S ’0‘\5\' . "') ’”‘:
i /
e l
_\ .D . 5
- 90 5/ \
.‘0' ~1,

/ “D
Q .0/ <> 2
s o
o rd
////&
. QW /1 ‘{7 O/ hin L\ Y \ \
NN o o))~/ ke e
I.l / SIS~ LEANERS S O J)
Lo bt ChEn,
: N
\ ‘:\
- ' N\
- \' lg
- \:
N A
I‘ ‘_‘
(S S




